View Article

Abstract

Bioelectronic medicine (BEM) is an interdisciplinary field integrating neuroscience, bioengineering, and clinical medicine to diagnose and treat disease through targeted modulation of the body’s electrical signaling networks. Using implantable or wearable devices, BEM can influence neural circuits, regulate organ function, and modulate immune responses with high precision[1]. Unlike pharmaceuticals, which rely on chemical pathways, BEM directly interfaces with the nervous system, enabling rapid and reversible therapeutic effects. Recent advances in flexible electronics, microfabrication, and artificial intelligence have accelerated the development of minimally invasive, closed-loop systems capable of realtime, personalized therapy[2]. Clinical applications now span neurology, cardiology, psychiatry, and immunology, addressing conditions such as epilepsy, Parkinson’s disease, heart failure, and autoimmune disorders. This article reviews the principles, historical evolution, core technologies, clinical applications, regulatory aspects, and future directions of BEM, highlighting its potential to transform patient care.

Keywords

Bioelectronic medicine, Neuromodulation, Neural interfaces, Wearable electronics, AI-assisted therapy

Introduction

The human body functions as a complex bioelectrical network, with the nervous system using precisely timed electrical impulses to coordinate organ and cellular processes. Unlike pharmaceuticals, which try to alter these processes by means of chemical routes, bioelectronic medicine aims to directly affect electrical communication [1]. Advances in materials science, neurophysiology, and computational modelling are driving this paradigm change, making precise, flexible, and reversible treatments possible [2]. BEM is seen as the "next therapeutic frontier" following the biologics era and combines systems biology, electronics, and neuroscience [3]. It touches on immunology, psychology, cardiology, endocrinology, and rehabilitation medicine in addition to neurology.

Historical Evolution of Bioelectronic Medicine  

While contemporary BEM is a 21st-century invention, its origins can be found in centuries-old methods. Early attempts to electrically stimulate muscle and nerve tissue began in the 18th century when Luigi Galvani demonstrated "animal electricity"[4] . A major turning point was the mid-20th century clinical acceptance of cardiac pacemakers, which demonstrated the viability of chronic bioelectronic intervention[5] . The present concept of BEM was established over the last 20 years by the development of vagus nerve stimulation (VNS) for depression, responsive neurostimulation for epilepsy, and deep brain stimulation (DBS) for Parkinson's disease [6].  

Fig.1 Evolution of Bioelectronic Medicine

Core Principles & Technologies  

Neural Interfaces and Signal Decoding:   

Biocompatible neural interfaces that can read and activate specific nerve fibres are the foundation of BEM devices[7]. Selective therapeutic route targeting is made possible by the decoding of peripheral nerve signals utilising methods including multi-electrode recordings, optogenetics, and high-resolution electroneurography [8].  

Fig.2 Neural Interfaces and Signal Decoding   Closed-Loop Neuromodulation:

Real-time physiological status monitoring and dynamic stimulation parameter adjustment are made possible by closed-loop devices that combine sensors and processors[9]. This method increases therapy personalisation, minimises negative effects, and uses less energy. 

Fig.3 Loop Neuromodulation

Power and Wireless Communication:   

To operate for extended periods of time without requiring periodic battery replacement surgery, modern devices employ wireless charging, inductive coupling, or biofuel cells[10] . Secure wireless communication methods enable real-time monitoring and external programming.  

AI Integration:    

Robots can autonomously optimise stimulation and understand patient-specific brain patterns thanks to artificial intelligence[11]. In the case of complicated, varying illnesses such as mood disorders, chronic pain, and epilepsy, AI-driven neuromodulation holds particular promise.  

Translational Research and Clinical Trials 

Bringing bioelectronic medicine from laboratory innovation to bedside therapy requires a multidisciplinary translational pathway involving engineers, neuroscientists, clinicians, and regulatory bodies. Early-stage research often begins with preclinical models that map neural circuits, characterize electrical signatures of disease states, and assess the safety of prototype devices. Animal studies—ranging from rodents to large mammals—are critical for understanding both the efficacy and the long-term biocompatibility of neural implants. Following preclinical validation, first-in-human feasibility studies are conducted to test device safety, tolerability, and initial therapeutic effects. These pilot studies help refine stimulation parameters, electrode placement strategies, and closed-loop algorithms before scaling to larger trials. 

