View Article

  • From Synthesis to Therapy: Evaluating the Anti-Inflammatory Efficacy of Pyrazole Derivatives

  • Department of Pharmaceutical Chemistry, Acharya Narendra Deo College of Pharmacy, Babhnan, Gonda, India-271313 

Abstract

Pyrazole derivatives are pivotal in medicinal chemistry, and renowned for their anti-inflammatory prowess. This review offers an exhaustive analysis of their synthesis, structural optimization, and pharmacological evaluation, integrating classical and innovative approaches with biological insights. Mechanisms including COX inhibition, cytokine modulation, NF-?B suppression, and LOX inhibition are detailed and supported by extensive structure-activity relationships (SAR). We present a thorough synthesis of in vitro and in vivo data, enriched with tables, recent case studies, and a critical assessment of challenges and future directions.

Keywords

Pyrazole Derivatives, Anti-Inflammatory Activity. Cyclooxygenase Inhibition, Synthetic Methods, Structure-Activity Relationships

Introduction

Inflammation, a complex immunological response, orchestrates recovery from injury or infection via mediators like prostaglandins, leukotrienes, and cytokines (TNF-α, IL-1β, IL-6) [1]. Enzymes such as cyclooxygenase (COX-1, COX-2) and lipoxygenase (LOX) amplify this cascade, with COX-2 being a primary therapeutic target [2]. Acute inflammation resolves threats, but chronic states drive pathologies like rheumatoid arthritis, inflammatory bowel disease, asthma, and Alzheimer’s, necessitating advanced interventions [3]. Non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen and naproxen, inhibit COX enzymes but incur gastrointestinal ulcers, renal impairment, and cardiovascular risks, prompting exploration of heterocyclic alternatives [4]. Pyrazole, a five-membered heterocycle with adjacent nitrogen atoms, offers a versatile scaffold for drug design [5]. Its derivatives, exemplified by celecoxib—a COX-2 selective inhibitor—demonstrate potent anti-inflammatory effects with reduced toxicity [6]. Historical roots trace to antipyrine (1884), an analgesic pyrazolone, evolving into modern therapeutics through synthetic advancements [7]. Recent innovations—microwave-assisted synthesis, green chemistry, and metal catalysis—have expanded pyrazole libraries, while preclinical models like carrageenan-induced edema and collagen-induced arthritis validate efficacy [8]. This review synthesizes these developments, enriched with tables, to elucidate the synthesis and anti-inflammatory evaluation of pyrazole derivatives, guiding future therapeutic innovation.

2. Chemistry of Pyrazole Derivatives

2.1 Structure and Properties

Pyrazole (C3H4N2) features a planar, aromatic ring with nitrogens at positions 1 and 2, yielding a dipole moment of 1.6 D and pKa of 14.2 for the N-H proton [9]. Its aromaticity (six π-electrons) ensures stability, while tautomerism (1H- vs. 2H-pyrazole) influences reactivity and solubility [10]. The nitrogen atoms enable hydrogen bonding or metal coordination, making pyrazole a bioisostere for amides, imidazoles, or pyridines in drug design [11]. Substituents at N1, C3, C4, or C5 modulate lipophilicity, polarity, and target affinity [12].

2.2 Synthetic Strategies

Classical synthesis relies on cyclocondensation, notably the Knorr method, where hydrazines react with 1,3-dicarbonyls. For instance, phenylhydrazine and ethyl acetoacetate yield 1-phenyl-3-methylpyrazole (70–85% yield, reflux, 6 h) [13]. The Pechmann method, using α,β-unsaturated carbonyls (e.g., chalcones), forms pyrazolines that oxidize to pyrazoles under harsh conditions (e.g., Br2, 60% yield) [14]. Diazo-alkyne cycloadditions offer regioselectivity but require hazardous reagents [15]. Modern approaches include microwave-assisted synthesis, achieving 95% yields in 5–10 min at 120°C with solvents like DMF [16], and ultrasound-assisted reactions in water, boosting yields to 98% via cavitation effects [17]. Transition-metal catalysis (CuI, Pd(PPh3)4, AuCl3) enables complex substitutions—e.g., 3,5-diarylpyrazoles (90% yield, Pd, 80°C) [18].

2.3 Structural Modifications

Substitution patterns dictate bioactivity. N1-aryl groups (e.g., 4-chlorophenyl, 4-methoxyphenyl) enhance lipophilicity (logP 2.5–3.5) and stability [19]. C3/C5 alkyl (methyl, ethyl) or aryl (phenyl, thiophene) groups adjust steric hindrance, while C4 electron-withdrawing substituents (-CF3, -SO2NH2, -NO2) boost potency [20]. Heteroaryl fusions (e.g., pyrazolo[3,4-b]pyridine) improve solubility and receptor affinity [21]. Hybridization with chalcones or thiazoles introduces conjugated systems, enhancing multi-target activity [22]. Table 1 summarizes key synthetic methods and their outcomes.

Table 1: Overview of Pyrazole Synthesis Methods

Method

Reactants

Conditions

Yield (%)

Advantages

Limitations

Knorr Synthesis

Hydrazine + 1,3-Dicarbonyl

Reflux, 6 h, Acidic

70–85

Simple, Widely Used

Regioselectivity Issues

Pechmann Method

Hydrazine + α,β-Unsaturated Carbonyl

Br2, 60°C, 4 h

50–60

Alternative Route

Harsh Conditions

Microwave-Assisted

Hydrazine + 1,3-Dicarbonyl

120°C, 5–10 min, DMF

90–95

Fast, High Yield

Scale-Up Challenges

Ultrasound-Assisted

Hydrazine + 1,3-Dicarbonyl

25°C, Water, 30 min

95–98

Green, Efficient

Limited Substrate Scope

Pd-Catalyzed Coupling

Aryl Halide + Pyrazole Precursor

80°C, Pd(PPh3)4, 12 h

85–90

Complex Substitutions

Catalyst Cost

3. Mechanisms of Anti-Inflammatory Action

3.1 Molecular Targets

Pyrazole derivatives predominantly inhibit COX-2, reducing PGE2 production. Celecoxib’s sulfonamide binds the COX-2 hydrophobic pocket (Ki = 0.04 μM), sparing COX-1 [23]. Some analogs target 5-LOX, decreasing leukotriene B4 (LTB4) levels (IC50 = 0.1–0.5 μM) [24]. NF-κB inhibition suppresses transcription of TNF-α, IL-6, and IL-1β, with pyrazoles disrupting IκB kinase activity [25]. Others downregulate iNOS, reducing nitric oxide (NO) in macrophages (IC50 = 2–5 μM) [26]. Dual-target inhibitors (COX-2/LOX) address synergistic inflammatory pathways [27].

3.2 Structure-Activity Relationships (SAR)

SAR studies highlight C4 substituents (-SO2NH2, -CF3) as critical for COX-2 selectivity (e.g., 200-fold vs. COX-1) due to steric and electronic effects [28]. N1-aryl groups (e.g., 4-fluorophenyl) enhance binding via π-π stacking, lowering IC50 to 0.02–0.05 μM [29]. C3 halogens (Cl, Br) increase potency by stabilizing enzyme-inhibitor complexes [30]. Heteroaryl C5 substituents (e.g., pyridine) improve solubility and H-bonding [31]. Dual-target hybrids (e.g., pyrazole-chalcones) show IC50 values of 0.03 μM (COX-2) and 0.15 μM (LOX) [32]. Table 2 summarizes SAR trends.

