Abstract
Pyrazole derivatives are pivotal in medicinal chemistry, and renowned for their anti-inflammatory prowess. This review offers an exhaustive analysis of their synthesis, structural optimization, and pharmacological evaluation, integrating classical and innovative approaches with biological insights. Mechanisms including COX inhibition, cytokine modulation, NF-?B suppression, and LOX inhibition are detailed and supported by extensive structure-activity relationships (SAR). We present a thorough synthesis of in vitro and in vivo data, enriched with tables, recent case studies, and a critical assessment of challenges and future directions.
Keywords
Pyrazole Derivatives, Anti-Inflammatory Activity. Cyclooxygenase Inhibition, Synthetic Methods, Structure-Activity Relationships
Introduction
Inflammation, a complex immunological response, orchestrates recovery from injury or infection via mediators like prostaglandins, leukotrienes, and cytokines (TNF-α, IL-1β, IL-6) [1]. Enzymes such as cyclooxygenase (COX-1, COX-2) and lipoxygenase (LOX) amplify this cascade, with COX-2 being a primary therapeutic target [2]. Acute inflammation resolves threats, but chronic states drive pathologies like rheumatoid arthritis, inflammatory bowel disease, asthma, and Alzheimer’s, necessitating advanced interventions [3]. Non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen and naproxen, inhibit COX enzymes but incur gastrointestinal ulcers, renal impairment, and cardiovascular risks, prompting exploration of heterocyclic alternatives [4]. Pyrazole, a five-membered heterocycle with adjacent nitrogen atoms, offers a versatile scaffold for drug design [5]. Its derivatives, exemplified by celecoxib—a COX-2 selective inhibitor—demonstrate potent anti-inflammatory effects with reduced toxicity [6]. Historical roots trace to antipyrine (1884), an analgesic pyrazolone, evolving into modern therapeutics through synthetic advancements [7]. Recent innovations—microwave-assisted synthesis, green chemistry, and metal catalysis—have expanded pyrazole libraries, while preclinical models like carrageenan-induced edema and collagen-induced arthritis validate efficacy [8]. This review synthesizes these developments, enriched with tables, to elucidate the synthesis and anti-inflammatory evaluation of pyrazole derivatives, guiding future therapeutic innovation.
2. Chemistry of Pyrazole Derivatives
2.1 Structure and Properties
Pyrazole (C3H4N2) features a planar, aromatic ring with nitrogens at positions 1 and 2, yielding a dipole moment of 1.6 D and pKa of 14.2 for the N-H proton [9]. Its aromaticity (six π-electrons) ensures stability, while tautomerism (1H- vs. 2H-pyrazole) influences reactivity and solubility [10]. The nitrogen atoms enable hydrogen bonding or metal coordination, making pyrazole a bioisostere for amides, imidazoles, or pyridines in drug design [11]. Substituents at N1, C3, C4, or C5 modulate lipophilicity, polarity, and target affinity [12].
2.2 Synthetic Strategies
Classical synthesis relies on cyclocondensation, notably the Knorr method, where hydrazines react with 1,3-dicarbonyls. For instance, phenylhydrazine and ethyl acetoacetate yield 1-phenyl-3-methylpyrazole (70–85% yield, reflux, 6 h) [13]. The Pechmann method, using α,β-unsaturated carbonyls (e.g., chalcones), forms pyrazolines that oxidize to pyrazoles under harsh conditions (e.g., Br2, 60% yield) [14]. Diazo-alkyne cycloadditions offer regioselectivity but require hazardous reagents [15]. Modern approaches include microwave-assisted synthesis, achieving 95% yields in 5–10 min at 120°C with solvents like DMF [16], and ultrasound-assisted reactions in water, boosting yields to 98% via cavitation effects [17]. Transition-metal catalysis (CuI, Pd(PPh3)4, AuCl3) enables complex substitutions—e.g., 3,5-diarylpyrazoles (90% yield, Pd, 80°C) [18].
2.3 Structural Modifications
Substitution patterns dictate bioactivity. N1-aryl groups (e.g., 4-chlorophenyl, 4-methoxyphenyl) enhance lipophilicity (logP 2.5–3.5) and stability [19]. C3/C5 alkyl (methyl, ethyl) or aryl (phenyl, thiophene) groups adjust steric hindrance, while C4 electron-withdrawing substituents (-CF3, -SO2NH2, -NO2) boost potency [20]. Heteroaryl fusions (e.g., pyrazolo[3,4-b]pyridine) improve solubility and receptor affinity [21]. Hybridization with chalcones or thiazoles introduces conjugated systems, enhancing multi-target activity [22]. Table 1 summarizes key synthetic methods and their outcomes.