  • Several landmark clinical trials have established the feasibility of BEM across different indications: 
  • Vagus nerve stimulation in rheumatoid arthritis demonstrated reduction in inflammatory cytokine levels and clinical symptom improvement. 
  • Deep brain stimulation in treatment-resistant depression yielded significant improvements in mood and functional outcomes for select patients. 

Spinal cord stimulation for chronic pain management showed long-term analgesia without opioid dependency. Ongoing multicenter trials are now exploring organ-specific neuromodulation, AI-assisted closed-loop devices, and minimally invasive bioelectronic systems that can be deployed in outpatient settings. These studies not only generate evidence for clinical adoption but also inform device design for safety, durability, and cost-effectiveness. The success of translational research in BEM depends on collaborative frameworks that integrate academic research, industry expertise, patient advocacy, and regulatory oversight— ensuring that innovative therapies can reach patients while maintaining the highest standards of safety and efficacy. 

Clinical Applications  

? Immunomodulation:   

Through the cholinergic anti-inflammatory route, vagus nerve stimulation has been demonstrated to inhibit the release of pro-inflammatory cytokines[12]. Clinical trials for Crohn's disease and rheumatoid arthritis show decreased drug reliance and disease activity[13].  

Fig.4 Clinical Applications

  • Neurology and Psychiatry:   

For severe Parkinson's disease, DBS is still the gold standard, but responsive neurostimulation gives refractory epilepsy fresh hope[14]. Obsessive-compulsive disorder and treatment-resistant depression are examples of psychiatric applications[15]. 

? Cardiology and Metabolism:   

Through the modulation of autonomic nervous system activity, BEM therapies are being developed for heart failure, arrhythmias, hypertension, and possibly diabetes[16].  

  • Pain and Rehabilitation:   

Peripheral nerve stimulation promotes functional recovery in stroke and spinal cord injury patients, while spinal cord stimulation relieves pain without the need of opioids[17].  

Emerging Areas  

  1. Bioelectronic Diagnostics:   

Devices that monitor cerebral activity in real time can be used as diagnostic tools, detecting arrhythmias, anticipating seizures, or spotting flare-ups of inflammation before symptoms appear[18].  

  1. Organ-Specific Neuromodulation:    

To target certain nerve branches that govern organs such as the kidneys, pancreas, or spleen, researchers are creating "electroceuticals"[19].  

  1. Soft and Flexible Electronics:   

Ultra-thin, flexible electronics are replacing stiff implants, which decrease foreign body response and increase device longevity[20].  

Challenges And Future Directions  

  • Mechanistic Gaps: A more thorough mapping of peripheral neuronal circuits is necessary due to the intricacy of neural signalling[21].  
  • Ethics and Privacy: Because neural data is delicate, ethical frameworks and secure encryption are crucial[22].  
  • Regulation: Traditional medical device approval procedures are being challenged by the rapid advancement of technology[23].  
  • Accessibility: Costs continue to be an obstacle, requiring fair distribution and scalable production[24]. 

ADVANTAGES 

  • Stimulates specific nerves or neural circuits, minimizing systemic drug exposure and side effects [25]. 
  • Offers non-pharmacological alternatives, lowering risks of drug resistance, tolerance, or long-term medication side effects[26]. 
  • Closed-loop systems can sense physiological signals and adjust stimulation in real time for optimized therapy[27]. 
  • Continuous monitoring of neural or biochemical activity enables early disease detection and timely intervention[28]. 
  • Shows therapeutic benefits in epilepsy, depression, inflammatory diseases, diabetes, and cardiovascular disorders[29]. 
  • Advances in miniaturization and wireless technology are enabling less invasive devices and wider accessibility[30].  