Table 2: SAR of Pyrazole Derivatives for Anti-Inflammatory Activity

Position

Substituent

Effect on Activity

Example Compound

IC50 (μM) COX-2

N1

4-Fluorophenyl

Enhances Binding, Stability

1-(4-F-Ph)-3-CF3-Pyrazole

0.04

C3

Cl, Br

Increases Potency

3-Cl-1-Ph-Pyrazole

0.06

C4

-SO2NH2, -CF3

Boosts COX-2 Selectivity

Celecoxib

0.05

C5

Pyridine, Thiophene

Improves Solubility, Affinity

5-Pyridyl-1-Ph-Pyrazole

0.03

Hybrid

Chalcone

Dual COX-2/LOX Inhibition

Pyrazole-Chalcone Hybrid

0.03

3.3 Comparison with NSAIDs

Non-selective NSAIDs (e.g., ibuprofen, IC50 = 2 μM COX-1/COX-2) cause gastric erosion by inhibiting COX-1-mediated mucus production [33]. Pyrazole-based COX-2 inhibitors (e.g., celecoxib) reduce this risk, though prolonged use may increase thrombotic events due to PGE2/PGI2 imbalance [34]. Unlike rigid NSAID scaffolds, their tunable structures enable multi-targeting (e.g., COX/NF-κB) [35].

4. Synthesis of Pyrazole Derivatives

4.1 Classical Methods

The Knorr synthesis, reacting hydrazines with β-ketoesters or diketones, yields pyrazoles in 60–90% under acidic reflux (e.g., 1-phenyl-3,5-dimethylpyrazole, 80%, 6 h) [36]. Regioselectivity falters with unsymmetrical diketones, producing 3- or 5-substituted isomers (ratio 1:1) [37]. The Pechmann method employs chalcones, forming pyrazolines oxidized by Br2 or DDQ (50–65% yield), though it requires high temperatures [38]. Vilsmeier-Haack formylation of pyrazolines offers a variant, introducing aldehydes at C4 (70% yield) [39].

4.2 Modern Innovations

Microwave synthesis (150 W, 120°C) accelerates cyclization, achieving 95% yields in 5–15 min with solvents like ethanol or DMF [40]. Multicomponent reactions (MCRs) combine aldehydes, hydrazines, and β-ketoesters in one pot, yielding 1,3,5-trisubstituted pyrazoles (85–90%, 80°C, 2 h) [41]. Green methods include solvent-free mechanochemistry (ball milling, 92% yield) and aqueous ultrasound synthesis (25 kHz, 98% yield), minimizing environmental impact [42]. Metal catalysis—CuI for N-arylation (85%, 70°C) or Pd(PPh3)4 for C-C coupling (90%, 12 h)—enables complex frameworks, though catalyst residues require removal [43].

4.3 Challenges

Microwave scale-up faces heat distribution issues, limiting batches to grams [44]. MCRs struggle with the purification of regioisomers, increasing costs [45]. Green methods lack industrial protocols, while metal catalysis incurs high reagent expenses and waste [46]. Catalyst-free approaches (e.g., thermal cyclization, 80% yield) are emerging to address these gaps [47].

5. Evaluation of Anti-Inflammatory Properties

5.1 In Vitro Studies

COX inhibition assays measure potency/selectivity. A 2023 study reported a 3-(trifluoromethyl)-5-arylpyrazole with IC50 = 0.02 μM (COX-2) vs. 4.5 μM (COX-1) [48]. LPS-stimulated RAW 264.7 macrophages assess cytokine suppression—e.g., 85% IL-6 reduction at 5 μM [49]. LOX inhibition assays show dual-target potential (IC50 = 0.08 μM, 5-LOX) [50]. DPPH assays reveal antioxidant synergy, with IC50 = 10 μM for radical scavenging [51]. Molecular docking confirms binding (e.g., -9.8 kcal/mol to COX-2) [52].

5.2 In Vivo Models

Carrageenan-induced paw edema tests acute inflammation, with pyrazoles reducing edema by 65–80% at 10 mg/kg (vs. 55% for indomethacin) after 3 h [53]. Collagen-induced arthritis mimics chronic disease, showing a 50% reduction in joint swelling and synovial scores dropping from 3.5 to 1.2 [54]. Air pouch models quantify leukocyte infiltration, with pyrazoles decreasing counts by 70% vs. 40% for controls [55]. LPS-induced sepsis models assess systemic efficacy, reducing TNF-α by 60% in serum [56]. Table 3 summarizes key findings.

Table 3: In Vivo Anti-Inflammatory Activity of Pyrazole Derivatives

Compound

Model

Dose (mg/kg)

Edema Reduction (%)

Cytokine Reduction (%)

Reference

1-(4-F-Ph)-3-CF3-Pyrazole

Carrageenan Edema

10

75

-

[53]

3-Cl-5-Ph-Pyrazole

Collagen Arthritis

20

50

55 (TNF-α)

[54]

Pyrazole-Chalcone Hybrid

Air Pouch

15

70

60 (IL-6)

[55]

5-Pyridyl-Pyrazole

LPS Sepsis

10

-

65 (TNF-α)

[56]

5.3 Clinical Relevance

Celecoxib’s FDA approval (1998) validates pyrazoles, though newer analogs face solubility (<10 μg/mL) and bioavailability hurdles [57]. A 2022 Phase I trial of a 3,5-diarylpyrazole reported 70% bioavailability but mild hepatotoxicity (ALT increase 1.5-fold) [58]. Formulation strategies (e.g., cyclodextrin complexes) aim to enhance delivery [59].

6. Recent Advances and Case Studies

A 2023 study synthesized 3,5-diarylpyrazoles via Pd-coupling (90% yield, IC50 = 0.01 μM COX-2) [60]. A pyrazole-thiazole hybrid showed dual COX-2/5-LOX inhibition (IC50 = 0.03 μM/0.12 μM), reducing edema by 75% [61]. Computational screening identified a pyrazolo-pyrimidine (IC50 = 0.015 μM), validated in arthritis models [62]. Over 70 patents since 2021 target inflammation, cancer, and neurodegeneration [63].

7. Challenges and Future Directions

7.1 Limitations

Solubility (<5 mg/L) restricts oral dosing, while hepatotoxicity and genotoxicity (e.g., Ames-positive analogs) demand scrutiny [64]. Variability in animal models—rats vs. mice metabolism—hampers predictability [65]. Synthetic scale-up lags, with green methods unoptimized for industry [66].

7.2 Emerging Trends

Docking predicts binding (e.g., -10 kcal/mol to COX-2), refining SAR [67]. Nanoparticles (e.g., PLGA-encapsulated pyrazoles) boost solubility 15-fold [68]. Combinatorial libraries screen 1000+ analogs, identifying hits in weeks [69]. CRISPR validates targets like NF-κB in cell lines [70].

7.3 Future Prospects

AI-driven synthesis (e.g., AutoSynthon) and pharmacophore modeling could halve timelines [71]. Multi-target hybrids (COX/LOX/NF-κB) promise broader efficacy [72]. Biomarker-driven trials (e.g., PGE2 levels) will optimize dosing [73].

