View Article

Abstract

One of the main health issues in the world today is acknowledged to be neurological diseases (NDs). The World Health Organisation (WHO) lists neurological illnesses as one of the leading causes of death globally. Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, Prion disease, brain tumours, spinal cord injuries, and strokes are examples of neurological illnesses. Since there are no particular treatments that can penetrate the blood-brain barrier (BBB) and significantly enter the brain to have a pharmacological effect, many conditions are regarded as incurable. The development of methods to increase medication efficacy and get around the BBB is necessary. . Using various kinds of materials at the nanoscale is one of the promising strategies. Through the use of nanotechnology and the development of nanomaterials that enhance the delivery of potent medication options. Nanoparticles can penetrate the BBB and exhibit reduced invasiveness. Also, study some drug administration approaches in brain like Delivery Intracerebrally, Delivery Intrathecally, Carbon nanotubes, liposomes, delivary via inhalation. In this review, we briefly summarized the recent literature on the use of various nanomaterials and novel Drug delivery system for the treatment of various types of neurological disorders. One of the main health issues in the world today is acknowledged to be neurological diseases (NDs). Across the world, neurological diseases (NDs) are acknowledged as a major health concern.

Keywords

Neuropsychological, Nanoparticles, Alzheimer’s, Parkinson’s, Blood Brain Barriers, Blood Cerebrospinal fluid Barrier