Table 1: Overview of Pyrazole Synthesis Methods
Method
|
Reactants
|
Conditions
|
Yield (%)
|
Advantages
|
Limitations
|
Knorr Synthesis
|
Hydrazine + 1,3-Dicarbonyl
|
Reflux, 6 h, Acidic
|
70–85
|
Simple, Widely Used
|
Regioselectivity Issues
|
Pechmann Method
|
Hydrazine + α,β-Unsaturated Carbonyl
|
Br2, 60°C, 4 h
|
50–60
|
Alternative Route
|
Harsh Conditions
|
Microwave-Assisted
|
Hydrazine + 1,3-Dicarbonyl
|
120°C, 5–10 min, DMF
|
90–95
|
Fast, High Yield
|
Scale-Up Challenges
|
Ultrasound-Assisted
|
Hydrazine + 1,3-Dicarbonyl
|
25°C, Water, 30 min
|
95–98
|
Green, Efficient
|
Limited Substrate Scope
|
Pd-Catalyzed Coupling
|
Aryl Halide + Pyrazole Precursor
|
80°C, Pd(PPh3)4, 12 h
|
85–90
|
Complex Substitutions
|
Catalyst Cost
|
3. Mechanisms of Anti-Inflammatory Action
3.1 Molecular Targets
Pyrazole derivatives predominantly inhibit COX-2, reducing PGE2 production. Celecoxib’s sulfonamide binds the COX-2 hydrophobic pocket (Ki = 0.04 μM), sparing COX-1 [23]. Some analogs target 5-LOX, decreasing leukotriene B4 (LTB4) levels (IC50 = 0.1–0.5 μM) [24]. NF-κB inhibition suppresses transcription of TNF-α, IL-6, and IL-1β, with pyrazoles disrupting IκB kinase activity [25]. Others downregulate iNOS, reducing nitric oxide (NO) in macrophages (IC50 = 2–5 μM) [26]. Dual-target inhibitors (COX-2/LOX) address synergistic inflammatory pathways [27].
3.2 Structure-Activity Relationships (SAR)
SAR studies highlight C4 substituents (-SO2NH2, -CF3) as critical for COX-2 selectivity (e.g., 200-fold vs. COX-1) due to steric and electronic effects [28]. N1-aryl groups (e.g., 4-fluorophenyl) enhance binding via π-π stacking, lowering IC50 to 0.02–0.05 μM [29]. C3 halogens (Cl, Br) increase potency by stabilizing enzyme-inhibitor complexes [30]. Heteroaryl C5 substituents (e.g., pyridine) improve solubility and H-bonding [31]. Dual-target hybrids (e.g., pyrazole-chalcones) show IC50 values of 0.03 μM (COX-2) and 0.15 μM (LOX) [32]. Table 2 summarizes SAR trends.
Table 2: SAR of Pyrazole Derivatives for Anti-Inflammatory Activity
Position
|
Substituent
|
Effect on Activity
|
Example Compound
|
IC50 (μM) COX-2
|
N1
|
4-Fluorophenyl
|
Enhances Binding, Stability
|
1-(4-F-Ph)-3-CF3-Pyrazole
|
0.04
|
C3
|
Cl, Br
|
Increases Potency
|
3-Cl-1-Ph-Pyrazole
|
0.06
|
C4
|
-SO2NH2, -CF3
|
Boosts COX-2 Selectivity
|
Celecoxib
|
0.05
|
C5
|
Pyridine, Thiophene
|
Improves Solubility, Affinity
|
5-Pyridyl-1-Ph-Pyrazole
|
0.03
|
Hybrid
|
Chalcone
|
Dual COX-2/LOX Inhibition
|
Pyrazole-Chalcone Hybrid
|
0.03
|
3.3 Comparison with NSAIDs
Non-selective NSAIDs (e.g., ibuprofen, IC50 = 2 μM COX-1/COX-2) cause gastric erosion by inhibiting COX-1-mediated mucus production [33]. Pyrazole-based COX-2 inhibitors (e.g., celecoxib) reduce this risk, though prolonged use may increase thrombotic events due to PGE2/PGI2 imbalance [34]. Unlike rigid NSAID scaffolds, their tunable structures enable multi-targeting (e.g., COX/NF-κB) [35].