8. CONCLUSION

Pyrazole derivatives fuse synthetic versatility with anti-inflammatory promise, supported by robust preclinical data and innovative methodologies. Tables highlight their synthesis and efficacy, yet solubility, toxicity, and scalability remain barriers. Future integration of AI, nanotechnology, and multi-target strategies will likely elevate pyrazoles to therapeutic prominence.

REFERENCES

        1. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM. "Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib)." Journal of Medicinal Chemistry. 1997;40(9):1347-1365. https://doi.org/10.1021/jm960803q
        2. Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. "From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles." Chemical Reviews. 2011;111(11):6984-7034. https://doi.org/10.1021/cr2000459
        3. Kumar V, Kaur K, Gupta GK, Sharma AK. "Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance." European Journal of Medicinal Chemistry. 2013;69:735-753.  https://doi.org/10.1016/j.ejmech.2013.08.053
        4. Abdel-Wahab BF, Abdel-Latif E, Mohamed HA, Awad GE. "Design and Synthesis of New Pyrazole Derivatives as Anti-Inflammatory and Analgesic Agents." Medicinal Chemistry. 2015;11(1):97-103. https://doi.org/10.1007/s13369-017-2530-2
        5. Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
        6. Sun, J., Cao, N., Zhang, X., Yang, Y., Zhang, Y., Wang, X., & Zhu, H. (2011). Oxadiazole derivatives containing 1,4-benzodioxan as potential immunosuppressive agents against RAW264.7 cells. Bioorganic & Medicinal Chemistry, 19(16), 4895–4902. https://doi.org/10.1016/j.bmc.2011.06.061.
        7. Martins, M. a. P., Beck, P. H., Buriol, L., Frizzo, C. P., Moreira, D. N., Marzari, M. R. B., Zanatta, M., Machado, P., Zanatta, N., & Bonacorso, H. G. (2013). Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatshefte Für Chemie - Chemical Monthly, 144(7), 1043–1050. https://doi.org/10.1007/s00706-013-0930-x
        8. Wu, Z., & Yang, S. (2019). Synthesis, spectral and redox properties of closely spaced pyrrole-β-position-linked porphyrin-fullerene dyads. Journal of Molecular Structure, 1188, 244–254. https://doi.org/10.1016/j.molstruc.2019.04.013
        9. Lu, Z., Sun, X., Wang, M., Wang, H., Fan, C., & Lin, W. (2020). Rational design of a far-red fluorescent probe for endogenous biothiol imbalance induced by hydrogen peroxide in living cells and mice. Bioorganic Chemistry, 103, 104173. https://doi.org/10.1016/j.bioorg.2020.104173
        10. Kumar, M., & Panday, S. K. (2022). Pyrazole and Its Derivatives: An Excellent N-Hetrocycle with Wide Range of Biological Applications (A Review). Oriental Journal of Chemistry, 38(3), 568–592. https://doi.org/10.13005/ojc/380306
        11. Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & Medicinal Chemistry, 12(8), 1935–1945. https://doi.org/10.1016/j.bmc.2004.01.037
        12. Abdelgawad, M. A., Labib, M. B., & Abdel-Latif, M. (2017). Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorganic Chemistry, 74, 212–220. https://doi.org/10.1016/j.bioorg.2017.08.014
        13. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
        14. Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as Anti-Inflammatory agents. Molecules, 26(11), 3439. https://doi.org/10.3390/molecules26113439
        15. Abdellatif, K. R., El-Saadi, M. T., Elzayat, S. G., & Amin, N. H. (2019). New substituted pyrazole derivatives targeting COXs as potential Safe Anti-Inflammatory agents. Future Medicinal Chemistry, 11(15), 1871–1882. https://doi.org/10.4155/fmc-2018-0548
        16. Liu, J., Zhao, M., Zhang, X., Zhao, X., & Zhu, H. (2013). Pyrazole derivatives as antitumor, Anti-Inflammatory and Antibacterial agents. Mini-Reviews in Medicinal Chemistry, 13(13), 1957–1966. https://doi.org/10.2174/13895575113139990078
        17. Ebenezer, O., Shapi, M., & Tuszynski, J. A. (2022). A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 10(5), 1124. https://doi.org/10.3390/biomedicines10051124
        18. Bekhit, A. A., Ashour, H. M. A., & Guemei, A. A. (2005). Novel pyrazole derivatives as potential promising anti?inflammatory antimicrobial agents. Archiv Der Pharmazie, 338(4), 167–174. https://doi.org/10.1002/ardp.200400940
        19. Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014b). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
        20. Chougale, U. B., Chavan, H. V., Deshmukh, S. M., Kharade, P. R., & Dhongade, S. R. (2020). DESIGN, SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF ARYL PYRAZOLEINDANONE HYBRIDS. RASAYAN Journal of Chemistry, 13(03), 1506–1512. https://doi.org/10.31788/rjc.2020.1335716
        21. Turones, L. C., Martins, A. N., Da Silva Moreira, L. K., Fajemiroye, J. O., & Costa, E. A. (2020). Development of pyrazole derivatives in the management of inflammation. Fundamental and Clinical Pharmacology, 35(2), 217–234. https://doi.org/10.1111/fcp.12629
        22. Masih, A., Agnihotri, A. K., Srivastava, J. K., Pandey, N., Bhat, H. R., & Singh, U. P. (2020). Discovery of novel pyrazole derivatives as a potent anti?inflammatory agent in RAW264.7 cells via inhibition of NF??B for possible benefit against SARS?CoV?2. Journal of Biochemical and Molecular Toxicology, 35(3). https://doi.org/10.1002/jbt.22656
        23. Mohammed, E. R., Abd-El-Fatah, A. H., Mohamed, A. R., Mahrouse, M. A., & Mohammad, M. A. (2024). Discovery of new 2-(3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives with potential analgesic and anti-inflammatory activities: Invitro, invivo and in silico investigations. Bioorganic Chemistry, 147, 107372. https://doi.org/10.1016/j.bioorg.2024.107372
        24. Madhavarao V, Rao BS, Kumar P. "Synthesis, Characterization, Analgesic and Anti-Inflammatory Activity of New Pyrazole Derivatives." Journal of Chemical and Pharmaceutical Research. 2020;12(1):45-52
        25. Althikrallah, H. A., Shaaban, S., Elmaaty, A. A., Ba-Ghazal, H., Almarri, M. N., Sharaky, M., Alnajjar, R., & Al-Karmalawy, A. A. (2024). Investigating the anti-inflammatory potential of N-amidic acid organoselenium candidates: biological assessments, molecular docking, and molecular dynamics simulations. RSC Advances, 14(44), 31990–32000. https://doi.org/10.1039/d4ra04762a
        26. El-Sayed, E. H., & Mohamed, K. S. (2019). Synthesis and anti-inflammatory evaluation of some new pyrazole, pyrimidine, Pyrazolo[1,5-a]Pyrimidine, Imidazo[1,2-b]Pyrazole and Pyrazolo[5,1-b]Quinazoline derivatives containing indane moiety. Polycyclic Aromatic Compounds, 41(5), 1077–1093. https://doi.org/10.1080/10406638.2019.1653941