Reference

  1. Re, F.; Gregori, M.; Masserini, M. Nanotechnology for neurodegenerative disorders. Maturitas 2012, 73, 45–51. [CrossRef] [PubMed]
  2. Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative Disease: Models, Mechanisms, and a New Hope; The Company of Biologists Ltd.: Cambridge, UK, 2017; Volume 10, pp. 499–502.
  3. WHO.TheTop10Causes of Death-WHO|World Health Organization; WHO: Geneva, Switzerland, 2020. Available online: https: //www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 12 January 2022).
  4. W.M.Pardridge, The blood–brain barrier: bottleneck in brain drug development, NeuroRx 2 (2005) 3–14.
  5. D.J. Begley, Delivery of therapeutic agents to the central nervous system: the problems and the possibilities, Pharmacol. Ther. 104 (2004) 29–45.
  6. Ramos-Cabrer, P.; Agulla, J.; Argibay, B.; Pérez-Mato, M.; Castillo, J. Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. Int. J. Pharm. 2011, 405, 228–233. [CrossRef] [PubMed]
  7. El-aziz, E.A.E.-d.A.; Elgayar, S.F.; Mady, F.M.; Abourehab, M.A.; Hasan, O.A.; Reda, L.M.; Alaaeldin, E. The Potential of Optimized Liposomes in Enhancement of Cytotoxicity and Apoptosis of Encapsulated Egyptian Propolis on Hep-2 Cell Line. Pharmaceutics 2021, 13, 2184. [CrossRef]
  8. Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [CrossRef] [PubMed]
  9. De Rijk MC, Rocca WA, Anderson DW, et al. A population perspective on diagnostic criteria for Parkinson’s disease. Neurology 1997; 48: 1277–81.
  10. Hirtz D, Thurman DJ, Gwinn-Hardy K, et al. Howcommonarethe“common” neurologic disorders? Neurology 2007:68(5):326–327. Doi:10.1212/01.wnl.0000252807.38124.a3.
  11. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18: 459–80.
  12. Lee A, Gilbert RM. Epidemiology of Parkinson disease. Neurol Clin 2016; 34: 955–65.
  13. Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschrift Psychiatr 1907; 64: 146–148.
  14. Alzheimer Europe. Dementia in Europe Yearbook 2019: estimating the prevalence of dementia in Europe. 2020. https://www.alzheimereurope.org/content/download/195515/1457520/file/FINAL 05707 Alzheimer Europe yearbook 2019.pdf (accessed Jan 24, 2021).
  15. Wu Y-T, Fratiglioni L, Matthews FE, et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol 2016; 15: 116124.
  16. Matthews FE, Stephan BCM, Robinson L, et al. A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun 2016; 7: 11398.
  17. Prince M, Albanese E, Guerchet M, et al. World Alzheimer Report 2014: Dementia and Risk Reduction an Analysis of Protective and Modifiable Factors, 2014.
  18. Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014; 55: 475–82.
  19. Saxena S, Li S. Defeating epilepsy: A global public health commitment. Epilepsia Open 2017; 2: 153–55.
  20. Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R. Health and economic benefits of public financing of epilepsy treatment in India: An agentbased simulation model. Epilepsia 2016; 57: 464–74.
  21. Ding D, Hong Z, Chen GS, et al. Primary care treatment of epilepsy with phenobarbital in rural China: costoutcome analysis from the WHO/ILAE/IBE global campaign against epilepsy demonstration project. Epilepsia 2008; 49: 535–39.
  22. WHO. Global burden of epilepsy and the need for coordinated action at the country level to address its health, social and public knowledge implications. 2015: Resolution WHA68·20.
  23. Lancet 2007; 369: 218–28 Department of Neurology, Wake Forest University, Medical Center Blvd, Winston Salem, NC 27157, USA (Prof F O Walker MD) fwalker@wfubmc.edu
  24. Lancet Neurol 2005; 4: 635–42 Pathology 627, The Johns Hopkins University School of Medicine & Bloomberg School of Public Health, Baltimore, MD21287, USA (R TJohnsonMD) rtj@jhmi.edu
  25. Marianecci, C., Rinaldi, F., Hanieh, P. N., Di Marzio, L., Paolino, D., & Carafa, M. (2017). Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting. Drug Design, Development and Therapy, Volume11, 325–335. https://doi.org/10.2147/DDDT.S100075
  26. Bors, L., & Erd?, F. (2019). Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Scientia Pharmaceutica, 87(1), 6. https://doi.org/10.3390/scipharm87010006
  27. Denora, N., Trapani, A., Laquintana, V., Lopedota, A., & Trapani, G. (2009). Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain. Current Topics in Medicinal Chemistry, 9(2), 182–196. https://doi.org/10.2174/156802609787521571
  28. De Pablo, F., & de la Rosa, E. J. (1995). The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends in Neurosciences, 18(3), 143–150. https://doi.org/10.1016/01662236(95)93892-2
  29. Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3(8), 711–716. https://doi.org/10.1038/nrd1470
  30. Akhtar, A., Andleeb, A., Waris, T. S., Bazzar, M., Moradi, A.-R., Awan, N. R., & Yar, M. (2021). Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of Controlled Release, 330, 1152–1167. https://doi.org/10.1016/j.jconrel.2020.11.021
  31. Wang,L.-S.; Chuang, M.-C.; Ho, J.-a.A. Nanotheranostics—A review of recent publications. Int. J. Nanomed. 2012, 7, 4679.
  32. Shim, M.S.; Kwon, Y.J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 2012, 64, 1046–1059. [CrossRef]
  33. Ramos-Cabrer, P.; Agulla, J.; Argibay, B.; Pérez-Mato, M.; Castillo, J. Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia. Int. J. Pharm. 2011, 405, 228–233. [CrossRef] [PubMed]
  34. Fontes, M.A.P.; Vaz, G.C.; Cardoso, T.Z.D.; de Oliveira, M.F.; Campagnole-Santos, M.J.; Dos Santos, R.A.S.; Sharma, N.M.; Patel, K.P.; Frézard, F. GABA-containing liposomes: Neuroscience applications and translational perspectives for targeting neurological diseases. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 781–788. [CrossRef]
  35. Frézard, F.; dos Santos, R.A.; Fontes, M.A. Liposome-encapsulated neuropeptides for site-specific microinjection. In Neuropeptides; Springer: Berlin/Heidelberg, Germany, 2011; pp. 343–355.
  36. Ulrich, A.S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 2002, 22, 129–150. [CrossRef]
  37. Spuch, C.; Navarro, C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J. Drug Deliv. 2011, 2011, 469679. [CrossRef]
  38. Hanson, L. R., & Frey, W. H. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience, 9(S3), S5. https://doi.org/10.1186/1471-2202-9-S3-S5
  39. Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews, 64(7), 614–628. https://doi.org/10.1016/j.addr.2011.11.002
  40. Denora, N., Trapani, A., Laquintana, V., Lopedota, A., & Trapani, G. (2009). Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain. Current Topics in Medicinal Chemistry, 9(2), 182–196. https://doi.org/10.2174/156802609787521571
  41. Kumar,A.; Singh, A. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015, 67, 195–203. [CrossRef]
  42. Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018, 30, 1801362. [CrossRef] [PubMed]
  43. Li, A.; Tyson, J.; Patel, S.; Patel, M.; Katakam, S.; Mao, X.; He, W. Emerging Nanotechnology for Treatment of Alzheimer’s and Parkinson’s Disease. Front. Bioeng. Biotechnol. 2021, 9, 672594. [CrossRef] [PubMed]
  44. Sood, S.; Jain, K.; Gowthamarajan, K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J. Drug Target. 2014, 22, 279–294. [CrossRef] [PubMed]
  45. Agarwal, M.; Alam, M.R.; Haider, M.K.; Malik, M.; Kim, D.-K. Alzheimer’s Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. Nanomaterials 2021, 11, 59. [CrossRef
  46. American Psychiatric Association, A. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 1980; Volume 3.
  47. Colvert, E.; Tick, B.; McEwen, F.; Stewart, C.; Curran, S.R.; Woodhouse, E.; Gillan, N.; Hallett, V.; Lietz, S.; Garnett, T. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry 2015, 72, 415–423. [CrossRef]
  48. Hua, X.; Thompson, P.M.; Leow, A.D.; Madsen, S.K.; Caplan, R.; Alger, J.R.; O’Neill, J.; Joshi, K.; Smalley, S.L.; Toga, A.W. Brain growth rate abnormalities visualized in adolescents with autism. Hum. Brain Mapp. 2013, 34, 425–436. [CrossRef]
  49. Moni, M.; Rahman, M.; Begum, M.; Uddin, M.; Ashraf, G.M. Deciphering the Role of Nanoparticle-Based Treatment for Parkinson’s Disease. Curr. Drug Metab. 2021, 22, 550–560. [CrossRef]
  50. Li, J.; Cai, S.; Zeng, C.; Chen, L.; Zhao, C.; Huang, Y.; Cai, W. Urinary exosomal vitronectin predicts vesicoureteral reflux in patients with neurogenic bladders and spinal cord injuries. Exp. Ther. Med. 2022, 23, 65. [CrossRef]
  51. Huang, R.; Boltze, J.; Li, S. Strategies for improved intra-arterial treatments targeting brain tumors: A systematic review. Front. Oncol. 2020, 10, 1443. [CrossRef]
  52. Beccaria, K.; Canney, M.; Bouchoux, G.; Puget, S.; Grill, J.; Carpentier, A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: A review and perspectives. Neurosurg. Focus 2020, 48, E10. [CrossRef]
  53. Huang, R.; Boltze, J.; Li, S. Strategies for improved intra-arterial treatments targeting brain tumors: A systematic review. Front. Oncol. 2020, 10, 1443. [CrossRef]
  54. Chen, E.M.; Quijano, A.R.; Seo, Y.-E.; Jackson, C.; Josowitz, A.D.; Noorbakhsh, S.; Merlettini, A.; Sundaram, R.K.; Focarete, M.L.; Jiang, Z. Biodegradable PEG-poly (?-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials 2018, 178, 193–203. [CrossRef]