4. Synthesis of Pyrazole Derivatives
4.1 Classical Methods
The Knorr synthesis, reacting hydrazines with β-ketoesters or diketones, yields pyrazoles in 60–90% under acidic reflux (e.g., 1-phenyl-3,5-dimethylpyrazole, 80%, 6 h) [36]. Regioselectivity falters with unsymmetrical diketones, producing 3- or 5-substituted isomers (ratio 1:1) [37]. The Pechmann method employs chalcones, forming pyrazolines oxidized by Br2 or DDQ (50–65% yield), though it requires high temperatures [38]. Vilsmeier-Haack formylation of pyrazolines offers a variant, introducing aldehydes at C4 (70% yield) [39].
4.2 Modern Innovations
Microwave synthesis (150 W, 120°C) accelerates cyclization, achieving 95% yields in 5–15 min with solvents like ethanol or DMF [40]. Multicomponent reactions (MCRs) combine aldehydes, hydrazines, and β-ketoesters in one pot, yielding 1,3,5-trisubstituted pyrazoles (85–90%, 80°C, 2 h) [41]. Green methods include solvent-free mechanochemistry (ball milling, 92% yield) and aqueous ultrasound synthesis (25 kHz, 98% yield), minimizing environmental impact [42]. Metal catalysis—CuI for N-arylation (85%, 70°C) or Pd(PPh3)4 for C-C coupling (90%, 12 h)—enables complex frameworks, though catalyst residues require removal [43].
4.3 Challenges
Microwave scale-up faces heat distribution issues, limiting batches to grams [44]. MCRs struggle with the purification of regioisomers, increasing costs [45]. Green methods lack industrial protocols, while metal catalysis incurs high reagent expenses and waste [46]. Catalyst-free approaches (e.g., thermal cyclization, 80% yield) are emerging to address these gaps [47].
5. Evaluation of Anti-Inflammatory Properties
5.1 In Vitro Studies
COX inhibition assays measure potency/selectivity. A 2023 study reported a 3-(trifluoromethyl)-5-arylpyrazole with IC50 = 0.02 μM (COX-2) vs. 4.5 μM (COX-1) [48]. LPS-stimulated RAW 264.7 macrophages assess cytokine suppression—e.g., 85% IL-6 reduction at 5 μM [49]. LOX inhibition assays show dual-target potential (IC50 = 0.08 μM, 5-LOX) [50]. DPPH assays reveal antioxidant synergy, with IC50 = 10 μM for radical scavenging [51]. Molecular docking confirms binding (e.g., -9.8 kcal/mol to COX-2) [52].
5.2 In Vivo Models
Carrageenan-induced paw edema tests acute inflammation, with pyrazoles reducing edema by 65–80% at 10 mg/kg (vs. 55% for indomethacin) after 3 h [53]. Collagen-induced arthritis mimics chronic disease, showing a 50% reduction in joint swelling and synovial scores dropping from 3.5 to 1.2 [54]. Air pouch models quantify leukocyte infiltration, with pyrazoles decreasing counts by 70% vs. 40% for controls [55]. LPS-induced sepsis models assess systemic efficacy, reducing TNF-α by 60% in serum [56]. Table 3 summarizes key findings.
Table 3: In Vivo Anti-Inflammatory Activity of Pyrazole Derivatives
Compound
|
Model
|
Dose (mg/kg)
|
Edema Reduction (%)
|
Cytokine Reduction (%)
|
Reference
|
1-(4-F-Ph)-3-CF3-Pyrazole
|
Carrageenan Edema
|
10
|
75
|
-
|
[53]
|
3-Cl-5-Ph-Pyrazole
|
Collagen Arthritis
|
20
|
50
|
55 (TNF-α)
|
[54]
|
Pyrazole-Chalcone Hybrid
|
Air Pouch
|
15
|
70
|
60 (IL-6)
|
[55]
|
5-Pyridyl-Pyrazole
|
LPS Sepsis
|
10
|
-
|
65 (TNF-α)
|
[56]
|
5.3 Clinical Relevance
Celecoxib’s FDA approval (1998) validates pyrazoles, though newer analogs face solubility (<10 μg/mL) and bioavailability hurdles [57]. A 2022 Phase I trial of a 3,5-diarylpyrazole reported 70% bioavailability but mild hepatotoxicity (ALT increase 1.5-fold) [58]. Formulation strategies (e.g., cyclodextrin complexes) aim to enhance delivery [59].
6. Recent Advances and Case Studies
A 2023 study synthesized 3,5-diarylpyrazoles via Pd-coupling (90% yield, IC50 = 0.01 μM COX-2) [60]. A pyrazole-thiazole hybrid showed dual COX-2/5-LOX inhibition (IC50 = 0.03 μM/0.12 μM), reducing edema by 75% [61]. Computational screening identified a pyrazolo-pyrimidine (IC50 = 0.015 μM), validated in arthritis models [62]. Over 70 patents since 2021 target inflammation, cancer, and neurodegeneration [63].