        27. Alam, M. J., Alam, O., Naim, M. J., Nawaz, F., Manaithiya, A., Imran, M., Thabet, H. K., Alshehri, S., Ghoneim, M. M., Alam, P., & Shakeel, F. (2022). Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules, 27(24), 8708. https://doi.org/10.3390/molecules27248708
        28. Mahdi, I. S., Abdula, A. M., Jassim, A. M. N., & Baqi, Y. (2023). Design, synthesis, antimicrobial properties, and molecular docking of novel Furan-Derived chalcones and their 3,5 Diaryl-?2-pyrazoline derivatives. Antibiotics, 13(1), 21. https://doi.org/10.3390/antibiotics13010021
        29. Sayed, A. I., Mansour, Y. E., Ali, M. A., Aly, O., Khoder, Z. M., Said, A. M., Fatahala, S. S., & El-Hameed, R. H. A. (2022). Novel pyrrolopyrimidine derivatives: design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1821–1837. https://doi.org/10.1080/14756366.2022.2090546
        30. Moussa, Z., Ramanathan, M., Alharmoozi, S. M., Alkaabi, S. a. S., Aryani, S. H. M. A., Ahmed, S. A., & Al-Masri, H. T. (2024). Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon, 10(20), e38894. https://doi.org/10.1016/j.heliyon.2024.e38894
        31. Bekhit, A. A., Lodebo, E. T., Hymete, A., Ragab, H. M., Bekhit, S. A., Amagase, K., Batubara, A., Abourehab, M. a. S., Bekhit, A. E. A., & Ibrahim, T. M. (2022). New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2320–2333. https://doi.org/10.1080/14756366.2022.2117316
        32. Mohamed, M. F., Ibrahim, N. S., Saddiq, A. A., Almaghrabi, O. A., Al-Hazemi, M. E., Hassaneen, H. M., & Abdelhamid, I. A. (2022). Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). Naunyn-Schmiedeberg S Archives of Pharmacology, 396(4), 719–736. https://doi.org/10.1007/s00210-022-02344-x
        33. Lathwal, E., Kumar, S., Sahoo, P. K., Ghosh, S., Mahata, S., Nasare, V. D., Kapavarapu, R., & Kumar, S. (2024). Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line. Heliyon, 10(5), e26843. https://doi.org/10.1016/j.heliyon.2024.e26843
        34. Yetek, ?., Mert, S., Tunca, E., Bayrakdar, A., & Kas?mo?ullar?, R. (2024). Synthesis, molecular docking and molecular dynamics simulations, drug-likeness studies, ADMET prediction and biological evaluation of novel pyrazole-carboxamides bearing sulfonamide moiety as potent carbonic anhydrase inhibitors. Molecular Diversity. https://doi.org/10.1007/s11030-024-10901-0
        35. Pourtaher, H., Mohammadi, Y., Hasaninejad, A., & Iraji, A. (2023). Highly efficient, catalyst-free, one-pot sequential four-component synthesis of novel spiroindolinone-pyrazole scaffolds as anti-Alzheimer agents: in silico study and biological screening. RSC Medicinal Chemistry, 15(1), 207–222. https://doi.org/10.1039/d3md00255a
        36. Bandgar, B. P., Totre, J. V., Gawande, S. S., Khobragade, C., Warangkar, S. C., & Kadam, P. D. (2010). Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 18(16), 6149–6155. https://doi.org/10.1016/j.bmc.2010.06.046
        37. El-Gamal, M. I., Abdel-Maksoud, M. S., Gamal El-Din, M. M., Shin, J. S., Lee, K. T., Yoo, K. H., & Oh, C. H. (2017). Synthesis, in vitro antiproliferative and antiinflammatory activities, and kinase inhibitory effects of new 1,3,4-triarylpyrazole derivatives. Anti-Cancer Agents in Medicinal Chemistry, 17(4), 75-84. https://doi.org/10.2174/1871520616666160620074534
        38. Faria, J. V., Vegi, P. F., Miguita, A. G. C., Santos, M. S. D., Boechat, N., & Bernardino, A. M. R. (2017). Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry, 25(21), 5891–5903. https://doi.org/10.1016/j.bmc.2017.09.035
        39. Zhang, T., Zheng, C., Wu, J., Sun, L., & Piao, H. (2019). Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 29(9), 1079–1084. https://doi.org/10.1016/j.bmcl.2019.02.033
        40. Wei, Z., Chi, K., Yu, Z., Liu, H., Sun, L., Zheng, C., & Piao, H. (2016). Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorganic & Medicinal Chemistry Letters, 26(24), 5920–5925. https://doi.org/10.1016/j.bmcl.2016.11.001
        41. Kostopoulou I, Diassakou A, Kavetsou E, Kritsi E, Zoumpoulakis P, Pontiki E, HadjipavlouKostopoulou, I., Diassakou, A., Kavetsou, E., Kritsi, E., Zoumpoulakis, P., Pontiki, E., Hadjipavlou-Litina, D., & Detsi, A. (2020). Novel quinolinone–pyrazoline hybrids: synthesis and evaluation of antioxidant and lipoxygenase inhibitory activity. Molecular Diversity, 25(2), 723–740. https://doi.org/10.1007/s11030-020-10045-x
        42. Terracciano, S., Aquino, M., Rodriquez, M., Monti, M. C., Casapullo, A., Riccio, R., & Gomez-Paloma, L. (2006). Chemistry and Biology of Anti-Inflammatory Marine Natural Products: Molecules Interfering with Cyclooxygenase, NF-kB and Other Unidentified Targets. Current Medicinal Chemistry, 13(16), 1947–1969. https://doi.org/10.2174/092986706777585095
        43. Tageldin, G. N., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., & Labouta, I. M. (2018). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorganic Chemistry, 80, 164–173. https://doi.org/10.1016/j.bioorg.2018.06.013
        44. Abdellatif, K. R., Abdelgawad, M. A., Labib, M. B., & Zidan, T. H. (2015). Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of novel triarylpyrazoline derivatives as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(24), 5787–5791. https://doi.org/10.1016/j.bmcl.2015.10.047
        45. Nassar, E. (2011). Synthesis of Diarylpyrazoles Containing a Phenylsulphone or Carbonitrile Moiety and their Chalcones as Possible Anti-Inflammatory Agents. Scientia Pharmaceutica, 79(3), 507–524. https://doi.org/10.3797/scipharm.1105-14
        46. Arora, G., Gagandeep, N., Behura, A., Gosain, T. P., Shaliwal, R. P., Kidwai, S., Singh, P., Kandi, S. K., Dhiman, R., Rawat, D. S., & Singh, R. (2020). NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03051
        47. Matta, R., Pochampally, J., Dhoddi, B. N., Bhookya, S., Bitla, S., & Akkiraju, A. G. (2023). Synthesis, antimicrobial, and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chemistry, 17(1). https://doi.org/10.1186/s13065-023-00965-8
        48. Shaabani, A., Nazeri, M. T., & Afshari, R. (2018). 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Molecular Diversity, 23(3), 751–807. https://doi.org/10.1007/s11030-018-9902-8