  DISADVANTAGES 

  • Many bioelectronic devices (e.g., vagus nerve stimulators) stimulate both desired and undesired nerve fibers, which can lead to off-target effects[31]. 
  • Implanted electrodes can cause inflammatory responses, fibrotic encapsulation, and performance degradation over time[32]. 
  • Implantation requires surgery, which carries risks such as infection, bleeding, and nerve damage[33]. 
  • Hardware issues such as lead breakage, migration, and battery depletion may require revision surgeries[34]. 
  • Some devices are not MRI-safe, restricting diagnostic imaging options for patients[35]. 
  • Advanced bioelectronic devices and implantation procedures are expensive, limiting accessibility in low-resource settings[36].  

CONCLUSION  

Healthcare is being redefined by bioelectronic medicine, which combines the intricacy of biology with the accuracy of electronics. Personalised, flexible, and reversible therapies that address underlying pathophysiology in addition to symptoms hold promise. As the field develops, its incorporation into routine clinical practice will depend on the integration of deep circuit mapping, flexible materials, and artificial intelligence.

REFERENCES

  1. Institute of Bioelectronic Medicine. Feinstein Institutes for Medical Research. 
  2. Bettinger CJ. Advances in flexible bioelectronics. Bioelectron Med. 2018. 
  3. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. A jump-start for electroceuticals. Nature.  2013;496(7444):159–161. 
  4. Piccolino M. Luigi Galvani and animal electricity. Brain Res Bull. 1998;46(5):381–407. 
  5. Chardack WM, Gage AA, Greatbatch W. The implantable cardiac pacemaker. Surgery.  1960;48(4):643–654. 
  6. Lozano AM, et al. Deep brain stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2019;90(7):751–758. 
  7. Navarro X, et al. Interfaces with the peripheral nervous system. Nat Rev Neurosci.  2005;6(8):638–649. 
  8. Grill WM, et al. Targeted neural modulation for therapeutic benefit. Neuron.  2018;98(2):299–321. 
  9. Sun FT, et al. Responsive neurostimulation. Epilepsy Behav. 2008;13(2):271–282. 
  10. Dagdeviren C, et al. Conformal piezoelectric energy harvesting and storage. Nat Commun.  2014;5:4496. 
  11. Toth R, et al. AI in neuromodulation. Front Neurosci. 2022;16:844760. 
  12. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–859. 
  13. Koopman FA, et al. Vagus nerve stimulation in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016;113(29):8284–8289. 
  14. Fisher R, et al. Electrical stimulation of the anterior nucleus of thalamus for epilepsy.  Epilepsia. 2010;51(5):899–908. 
  15. Malone DA, et al. Deep brain stimulation for depression. Biol Psychiatry. 2009;65(4):267– 275. 
  16. Schwartz PJ, et al. Vagal stimulation in heart failure. Eur Heart J. 2008;29(3):416–425. 
  17. Deer TR, et al. Spinal cord stimulation for chronic pain. Pain Physician. 2014;17(3):E275– E283. 
  18. Morrell MJ. Responsive cortical stimulation for epilepsy. Neurology. 2011;77(13):1295– 1304. 
  19. Birmingham K, et al. Bioelectronic medicines in organ control. Sci Transl Med.  2014;6(249):249ps16. 
  20. Kim DH, et al. Stretchable and flexible electronics for biointegration. Science.  2011;333(6044):838–843. 
  21. Pavlov VA, et al. Neural regulation of immunity. Nat Rev Immunol. 2018;18(7):478–491. 
  22. Yuste R, et al. Four ethical priorities for neurotechnologies and AI. Nature.  2017;551(7679):159–163. 
  23. Fong J, et al. Regulatory pathways for neural devices. J Law Biosci. 2018;5(1):86–105. 
  24. Birmingham K. Cost and scalability challenges in electroceuticals. Bioelectron Med. 2020. 
  25. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. A jump-start for electroceuticals.  Nature. 2013;496(7444):159–161. doi:10.1038/496159a. 
  26. Birmingham K, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov.  2014;13(6):399–400. doi:10.1038/nrd4351. 
  27. Bouton CE. Neural decoding and bioelectronic medicine. Annu Rev Biomed Eng.  2019;21:327–349. doi:10.1146/annurev-bioeng-060418-052423. 
  28. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–166. doi:10.1038/nn.4477. 
  29. Koopman FA, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016;113(29):8284– 8289. 
  30. Lo YL, et al. Bioelectronic medicine: technology convergence for personalized therapy.  MedTech Innov Rev. 2020;4(1):22–31. 
  31. Birmingham K, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13(6):399–400. doi:10.1038/nrd4351. 
  32. Jorfi M, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing  applications.  Biomaterials.  2015;67:255–271. doi:10.1016/j.biomaterials.2015.01.044. 
  33. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol.  2001;358(9294):1265–1272. doi:10.1016/S0140-6736(01)06370-4. 
  34. Reddy CG, et al. Complications of vagal nerve stimulator implantation. Neurosurg Focus.  2014;37(5):E7. doi:10.3171/2014.8.FOCUS14334. 
  35. Shellock FG. MR safety and the VNS Therapy System. MRI Safety. 2019. 
  36. Famm K, et al. A jump-start for electroceuticals. Nature. 2013;496(7444):159–161.  doi:10.1038/496159a.