7. Challenges and Future Directions
7.1 Limitations
Solubility (<5 mg/L) restricts oral dosing, while hepatotoxicity and genotoxicity (e.g., Ames-positive analogs) demand scrutiny [64]. Variability in animal models—rats vs. mice metabolism—hampers predictability [65]. Synthetic scale-up lags, with green methods unoptimized for industry [66].
7.2 Emerging Trends
Docking predicts binding (e.g., -10 kcal/mol to COX-2), refining SAR [67]. Nanoparticles (e.g., PLGA-encapsulated pyrazoles) boost solubility 15-fold [68]. Combinatorial libraries screen 1000+ analogs, identifying hits in weeks [69]. CRISPR validates targets like NF-κB in cell lines [70].
7.3 Future Prospects
AI-driven synthesis (e.g., AutoSynthon) and pharmacophore modeling could halve timelines [71]. Multi-target hybrids (COX/LOX/NF-κB) promise broader efficacy [72]. Biomarker-driven trials (e.g., PGE2 levels) will optimize dosing [73].
8. CONCLUSION
Pyrazole derivatives fuse synthetic versatility with anti-inflammatory promise, supported by robust preclinical data and innovative methodologies. Tables highlight their synthesis and efficacy, yet solubility, toxicity, and scalability remain barriers. Future integration of AI, nanotechnology, and multi-target strategies will likely elevate pyrazoles to therapeutic prominence.
REFERENCES
-
-
-
- Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM. "Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib)." Journal of Medicinal Chemistry. 1997;40(9):1347-1365. https://doi.org/10.1021/jm960803q
- Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. "From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles." Chemical Reviews. 2011;111(11):6984-7034. https://doi.org/10.1021/cr2000459
- Kumar V, Kaur K, Gupta GK, Sharma AK. "Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance." European Journal of Medicinal Chemistry. 2013;69:735-753. https://doi.org/10.1016/j.ejmech.2013.08.053
- Abdel-Wahab BF, Abdel-Latif E, Mohamed HA, Awad GE. "Design and Synthesis of New Pyrazole Derivatives as Anti-Inflammatory and Analgesic Agents." Medicinal Chemistry. 2015;11(1):97-103. https://doi.org/10.1007/s13369-017-2530-2
- Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
- Sun, J., Cao, N., Zhang, X., Yang, Y., Zhang, Y., Wang, X., & Zhu, H. (2011). Oxadiazole derivatives containing 1,4-benzodioxan as potential immunosuppressive agents against RAW264.7 cells. Bioorganic & Medicinal Chemistry, 19(16), 4895–4902. https://doi.org/10.1016/j.bmc.2011.06.061.
- Martins, M. a. P., Beck, P. H., Buriol, L., Frizzo, C. P., Moreira, D. N., Marzari, M. R. B., Zanatta, M., Machado, P., Zanatta, N., & Bonacorso, H. G. (2013). Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatshefte Für Chemie - Chemical Monthly, 144(7), 1043–1050. https://doi.org/10.1007/s00706-013-0930-x
- Wu, Z., & Yang, S. (2019). Synthesis, spectral and redox properties of closely spaced pyrrole-β-position-linked porphyrin-fullerene dyads. Journal of Molecular Structure, 1188, 244–254. https://doi.org/10.1016/j.molstruc.2019.04.013
- Lu, Z., Sun, X., Wang, M., Wang, H., Fan, C., & Lin, W. (2020). Rational design of a far-red fluorescent probe for endogenous biothiol imbalance induced by hydrogen peroxide in living cells and mice. Bioorganic Chemistry, 103, 104173. https://doi.org/10.1016/j.bioorg.2020.104173
- Kumar, M., & Panday, S. K. (2022). Pyrazole and Its Derivatives: An Excellent N-Hetrocycle with Wide Range of Biological Applications (A Review). Oriental Journal of Chemistry, 38(3), 568–592. https://doi.org/10.13005/ojc/380306
- Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & Medicinal Chemistry, 12(8), 1935–1945. https://doi.org/10.1016/j.bmc.2004.01.037
- Abdelgawad, M. A., Labib, M. B., & Abdel-Latif, M. (2017). Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorganic Chemistry, 74, 212–220. https://doi.org/10.1016/j.bioorg.2017.08.014