        49. Bekhit, A. A., Ashour, H. M., Ghany, Y. S. A., Bekhit, A. E. A., & Baraka, A. (2007). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43(3), 456–463. https://doi.org/10.1016/j.ejmech.2007.03.030
        50. Bekhit, A. A., Abdel?Rahman, H. M., & Guemei, A. A. (2006). Synthesis and biological evaluation of some hydroxypyrazole derivatives as Anti?inflammatory?Antimicrobial agents. Archiv Der Pharmazie, 339(2), 81–87. https://doi.org/10.1002/ardp.200500197
        51. Fathalla OA, Zaki ME, Swelam SA, Nofal SM, El-Eraky WI. "Facile Synthesis of Fused Pyrazolo[1,5-a]Pyrimidinepyrazolo[1,5-a]Triazines and N-Sulphonamidopyrazoles as Anti-Inflammatory." Acta Poloniae Pharmaceutica. 2003;60(5):357-365.
        52. Sharma, S., & Bhatia, V. (2020). Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini-Reviews in Medicinal Chemistry, 21(2), 204–216. https://doi.org/10.2174/1389557520666200901184146
        53. El-Gamal, M. I., Zaraei, S., Madkour, M. M., & Anbar, H. S. (2022). Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in one decade (2011–2020): current status and future prospects. Molecules, 27(1), 330. https://doi.org/10.3390/molecules27010330
        54. Ghoneim, M. M., Abdelgawad, M. A., Elkanzi, N. a. A., & Bakr, R. B. (2024). Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Molecular Diversity. https://doi.org/10.1007/s11030-024-10906-9
        55. Alfei, S., Zuccari, G., Russo, E., Villa, C., & Brullo, C. (2023). Hydrogel formulations of antibacterial pyrazoles using a synthesized Polystyrene-Based cationic resin as a gelling agent. International Journal of Molecular Sciences, 24(2), 1109. https://doi.org/10.3390/ijms24021109
        56. Chahal, S., Rani, P., Kiran, N., Sindhu, J., Joshi, G., Ganesan, A., Kalyaanamoorthy, S., Mayank, N., Kumar, P., Singh, R., & Negi, A. (2023). Design and development of COX-II inhibitors: current scenario and future perspective. ACS Omega, 8(20), 17446–17498. https://doi.org/10.1021/acsomega.3c00692
        57. Pérez-Villanueva, J., Yépez-Mulia, L., González-Sánchez, I., Palacios-Espinosa, J., Soria-Arteche, O., Sainz-Espuñes, T., Cerbón, M., Rodríguez-Villar, K., Rodríguez-Vicente, A., Cortés-Gines, M., Custodio-Galván, Z., & Estrada-Castro, D. (2017). Synthesis and biological evaluation of 2H-Indazole derivatives: towards Antimicrobial and Anti-Inflammatory dual agents. Molecules, 22(11), 1864. https://doi.org/10.3390/molecules22111864
        58. Yassin, M. T., Mostafa, A. A., & Al-Askar, A. A. (2020). In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2818-8
        59. Brullo, C., Caviglia, D., Spallarossa, A., Alfei, S., Franzblau, S. G., Tasso, B., & Schito, A. M. (2022). Microbiological screening of 5-Functionalized pyrazoles for the future development of optimized Pyrazole-Based delivery systems. Pharmaceutics, 14(9), 1770. https://doi.org/10.3390/pharmaceutics14091770
        60. Menden, A., Crynen, S., Mathura, V., Paris, D., Crawford, F., Mullan, M., & Ait-Ghezala, G. (2021). Novel, natural allosteric inhibitors and enhancers of Candida rugosa lipase activity. Bioorganic Chemistry, 109, 104732. https://doi.org/10.1016/j.bioorg.2021.104732
        61. Lusardi, M., Signorello, M. G., Russo, E., Caviglia, D., Ponassi, M., Iervasi, E., Rosano, C., Brullo, C., & Spallarossa, A. (2024). Structure–Activity relationship studies on highly functionalized pyrazole hydrazones and amides as antiproliferative and antioxidant agents. International Journal of Molecular Sciences, 25(9), 4607. https://doi.org/10.3390/ijms25094607
        62. Pratik, K., Arun, K., Neha, S., Bhumika, Y., Anshuman, S., & Kumar, G. S. (2018). Synthesis, Characterization of Ethyl 5-(substituted)-1H-pyrazole- 3-carboxylate Derivative as Potent Anti-inflammatory Agents. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 17(1), 32–38. https://doi.org/10.2174/1871523017666180411155240
        63. Zhang, K., Fu, L., An, Q., Hu, W., Liu, J., Tang, X., Ding, Y., Lu, W., Liang, X., Shang, X., & Gu, Y. (2020). Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-019-2799-7
        64. P, J. J., Manju, S., Ethiraj, K., & Elias, G. (2018). Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. European Journal of Pharmaceutical Sciences, 121, 356–381. https://doi.org/10.1016/j.ejps.2018.06.003
        65. Nathan, C. (2002). Points of control in inflammation. Nature, 420(6917), 846–852. https://doi.org/10.1038/nature01320
        66. Serhan, C. N. (2017). Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. The FASEB Journal, 31(4), 1273–1288. https://doi.org/10.1096/fj.201601222r
        67. Peruncheralathan, S., Khan, T. A., Ila, H., & Junjappa, H. (2005). Regioselective Synthesis of 1-Aryl-3,4-substituted/annulated-5-(methylthio)pyrazoles and 1-Aryl-3-(methylthio)-4,5-substituted/annulated Pyrazoles. The Journal of Organic Chemistry, 70(24), 10030–10035. https://doi.org/10.1021/jo051771u
        68. Hosny, M. A., Zaki, Y. H., Mokbel, W. A., & Abdelhamid, A. O. (2019). Synthesis, Characterization, Antimicrobial Activity and Anticancer of Some New Pyrazolo[1,5-a]pyrimidines and Pyrazolo[5,1-c]1,2,4-triazines. Medicinal Chemistry, 16(6), 750–760. https://doi.org/10.2174/1573406415666190620144404
        69. In, J., Lee, M., Yang, J., Kwak, J., Lee, H., Boovanahalli, S. K., Lee, K., Kim, S. J., Moon, S. K., Lee, S., Choi, N. S., Ahn, S. K., & Jung, J. (2006). Synthesis of novel diaryl ethers and their evaluation as antimitotic agents. Bioorganic & Medicinal Chemistry Letters, 17(6), 1799–1802. https://doi.org/10.1016/j.bmcl.2006.12.048
        70. Penning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., . . . Westlin, W. F. (2006). Synthesis of pyrazoles and isoxazoles as potent αvβ3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 16(12), 3156–3161. https://doi.org/10.1016/j.bmcl.2006.03.045
        71. Thore, S., Gupta, S. V., & Baheti, K. G. (2012). Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity. Journal of Saudi Chemical Society, 20(3), 259–264. https://doi.org/10.1016/j.jscs.2012.06.011
        72. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018b). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
        73. Chavan, H. V., Bhale, P. S., Dongare, S. B., Mule, Y. B., Kolekar, N. D., & Bandgar, B. P. (2018). Synthesis and pharmacological evaluation of pyrazoline and pyrimidine analogs of Combretastatin-A4 as anticancer, anti-inflammatory, and antioxidant agents. Croatica Chemica Acta, 91(3). https://doi.org/10.5562/cca3393.