Reference

  1. Institute of Bioelectronic Medicine. Feinstein Institutes for Medical Research. 
  2. Bettinger CJ. Advances in flexible bioelectronics. Bioelectron Med. 2018. 
  3. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. A jump-start for electroceuticals. Nature.  2013;496(7444):159–161. 
  4. Piccolino M. Luigi Galvani and animal electricity. Brain Res Bull. 1998;46(5):381–407. 
  5. Chardack WM, Gage AA, Greatbatch W. The implantable cardiac pacemaker. Surgery.  1960;48(4):643–654. 
  6. Lozano AM, et al. Deep brain stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2019;90(7):751–758. 
  7. Navarro X, et al. Interfaces with the peripheral nervous system. Nat Rev Neurosci.  2005;6(8):638–649. 
  8. Grill WM, et al. Targeted neural modulation for therapeutic benefit. Neuron.  2018;98(2):299–321. 
  9. Sun FT, et al. Responsive neurostimulation. Epilepsy Behav. 2008;13(2):271–282. 
  10. Dagdeviren C, et al. Conformal piezoelectric energy harvesting and storage. Nat Commun.  2014;5:4496. 
  11. Toth R, et al. AI in neuromodulation. Front Neurosci. 2022;16:844760. 
  12. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–859. 
  13. Koopman FA, et al. Vagus nerve stimulation in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016;113(29):8284–8289. 
  14. Fisher R, et al. Electrical stimulation of the anterior nucleus of thalamus for epilepsy.  Epilepsia. 2010;51(5):899–908. 
  15. Malone DA, et al. Deep brain stimulation for depression. Biol Psychiatry. 2009;65(4):267– 275. 
  16. Schwartz PJ, et al. Vagal stimulation in heart failure. Eur Heart J. 2008;29(3):416–425. 
  17. Deer TR, et al. Spinal cord stimulation for chronic pain. Pain Physician. 2014;17(3):E275– E283. 
  18. Morrell MJ. Responsive cortical stimulation for epilepsy. Neurology. 2011;77(13):1295– 1304. 
  19. Birmingham K, et al. Bioelectronic medicines in organ control. Sci Transl Med.  2014;6(249):249ps16. 
  20. Kim DH, et al. Stretchable and flexible electronics for biointegration. Science.  2011;333(6044):838–843. 
  21. Pavlov VA, et al. Neural regulation of immunity. Nat Rev Immunol. 2018;18(7):478–491. 
  22. Yuste R, et al. Four ethical priorities for neurotechnologies and AI. Nature.  2017;551(7679):159–163. 
  23. Fong J, et al. Regulatory pathways for neural devices. J Law Biosci. 2018;5(1):86–105. 
  24. Birmingham K. Cost and scalability challenges in electroceuticals. Bioelectron Med. 2020. 
  25. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. A jump-start for electroceuticals.  Nature. 2013;496(7444):159–161. doi:10.1038/496159a. 
  26. Birmingham K, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov.  2014;13(6):399–400. doi:10.1038/nrd4351. 
  27. Bouton CE. Neural decoding and bioelectronic medicine. Annu Rev Biomed Eng.  2019;21:327–349. doi:10.1146/annurev-bioeng-060418-052423. 
  28. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–166. doi:10.1038/nn.4477. 
  29. Koopman FA, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016;113(29):8284– 8289. 
  30. Lo YL, et al. Bioelectronic medicine: technology convergence for personalized therapy.  MedTech Innov Rev. 2020;4(1):22–31. 
  31. Birmingham K, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13(6):399–400. doi:10.1038/nrd4351. 
  32. Jorfi M, et al. Progress towards biocompatible intracortical microelectrodes for neural interfacing  applications.  Biomaterials.  2015;67:255–271. doi:10.1016/j.biomaterials.2015.01.044. 
  33. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol.  2001;358(9294):1265–1272. doi:10.1016/S0140-6736(01)06370-4. 
  34. Reddy CG, et al. Complications of vagal nerve stimulator implantation. Neurosurg Focus.  2014;37(5):E7. doi:10.3171/2014.8.FOCUS14334. 
  35. Shellock FG. MR safety and the VNS Therapy System. MRI Safety. 2019. 
  36. Famm K, et al. A jump-start for electroceuticals. Nature. 2013;496(7444):159–161.  doi:10.1038/496159a.