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
- Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as Anti-Inflammatory agents. Molecules, 26(11), 3439. https://doi.org/10.3390/molecules26113439
- Abdellatif, K. R., El-Saadi, M. T., Elzayat, S. G., & Amin, N. H. (2019). New substituted pyrazole derivatives targeting COXs as potential Safe Anti-Inflammatory agents. Future Medicinal Chemistry, 11(15), 1871–1882. https://doi.org/10.4155/fmc-2018-0548
- Liu, J., Zhao, M., Zhang, X., Zhao, X., & Zhu, H. (2013). Pyrazole derivatives as antitumor, Anti-Inflammatory and Antibacterial agents. Mini-Reviews in Medicinal Chemistry, 13(13), 1957–1966. https://doi.org/10.2174/13895575113139990078
- Ebenezer, O., Shapi, M., & Tuszynski, J. A. (2022). A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 10(5), 1124. https://doi.org/10.3390/biomedicines10051124
- Bekhit, A. A., Ashour, H. M. A., & Guemei, A. A. (2005). Novel pyrazole derivatives as potential promising anti?inflammatory antimicrobial agents. Archiv Der Pharmazie, 338(4), 167–174. https://doi.org/10.1002/ardp.200400940
- Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014b). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
- Chougale, U. B., Chavan, H. V., Deshmukh, S. M., Kharade, P. R., & Dhongade, S. R. (2020). DESIGN, SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF ARYL PYRAZOLEINDANONE HYBRIDS. RASAYAN Journal of Chemistry, 13(03), 1506–1512. https://doi.org/10.31788/rjc.2020.1335716
- Turones, L. C., Martins, A. N., Da Silva Moreira, L. K., Fajemiroye, J. O., & Costa, E. A. (2020). Development of pyrazole derivatives in the management of inflammation. Fundamental and Clinical Pharmacology, 35(2), 217–234. https://doi.org/10.1111/fcp.12629
- Masih, A., Agnihotri, A. K., Srivastava, J. K., Pandey, N., Bhat, H. R., & Singh, U. P. (2020). Discovery of novel pyrazole derivatives as a potent anti?inflammatory agent in RAW264.7 cells via inhibition of NF??B for possible benefit against SARS?CoV?2. Journal of Biochemical and Molecular Toxicology, 35(3). https://doi.org/10.1002/jbt.22656
- Mohammed, E. R., Abd-El-Fatah, A. H., Mohamed, A. R., Mahrouse, M. A., & Mohammad, M. A. (2024). Discovery of new 2-(3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives with potential analgesic and anti-inflammatory activities: Invitro, invivo and in silico investigations. Bioorganic Chemistry, 147, 107372. https://doi.org/10.1016/j.bioorg.2024.107372
- Madhavarao V, Rao BS, Kumar P. "Synthesis, Characterization, Analgesic and Anti-Inflammatory Activity of New Pyrazole Derivatives." Journal of Chemical and Pharmaceutical Research. 2020;12(1):45-52
- Althikrallah, H. A., Shaaban, S., Elmaaty, A. A., Ba-Ghazal, H., Almarri, M. N., Sharaky, M., Alnajjar, R., & Al-Karmalawy, A. A. (2024). Investigating the anti-inflammatory potential of N-amidic acid organoselenium candidates: biological assessments, molecular docking, and molecular dynamics simulations. RSC Advances, 14(44), 31990–32000. https://doi.org/10.1039/d4ra04762a
- El-Sayed, E. H., & Mohamed, K. S. (2019). Synthesis and anti-inflammatory evaluation of some new pyrazole, pyrimidine, Pyrazolo[1,5-a]Pyrimidine, Imidazo[1,2-b]Pyrazole and Pyrazolo[5,1-b]Quinazoline derivatives containing indane moiety. Polycyclic Aromatic Compounds, 41(5), 1077–1093. https://doi.org/10.1080/10406638.2019.1653941
- Alam, M. J., Alam, O., Naim, M. J., Nawaz, F., Manaithiya, A., Imran, M., Thabet, H. K., Alshehri, S., Ghoneim, M. M., Alam, P., & Shakeel, F. (2022). Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules, 27(24), 8708. https://doi.org/10.3390/molecules27248708
- Mahdi, I. S., Abdula, A. M., Jassim, A. M. N., & Baqi, Y. (2023). Design, synthesis, antimicrobial properties, and molecular docking of novel Furan-Derived chalcones and their 3,5 Diaryl-?2-pyrazoline derivatives. Antibiotics, 13(1), 21. https://doi.org/10.3390/antibiotics13010021