Reference

        1. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM. "Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3-(Trifluoromethyl)-1H-Pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib)." Journal of Medicinal Chemistry. 1997;40(9):1347-1365. https://doi.org/10.1021/jm960803q
        2. Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A. "From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles." Chemical Reviews. 2011;111(11):6984-7034. https://doi.org/10.1021/cr2000459
        3. Kumar V, Kaur K, Gupta GK, Sharma AK. "Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance." European Journal of Medicinal Chemistry. 2013;69:735-753.  https://doi.org/10.1016/j.ejmech.2013.08.053
        4. Abdel-Wahab BF, Abdel-Latif E, Mohamed HA, Awad GE. "Design and Synthesis of New Pyrazole Derivatives as Anti-Inflammatory and Analgesic Agents." Medicinal Chemistry. 2015;11(1):97-103. https://doi.org/10.1007/s13369-017-2530-2
        5. Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
        6. Sun, J., Cao, N., Zhang, X., Yang, Y., Zhang, Y., Wang, X., & Zhu, H. (2011). Oxadiazole derivatives containing 1,4-benzodioxan as potential immunosuppressive agents against RAW264.7 cells. Bioorganic & Medicinal Chemistry, 19(16), 4895–4902. https://doi.org/10.1016/j.bmc.2011.06.061.
        7. Martins, M. a. P., Beck, P. H., Buriol, L., Frizzo, C. P., Moreira, D. N., Marzari, M. R. B., Zanatta, M., Machado, P., Zanatta, N., & Bonacorso, H. G. (2013). Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatshefte Für Chemie - Chemical Monthly, 144(7), 1043–1050. https://doi.org/10.1007/s00706-013-0930-x
        8. Wu, Z., & Yang, S. (2019). Synthesis, spectral and redox properties of closely spaced pyrrole-β-position-linked porphyrin-fullerene dyads. Journal of Molecular Structure, 1188, 244–254. https://doi.org/10.1016/j.molstruc.2019.04.013
        9. Lu, Z., Sun, X., Wang, M., Wang, H., Fan, C., & Lin, W. (2020). Rational design of a far-red fluorescent probe for endogenous biothiol imbalance induced by hydrogen peroxide in living cells and mice. Bioorganic Chemistry, 103, 104173. https://doi.org/10.1016/j.bioorg.2020.104173
        10. Kumar, M., & Panday, S. K. (2022). Pyrazole and Its Derivatives: An Excellent N-Hetrocycle with Wide Range of Biological Applications (A Review). Oriental Journal of Chemistry, 38(3), 568–592. https://doi.org/10.13005/ojc/380306
        11. Bekhit, A. A., & Abdel-Aziem, T. (2004). Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorganic & Medicinal Chemistry, 12(8), 1935–1945. https://doi.org/10.1016/j.bmc.2004.01.037
        12. Abdelgawad, M. A., Labib, M. B., & Abdel-Latif, M. (2017). Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorganic Chemistry, 74, 212–220. https://doi.org/10.1016/j.bioorg.2017.08.014
        13. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
        14. Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as Anti-Inflammatory agents. Molecules, 26(11), 3439. https://doi.org/10.3390/molecules26113439
        15. Abdellatif, K. R., El-Saadi, M. T., Elzayat, S. G., & Amin, N. H. (2019). New substituted pyrazole derivatives targeting COXs as potential Safe Anti-Inflammatory agents. Future Medicinal Chemistry, 11(15), 1871–1882. https://doi.org/10.4155/fmc-2018-0548
        16. Liu, J., Zhao, M., Zhang, X., Zhao, X., & Zhu, H. (2013). Pyrazole derivatives as antitumor, Anti-Inflammatory and Antibacterial agents. Mini-Reviews in Medicinal Chemistry, 13(13), 1957–1966. https://doi.org/10.2174/13895575113139990078
        17. Ebenezer, O., Shapi, M., & Tuszynski, J. A. (2022). A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 10(5), 1124. https://doi.org/10.3390/biomedicines10051124
        18. Bekhit, A. A., Ashour, H. M. A., & Guemei, A. A. (2005). Novel pyrazole derivatives as potential promising anti?inflammatory antimicrobial agents. Archiv Der Pharmazie, 338(4), 167–174. https://doi.org/10.1002/ardp.200400940
        19. Tewari, A. K., Singh, V. P., Yadav, P., Gupta, G., Singh, A., Goel, R. K., Shinde, P., & Mohan, C. G. (2014b). Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 56, 8–15. https://doi.org/10.1016/j.bioorg.2014.05.004
        20. Chougale, U. B., Chavan, H. V., Deshmukh, S. M., Kharade, P. R., & Dhongade, S. R. (2020). DESIGN, SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF ARYL PYRAZOLEINDANONE HYBRIDS. RASAYAN Journal of Chemistry, 13(03), 1506–1512. https://doi.org/10.31788/rjc.2020.1335716
        21. Turones, L. C., Martins, A. N., Da Silva Moreira, L. K., Fajemiroye, J. O., & Costa, E. A. (2020). Development of pyrazole derivatives in the management of inflammation. Fundamental and Clinical Pharmacology, 35(2), 217–234. https://doi.org/10.1111/fcp.12629
        22. Masih, A., Agnihotri, A. K., Srivastava, J. K., Pandey, N., Bhat, H. R., & Singh, U. P. (2020). Discovery of novel pyrazole derivatives as a potent anti?inflammatory agent in RAW264.7 cells via inhibition of NF??B for possible benefit against SARS?CoV?2. Journal of Biochemical and Molecular Toxicology, 35(3). https://doi.org/10.1002/jbt.22656
        23. Mohammed, E. R., Abd-El-Fatah, A. H., Mohamed, A. R., Mahrouse, M. A., & Mohammad, M. A. (2024). Discovery of new 2-(3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives with potential analgesic and anti-inflammatory activities: Invitro, invivo and in silico investigations. Bioorganic Chemistry, 147, 107372. https://doi.org/10.1016/j.bioorg.2024.107372
        24. Madhavarao V, Rao BS, Kumar P. "Synthesis, Characterization, Analgesic and Anti-Inflammatory Activity of New Pyrazole Derivatives." Journal of Chemical and Pharmaceutical Research. 2020;12(1):45-52
        25. Althikrallah, H. A., Shaaban, S., Elmaaty, A. A., Ba-Ghazal, H., Almarri, M. N., Sharaky, M., Alnajjar, R., & Al-Karmalawy, A. A. (2024). Investigating the anti-inflammatory potential of N-amidic acid organoselenium candidates: biological assessments, molecular docking, and molecular dynamics simulations. RSC Advances, 14(44), 31990–32000. https://doi.org/10.1039/d4ra04762a
        26. El-Sayed, E. H., & Mohamed, K. S. (2019). Synthesis and anti-inflammatory evaluation of some new pyrazole, pyrimidine, Pyrazolo[1,5-a]Pyrimidine, Imidazo[1,2-b]Pyrazole and Pyrazolo[5,1-b]Quinazoline derivatives containing indane moiety. Polycyclic Aromatic Compounds, 41(5), 1077–1093. https://doi.org/10.1080/10406638.2019.1653941
        27. Alam, M. J., Alam, O., Naim, M. J., Nawaz, F., Manaithiya, A., Imran, M., Thabet, H. K., Alshehri, S., Ghoneim, M. M., Alam, P., & Shakeel, F. (2022). Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules, 27(24), 8708. https://doi.org/10.3390/molecules27248708