Photo
Radhakrishnan Ramesh
Corresponding author

Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam Tiruvannamalai, Tamilnadu, India.

Photo
Omprakash Ariyan
Co-author

Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam Tiruvannamalai, Tamilnadu, India.

Photo
Senthil Kumar Krishnan
Co-author

Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam Tiruvannamalai, Tamilnadu, India.

Photo
Kannabirran Vaikundam
Co-author

Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam Tiruvannamalai, Tamilnadu, India.

Photo
Gnanasekar Natarajan
Co-author

Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam Tiruvannamalai, Tamilnadu, India.

Radhakrishnan Ramesh*, Omprakash Ariyan, Senthil Kumar Krishnan, Kannabirran Vaikundam, Gnanasekar Natarajan, Bioelectronic Medicine - Engineering the Body’s Electrical Language for Health, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 8, 1490-1497. https://doi.org/10.5281/zenodo.16869157

More related articles
Microencapsulation Technology For Novel Pharmaceut...
Sagar A Sarode , Mayuri A. Sarode , Yogesh N. Sonawane , Parag R....
In-Vitro wound healing activity using cell line by...
Mrs Sonali Gurav, Preeti Kale, Snehal Jamdade, Shreya kamble, Shu...
Related Articles
Evaluation Of In-vivo Diuretic and In-vitro Litholytic Potential by Compound Eth...
Azhar Sulthana I., Suresh Kumar J., Mohan D., Naga Jyothi T., Sravani M., Smati K., ...
Formulation Strategies And Consideration In Nanosuspension Development: A Review...
Vittal C., Snehalatha, Uma M., Nagaraja T. S, Yogananda R., ...
More related articles
Microencapsulation Technology For Novel Pharmaceutical Formulations...
Sagar A Sarode , Mayuri A. Sarode , Yogesh N. Sonawane , Parag R. Patil, Abhishek U. Thakare, Tejas ...
In-Vitro wound healing activity using cell line by extraction of Cinnamomum tama...
Mrs Sonali Gurav, Preeti Kale, Snehal Jamdade, Shreya kamble, Shubham Patil, Arati Mali, Aishwarya ...
Microencapsulation Technology For Novel Pharmaceutical Formulations...
Sagar A Sarode , Mayuri A. Sarode , Yogesh N. Sonawane , Parag R. Patil, Abhishek U. Thakare, Tejas ...
In-Vitro wound healing activity using cell line by extraction of Cinnamomum tama...
Mrs Sonali Gurav, Preeti Kale, Snehal Jamdade, Shreya kamble, Shubham Patil, Arati Mali, Aishwarya ...