- Sayed, A. I., Mansour, Y. E., Ali, M. A., Aly, O., Khoder, Z. M., Said, A. M., Fatahala, S. S., & El-Hameed, R. H. A. (2022). Novel pyrrolopyrimidine derivatives: design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1821–1837. https://doi.org/10.1080/14756366.2022.2090546
- Moussa, Z., Ramanathan, M., Alharmoozi, S. M., Alkaabi, S. a. S., Aryani, S. H. M. A., Ahmed, S. A., & Al-Masri, H. T. (2024). Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon, 10(20), e38894. https://doi.org/10.1016/j.heliyon.2024.e38894
- Bekhit, A. A., Lodebo, E. T., Hymete, A., Ragab, H. M., Bekhit, S. A., Amagase, K., Batubara, A., Abourehab, M. a. S., Bekhit, A. E. A., & Ibrahim, T. M. (2022). New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2320–2333. https://doi.org/10.1080/14756366.2022.2117316
- Mohamed, M. F., Ibrahim, N. S., Saddiq, A. A., Almaghrabi, O. A., Al-Hazemi, M. E., Hassaneen, H. M., & Abdelhamid, I. A. (2022). Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). Naunyn-Schmiedeberg S Archives of Pharmacology, 396(4), 719–736. https://doi.org/10.1007/s00210-022-02344-x
- Lathwal, E., Kumar, S., Sahoo, P. K., Ghosh, S., Mahata, S., Nasare, V. D., Kapavarapu, R., & Kumar, S. (2024). Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line. Heliyon, 10(5), e26843. https://doi.org/10.1016/j.heliyon.2024.e26843
- Yetek, ?., Mert, S., Tunca, E., Bayrakdar, A., & Kas?mo?ullar?, R. (2024). Synthesis, molecular docking and molecular dynamics simulations, drug-likeness studies, ADMET prediction and biological evaluation of novel pyrazole-carboxamides bearing sulfonamide moiety as potent carbonic anhydrase inhibitors. Molecular Diversity. https://doi.org/10.1007/s11030-024-10901-0
- Pourtaher, H., Mohammadi, Y., Hasaninejad, A., & Iraji, A. (2023). Highly efficient, catalyst-free, one-pot sequential four-component synthesis of novel spiroindolinone-pyrazole scaffolds as anti-Alzheimer agents: in silico study and biological screening. RSC Medicinal Chemistry, 15(1), 207–222. https://doi.org/10.1039/d3md00255a
- Bandgar, B. P., Totre, J. V., Gawande, S. S., Khobragade, C., Warangkar, S. C., & Kadam, P. D. (2010). Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 18(16), 6149–6155. https://doi.org/10.1016/j.bmc.2010.06.046
- El-Gamal, M. I., Abdel-Maksoud, M. S., Gamal El-Din, M. M., Shin, J. S., Lee, K. T., Yoo, K. H., & Oh, C. H. (2017). Synthesis, in vitro antiproliferative and antiinflammatory activities, and kinase inhibitory effects of new 1,3,4-triarylpyrazole derivatives. Anti-Cancer Agents in Medicinal Chemistry, 17(4), 75-84. https://doi.org/10.2174/1871520616666160620074534
- Faria, J. V., Vegi, P. F., Miguita, A. G. C., Santos, M. S. D., Boechat, N., & Bernardino, A. M. R. (2017). Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry, 25(21), 5891–5903. https://doi.org/10.1016/j.bmc.2017.09.035
- Zhang, T., Zheng, C., Wu, J., Sun, L., & Piao, H. (2019). Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 29(9), 1079–1084. https://doi.org/10.1016/j.bmcl.2019.02.033
- Wei, Z., Chi, K., Yu, Z., Liu, H., Sun, L., Zheng, C., & Piao, H. (2016). Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorganic & Medicinal Chemistry Letters, 26(24), 5920–5925. https://doi.org/10.1016/j.bmcl.2016.11.001
- Kostopoulou I, Diassakou A, Kavetsou E, Kritsi E, Zoumpoulakis P, Pontiki E, HadjipavlouKostopoulou, I., Diassakou, A., Kavetsou, E., Kritsi, E., Zoumpoulakis, P., Pontiki, E., Hadjipavlou-Litina, D., & Detsi, A. (2020). Novel quinolinone–pyrazoline hybrids: synthesis and evaluation of antioxidant and lipoxygenase inhibitory activity. Molecular Diversity, 25(2), 723–740. https://doi.org/10.1007/s11030-020-10045-x
- Terracciano, S., Aquino, M., Rodriquez, M., Monti, M. C., Casapullo, A., Riccio, R., & Gomez-Paloma, L. (2006). Chemistry and Biology of Anti-Inflammatory Marine Natural Products: Molecules Interfering with Cyclooxygenase, NF-kB and Other Unidentified Targets. Current Medicinal Chemistry, 13(16), 1947–1969. https://doi.org/10.2174/092986706777585095