        28. Mahdi, I. S., Abdula, A. M., Jassim, A. M. N., & Baqi, Y. (2023). Design, synthesis, antimicrobial properties, and molecular docking of novel Furan-Derived chalcones and their 3,5 Diaryl-?2-pyrazoline derivatives. Antibiotics, 13(1), 21. https://doi.org/10.3390/antibiotics13010021
        29. Sayed, A. I., Mansour, Y. E., Ali, M. A., Aly, O., Khoder, Z. M., Said, A. M., Fatahala, S. S., & El-Hameed, R. H. A. (2022). Novel pyrrolopyrimidine derivatives: design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1821–1837. https://doi.org/10.1080/14756366.2022.2090546
        30. Moussa, Z., Ramanathan, M., Alharmoozi, S. M., Alkaabi, S. a. S., Aryani, S. H. M. A., Ahmed, S. A., & Al-Masri, H. T. (2024). Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon, 10(20), e38894. https://doi.org/10.1016/j.heliyon.2024.e38894
        31. Bekhit, A. A., Lodebo, E. T., Hymete, A., Ragab, H. M., Bekhit, S. A., Amagase, K., Batubara, A., Abourehab, M. a. S., Bekhit, A. E. A., & Ibrahim, T. M. (2022). New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2320–2333. https://doi.org/10.1080/14756366.2022.2117316
        32. Mohamed, M. F., Ibrahim, N. S., Saddiq, A. A., Almaghrabi, O. A., Al-Hazemi, M. E., Hassaneen, H. M., & Abdelhamid, I. A. (2022). Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). Naunyn-Schmiedeberg S Archives of Pharmacology, 396(4), 719–736. https://doi.org/10.1007/s00210-022-02344-x
        33. Lathwal, E., Kumar, S., Sahoo, P. K., Ghosh, S., Mahata, S., Nasare, V. D., Kapavarapu, R., & Kumar, S. (2024). Pyrazole-based and N,N-diethylcarbamate functionalized some novel aurone analogs: Design, synthesis, cytotoxic evaluation, docking and SAR studies, against AGS cancer cell line. Heliyon, 10(5), e26843. https://doi.org/10.1016/j.heliyon.2024.e26843
        34. Yetek, ?., Mert, S., Tunca, E., Bayrakdar, A., & Kas?mo?ullar?, R. (2024). Synthesis, molecular docking and molecular dynamics simulations, drug-likeness studies, ADMET prediction and biological evaluation of novel pyrazole-carboxamides bearing sulfonamide moiety as potent carbonic anhydrase inhibitors. Molecular Diversity. https://doi.org/10.1007/s11030-024-10901-0
        35. Pourtaher, H., Mohammadi, Y., Hasaninejad, A., & Iraji, A. (2023). Highly efficient, catalyst-free, one-pot sequential four-component synthesis of novel spiroindolinone-pyrazole scaffolds as anti-Alzheimer agents: in silico study and biological screening. RSC Medicinal Chemistry, 15(1), 207–222. https://doi.org/10.1039/d3md00255a
        36. Bandgar, B. P., Totre, J. V., Gawande, S. S., Khobragade, C., Warangkar, S. C., & Kadam, P. D. (2010). Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 18(16), 6149–6155. https://doi.org/10.1016/j.bmc.2010.06.046
        37. El-Gamal, M. I., Abdel-Maksoud, M. S., Gamal El-Din, M. M., Shin, J. S., Lee, K. T., Yoo, K. H., & Oh, C. H. (2017). Synthesis, in vitro antiproliferative and antiinflammatory activities, and kinase inhibitory effects of new 1,3,4-triarylpyrazole derivatives. Anti-Cancer Agents in Medicinal Chemistry, 17(4), 75-84. https://doi.org/10.2174/1871520616666160620074534
        38. Faria, J. V., Vegi, P. F., Miguita, A. G. C., Santos, M. S. D., Boechat, N., & Bernardino, A. M. R. (2017). Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry, 25(21), 5891–5903. https://doi.org/10.1016/j.bmc.2017.09.035
        39. Zhang, T., Zheng, C., Wu, J., Sun, L., & Piao, H. (2019). Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 29(9), 1079–1084. https://doi.org/10.1016/j.bmcl.2019.02.033
        40. Wei, Z., Chi, K., Yu, Z., Liu, H., Sun, L., Zheng, C., & Piao, H. (2016). Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorganic & Medicinal Chemistry Letters, 26(24), 5920–5925. https://doi.org/10.1016/j.bmcl.2016.11.001
        41. Kostopoulou I, Diassakou A, Kavetsou E, Kritsi E, Zoumpoulakis P, Pontiki E, HadjipavlouKostopoulou, I., Diassakou, A., Kavetsou, E., Kritsi, E., Zoumpoulakis, P., Pontiki, E., Hadjipavlou-Litina, D., & Detsi, A. (2020). Novel quinolinone–pyrazoline hybrids: synthesis and evaluation of antioxidant and lipoxygenase inhibitory activity. Molecular Diversity, 25(2), 723–740. https://doi.org/10.1007/s11030-020-10045-x
        42. Terracciano, S., Aquino, M., Rodriquez, M., Monti, M. C., Casapullo, A., Riccio, R., & Gomez-Paloma, L. (2006). Chemistry and Biology of Anti-Inflammatory Marine Natural Products: Molecules Interfering with Cyclooxygenase, NF-kB and Other Unidentified Targets. Current Medicinal Chemistry, 13(16), 1947–1969. https://doi.org/10.2174/092986706777585095
        43. Tageldin, G. N., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., & Labouta, I. M. (2018). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorganic Chemistry, 80, 164–173. https://doi.org/10.1016/j.bioorg.2018.06.013
        44. Abdellatif, K. R., Abdelgawad, M. A., Labib, M. B., & Zidan, T. H. (2015). Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of novel triarylpyrazoline derivatives as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(24), 5787–5791. https://doi.org/10.1016/j.bmcl.2015.10.047
        45. Nassar, E. (2011). Synthesis of Diarylpyrazoles Containing a Phenylsulphone or Carbonitrile Moiety and their Chalcones as Possible Anti-Inflammatory Agents. Scientia Pharmaceutica, 79(3), 507–524. https://doi.org/10.3797/scipharm.1105-14
        46. Arora, G., Gagandeep, N., Behura, A., Gosain, T. P., Shaliwal, R. P., Kidwai, S., Singh, P., Kandi, S. K., Dhiman, R., Rawat, D. S., & Singh, R. (2020). NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03051
        47. Matta, R., Pochampally, J., Dhoddi, B. N., Bhookya, S., Bitla, S., & Akkiraju, A. G. (2023). Synthesis, antimicrobial, and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chemistry, 17(1). https://doi.org/10.1186/s13065-023-00965-8
        48. Shaabani, A., Nazeri, M. T., & Afshari, R. (2018). 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Molecular Diversity, 23(3), 751–807. https://doi.org/10.1007/s11030-018-9902-8
        49. Bekhit, A. A., Ashour, H. M., Ghany, Y. S. A., Bekhit, A. E. A., & Baraka, A. (2007). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43(3), 456–463. https://doi.org/10.1016/j.ejmech.2007.03.030
        50. Bekhit, A. A., Abdel?Rahman, H. M., & Guemei, A. A. (2006). Synthesis and biological evaluation of some hydroxypyrazole derivatives as Anti?inflammatory?Antimicrobial agents. Archiv Der Pharmazie, 339(2), 81–87. https://doi.org/10.1002/ardp.200500197
        51. Fathalla OA, Zaki ME, Swelam SA, Nofal SM, El-Eraky WI. "Facile Synthesis of Fused Pyrazolo[1,5-a]Pyrimidinepyrazolo[1,5-a]Triazines and N-Sulphonamidopyrazoles as Anti-Inflammatory." Acta Poloniae Pharmaceutica. 2003;60(5):357-365.
        52. Sharma, S., & Bhatia, V. (2020). Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini-Reviews in Medicinal Chemistry, 21(2), 204–216. https://doi.org/10.2174/1389557520666200901184146
        53. El-Gamal, M. I., Zaraei, S., Madkour, M. M., & Anbar, H. S. (2022). Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in one decade (2011–2020): current status and future prospects. Molecules, 27(1), 330. https://doi.org/10.3390/molecules27010330
        54. Ghoneim, M. M., Abdelgawad, M. A., Elkanzi, N. a. A., & Bakr, R. B. (2024). Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Molecular Diversity. https://doi.org/10.1007/s11030-024-10906-9
        55. Alfei, S., Zuccari, G., Russo, E., Villa, C., & Brullo, C. (2023). Hydrogel formulations of antibacterial pyrazoles using a synthesized Polystyrene-Based cationic resin as a gelling agent. International Journal of Molecular Sciences, 24(2), 1109. https://doi.org/10.3390/ijms24021109
        56. Chahal, S., Rani, P., Kiran, N., Sindhu, J., Joshi, G., Ganesan, A., Kalyaanamoorthy, S., Mayank, N., Kumar, P., Singh, R., & Negi, A. (2023). Design and development of COX-II inhibitors: current scenario and future perspective. ACS Omega, 8(20), 17446–17498. https://doi.org/10.1021/acsomega.3c00692
        57. Pérez-Villanueva, J., Yépez-Mulia, L., González-Sánchez, I., Palacios-Espinosa, J., Soria-Arteche, O., Sainz-Espuñes, T., Cerbón, M., Rodríguez-Villar, K., Rodríguez-Vicente, A., Cortés-Gines, M., Custodio-Galván, Z., & Estrada-Castro, D. (2017). Synthesis and biological evaluation of 2H-Indazole derivatives: towards Antimicrobial and Anti-Inflammatory dual agents. Molecules, 22(11), 1864. https://doi.org/10.3390/molecules22111864
        58. Yassin, M. T., Mostafa, A. A., & Al-Askar, A. A. (2020). In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-020-2818-8
        59. Brullo, C., Caviglia, D., Spallarossa, A., Alfei, S., Franzblau, S. G., Tasso, B., & Schito, A. M. (2022). Microbiological screening of 5-Functionalized pyrazoles for the future development of optimized Pyrazole-Based delivery systems. Pharmaceutics, 14(9), 1770. https://doi.org/10.3390/pharmaceutics14091770
        60. Menden, A., Crynen, S., Mathura, V., Paris, D., Crawford, F., Mullan, M., & Ait-Ghezala, G. (2021). Novel, natural allosteric inhibitors and enhancers of Candida rugosa lipase activity. Bioorganic Chemistry, 109, 104732. https://doi.org/10.1016/j.bioorg.2021.104732
        61. Lusardi, M., Signorello, M. G., Russo, E., Caviglia, D., Ponassi, M., Iervasi, E., Rosano, C., Brullo, C., & Spallarossa, A. (2024). Structure–Activity relationship studies on highly functionalized pyrazole hydrazones and amides as antiproliferative and antioxidant agents. International Journal of Molecular Sciences, 25(9), 4607. https://doi.org/10.3390/ijms25094607
        62. Pratik, K., Arun, K., Neha, S., Bhumika, Y., Anshuman, S., & Kumar, G. S. (2018). Synthesis, Characterization of Ethyl 5-(substituted)-1H-pyrazole- 3-carboxylate Derivative as Potent Anti-inflammatory Agents. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 17(1), 32–38. https://doi.org/10.2174/1871523017666180411155240
        63. Zhang, K., Fu, L., An, Q., Hu, W., Liu, J., Tang, X., Ding, Y., Lu, W., Liang, X., Shang, X., & Gu, Y. (2020). Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complementary Medicine and Therapies, 20(1). https://doi.org/10.1186/s12906-019-2799-7
        64. P, J. J., Manju, S., Ethiraj, K., & Elias, G. (2018). Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. European Journal of Pharmaceutical Sciences, 121, 356–381. https://doi.org/10.1016/j.ejps.2018.06.003
        65. Nathan, C. (2002). Points of control in inflammation. Nature, 420(6917), 846–852. https://doi.org/10.1038/nature01320
        66. Serhan, C. N. (2017). Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. The FASEB Journal, 31(4), 1273–1288. https://doi.org/10.1096/fj.201601222r
        67. Peruncheralathan, S., Khan, T. A., Ila, H., & Junjappa, H. (2005). Regioselective Synthesis of 1-Aryl-3,4-substituted/annulated-5-(methylthio)pyrazoles and 1-Aryl-3-(methylthio)-4,5-substituted/annulated Pyrazoles. The Journal of Organic Chemistry, 70(24), 10030–10035. https://doi.org/10.1021/jo051771u
        68. Hosny, M. A., Zaki, Y. H., Mokbel, W. A., & Abdelhamid, A. O. (2019). Synthesis, Characterization, Antimicrobial Activity and Anticancer of Some New Pyrazolo[1,5-a]pyrimidines and Pyrazolo[5,1-c]1,2,4-triazines. Medicinal Chemistry, 16(6), 750–760. https://doi.org/10.2174/1573406415666190620144404
        69. In, J., Lee, M., Yang, J., Kwak, J., Lee, H., Boovanahalli, S. K., Lee, K., Kim, S. J., Moon, S. K., Lee, S., Choi, N. S., Ahn, S. K., & Jung, J. (2006). Synthesis of novel diaryl ethers and their evaluation as antimitotic agents. Bioorganic & Medicinal Chemistry Letters, 17(6), 1799–1802. https://doi.org/10.1016/j.bmcl.2006.12.048
        70. Penning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., . . . Westlin, W. F. (2006). Synthesis of pyrazoles and isoxazoles as potent αvβ3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 16(12), 3156–3161. https://doi.org/10.1016/j.bmcl.2006.03.045
        71. Thore, S., Gupta, S. V., & Baheti, K. G. (2012). Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity. Journal of Saudi Chemical Society, 20(3), 259–264. https://doi.org/10.1016/j.jscs.2012.06.011
        72. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. (2018b). Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
        73. Chavan, H. V., Bhale, P. S., Dongare, S. B., Mule, Y. B., Kolekar, N. D., & Bandgar, B. P. (2018). Synthesis and pharmacological evaluation of pyrazoline and pyrimidine analogs of Combretastatin-A4 as anticancer, anti-inflammatory, and antioxidant agents. Croatica Chemica Acta, 91(3). https://doi.org/10.5562/cca3393.

Photo
Sadhana kumari
Corresponding author

Department of Pharmaceutical Chemistry, Acharya Narendra Deo College of Pharmacy, Babhnan, Gonda, India-271313

Photo
Hareesh Gupta
Co-author

Department of Pharmaceutical Chemistry, Acharya Narendra Deo College of Pharmacy, Babhnan, Gonda, India-271313

Sadhana kumari*, Hareesh Gupta, From Synthesis to Therapy: Evaluating the Anti-Inflammatory Efficacy of Pyrazole Derivatives, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 3, 3304-3314. https://doi.org/10.5281/zenodo.15111788

More related articles
An Overview on Synthesis, Properties and Biologica...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwi...
An Overview on Synthesis, Properties and Biologica...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwi...
Related Articles
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
More related articles
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...
An Overview on Synthesis, Properties and Biological Activities of Imidazole and ...
B. Rajitha, B.Rashmitha, S. Ashwini, K. Neha, N. Prasad, M. Ashwini, ...