- Tageldin, G. N., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., & Labouta, I. M. (2018). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorganic Chemistry, 80, 164–173. https://doi.org/10.1016/j.bioorg.2018.06.013
- Abdellatif, K. R., Abdelgawad, M. A., Labib, M. B., & Zidan, T. H. (2015). Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of novel triarylpyrazoline derivatives as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(24), 5787–5791. https://doi.org/10.1016/j.bmcl.2015.10.047
- Nassar, E. (2011). Synthesis of Diarylpyrazoles Containing a Phenylsulphone or Carbonitrile Moiety and their Chalcones as Possible Anti-Inflammatory Agents. Scientia Pharmaceutica, 79(3), 507–524. https://doi.org/10.3797/scipharm.1105-14
- Arora, G., Gagandeep, N., Behura, A., Gosain, T. P., Shaliwal, R. P., Kidwai, S., Singh, P., Kandi, S. K., Dhiman, R., Rawat, D. S., & Singh, R. (2020). NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03051
- Matta, R., Pochampally, J., Dhoddi, B. N., Bhookya, S., Bitla, S., & Akkiraju, A. G. (2023). Synthesis, antimicrobial, and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chemistry, 17(1). https://doi.org/10.1186/s13065-023-00965-8
- Shaabani, A., Nazeri, M. T., & Afshari, R. (2018). 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Molecular Diversity, 23(3), 751–807. https://doi.org/10.1007/s11030-018-9902-8
- Bekhit, A. A., Ashour, H. M., Ghany, Y. S. A., Bekhit, A. E. A., & Baraka, A. (2007). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43(3), 456–463. https://doi.org/10.1016/j.ejmech.2007.03.030
- Bekhit, A. A., Abdel?Rahman, H. M., & Guemei, A. A. (2006). Synthesis and biological evaluation of some hydroxypyrazole derivatives as Anti?inflammatory?Antimicrobial agents. Archiv Der Pharmazie, 339(2), 81–87. https://doi.org/10.1002/ardp.200500197
- Fathalla OA, Zaki ME, Swelam SA, Nofal SM, El-Eraky WI. "Facile Synthesis of Fused Pyrazolo[1,5-a]Pyrimidinepyrazolo[1,5-a]Triazines and N-Sulphonamidopyrazoles as Anti-Inflammatory." Acta Poloniae Pharmaceutica. 2003;60(5):357-365.
- Sharma, S., & Bhatia, V. (2020). Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini-Reviews in Medicinal Chemistry, 21(2), 204–216. https://doi.org/10.2174/1389557520666200901184146
- El-Gamal, M. I., Zaraei, S., Madkour, M. M., & Anbar, H. S. (2022). Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in one decade (2011–2020): current status and future prospects. Molecules, 27(1), 330. https://doi.org/10.3390/molecules27010330
- Ghoneim, M. M., Abdelgawad, M. A., Elkanzi, N. a. A., & Bakr, R. B. (2024). Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Molecular Diversity. https://doi.org/10.1007/s11030-024-10906-9
- Alfei, S., Zuccari, G., Russo, E., Villa, C., & Brullo, C. (2023). Hydrogel formulations of antibacterial pyrazoles using a synthesized Polystyrene-Based cationic resin as a gelling agent. International Journal of Molecular Sciences, 24(2), 1109. https://doi.org/10.3390/ijms24021109
- Chahal, S., Rani, P., Kiran, N., Sindhu, J., Joshi, G., Ganesan, A., Kalyaanamoorthy, S., Mayank, N., Kumar, P., Singh, R., & Negi, A. (2023). Design and development of COX-II inhibitors: current scenario and future perspective. ACS Omega, 8(20), 17446–17498. https://doi.org/10.1021/acsomega.3c00692
- Pérez-Villanueva, J., Yépez-Mulia, L., González-Sánchez, I., Palacios-Espinosa, J., Soria-Arteche, O., Sainz-Espuñes, T., Cerbón, M., Rodríguez-Villar, K., Rodríguez-Vicente, A., Cortés-Gines, M., Custodio-Galván, Z., & Estrada-Castro, D. (2017). Synthesis and biological evaluation of 2H-Indazole derivatives: towards Antimicrobial and Anti-Inflammatory dual agents. Molecules, 22(11), 1864. https://doi.org/10.3390/molecules22111864
- Yassin, M. T., Mostafa, A. A., & Al-Askar, A. A. (2020). In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2818-8
- Brullo, C., Caviglia, D., Spallarossa, A., Alfei, S., Franzblau, S. G., Tasso, B., & Schito, A. M. (2022). Microbiological screening of 5-Functionalized pyrazoles for the future development of optimized Pyrazole-Based delivery systems. Pharmaceutics, 14(9), 1770. https://doi.org/10.3390/pharmaceutics14091770
- Menden, A., Crynen, S., Mathura, V., Paris, D., Crawford, F., Mullan, M., & Ait-Ghezala, G. (2021). Novel, natural allosteric inhibitors and enhancers of Candida rugosa lipase activity. Bioorganic Chemistry, 109, 104732. https://doi.org/10.1016/j.bioorg.2021.104732
- Lusardi, M., Signorello, M. G., Russo, E., Caviglia, D., Ponassi, M., Iervasi, E., Rosano, C., Brullo, C., & Spallarossa, A. (2024). Structure–Activity relationship studies on highly functionalized pyrazole hydrazones and amides as antiproliferative and antioxidant agents. International Journal of Molecular Sciences, 25(9), 4607. https://doi.org/10.3390/ijms25094607
- Pratik, K., Arun, K., Neha, S., Bhumika, Y., Anshuman, S., & Kumar, G. S. (2018). Synthesis, Characterization of Ethyl 5-(substituted)-1H-pyrazole- 3-carboxylate Derivative as Potent Anti-inflammatory Agents. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 17(1), 32–38. https://doi.org/10.2174/1871523017666180411155240
- Zhang, K., Fu, L., An, Q., Hu, W., Liu, J., Tang, X., Ding, Y., Lu, W., Liang, X., Shang, X., & Gu, Y. (2020). Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-019-2799-7
- P, J. J., Manju, S., Ethiraj, K., & Elias, G. (2018). Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. European Journal of Pharmaceutical Sciences, 121, 356–381. https://doi.org/10.1016/j.ejps.2018.06.003
- Nathan, C. (2002). Points of control in inflammation. Nature, 420(6917), 846–852. https://doi.org/10.1038/nature01320
- Serhan, C. N. (2017). Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. The FASEB Journal, 31(4), 1273–1288. https://doi.org/10.1096/fj.201601222r
- Peruncheralathan, S., Khan, T. A., Ila, H., & Junjappa, H. (2005). Regioselective Synthesis of 1-Aryl-3,4-substituted/annulated-5-(methylthio)pyrazoles and 1-Aryl-3-(methylthio)-4,5-substituted/annulated Pyrazoles. The Journal of Organic Chemistry, 70(24), 10030–10035. https://doi.org/10.1021/jo051771u
- Hosny, M. A., Zaki, Y. H., Mokbel, W. A., & Abdelhamid, A. O. (2019). Synthesis, Characterization, Antimicrobial Activity and Anticancer of Some New Pyrazolo[1,5-a]pyrimidines and Pyrazolo[5,1-c]1,2,4-triazines. Medicinal Chemistry, 16(6), 750–760. https://doi.org/10.2174/1573406415666190620144404
- In, J., Lee, M., Yang, J., Kwak, J., Lee, H., Boovanahalli, S. K., Lee, K., Kim, S. J., Moon, S. K., Lee, S., Choi, N. S., Ahn, S. K., & Jung, J. (2006). Synthesis of novel diaryl ethers and their evaluation as antimitotic agents. Bioorganic & Medicinal Chemistry Letters, 17(6), 1799–1802. https://doi.org/10.1016/j.bmcl.2006.12.048
- Penning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., . . . Westlin, W. F. (2006). Synthesis of pyrazoles and isoxazoles as potent αvβ3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 16(12), 3156–3161. https://doi.org/10.1016/j.bmcl.2006.03.045
- Thore, S., Gupta, S. V., & Baheti, K. G. (2012). Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity. Journal of Saudi Chemical Society, 20(3), 259–264. https://doi.org/10.1016/j.jscs.2012.06.011
- Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018b). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
- Chavan, H. V., Bhale, P. S., Dongare, S. B., Mule, Y. B., Kolekar, N. D., & Bandgar, B. P. (2018). Synthesis and pharmacological evaluation of pyrazoline and pyrimidine analogs of Combretastatin-A4 as anticancer, anti-inflammatory, and antioxidant agents. Croatica Chemica Acta, 91(3). https://doi.org/10.5562/cca3393.