Photo
ABHAY KAMBLE
Corresponding author

LBYP Collage of pharmacy pathri, India

Photo
NAKUL KATHAR
Co-author

LBYP Collage of pharmacy pathri, India

Photo
GAJANAN SANAP
Co-author

LBYP Collage of pharmacy pathri, India

Abhay Kamble, Nakul Kathar, Gajanan Sanap, Novel Drug Delivery System For Treating Neuropsychological Disorder, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 12, 317- 329. https://doi.org/10.5281/zenodo.10370141

More related articles
An Evaluation On Medicinal Plant Practice For Mana...
Saurabh T. Shinde, Arun D. Shinde, Pritam S. Shinde, Shravani J. ...
Advancements in Understanding the Neuromuscular Ju...
Arnab Roy, K. Rajeswar Dutt, Mahesh Kumar Yadav, Sudarshan Rawani...
Drug-Device Combinations And Materiovigilance In T...
Abhirami Jose, Jeeva Santhiya, eepika Kumar, Anjali M. A., Manjul...
Formulation And Evaluation Of Herbal Gel...
Rituraj Rajjan Singh, Somprabha Madhukar, Shruti Rathore, ...
Effect Of Antibiotics On Mental Health: A Review...
Shanon Stafford D'Almeida, A.R Shabaraya, Satish S, ...
Market Analysis of Antidiabetic Drugs in India...
Piyush Bhatt , Sonia Ranawat , Vikram Singh , ...
Related Articles
Design, Synthesis and Pharmacological Evaluation of Novel Pyrimidine Derivatives...
Avinash Patil, Prashant Chavan, Amitkumar Rawal, Kiran Patil, ...
Formulate And Evaluate Herbal Hair Oil For Healthier Hair...
Supriya Siddharth waghmare , Namrata nitin Haladkar , ...
Niosomes: An Innovative Tailored Cancer Medication Delivery Mechanism...
Shivani S. C. Gupta, Punam K. Satav, Kalyani K. Malthane, Vaibhav S. Adhao, Jaya P. Ambhore, Jaya P....
An Evaluation On Medicinal Plant Practice For Management Of Diabetes: A Short Re...
Saurabh T. Shinde, Arun D. Shinde, Pritam S. Shinde, Shravani J. Shinde, Vaishnavi T. Shinde, Vinod ...
More related articles
An Evaluation On Medicinal Plant Practice For Management Of Diabetes: A Short Re...
Saurabh T. Shinde, Arun D. Shinde, Pritam S. Shinde, Shravani J. Shinde, Vaishnavi T. Shinde, Vinod ...
Advancements in Understanding the Neuromuscular Junction: Implications for Muscl...
Arnab Roy, K. Rajeswar Dutt, Mahesh Kumar Yadav, Sudarshan Rawani, Gangadhar Singh, Suraj Kumar, Ami...
Drug-Device Combinations And Materiovigilance In The Cardiology Department Of A ...
Abhirami Jose, Jeeva Santhiya, eepika Kumar, Anjali M. A., Manjula Devi A. S, R. Vickram Vignesh, ...
An Evaluation On Medicinal Plant Practice For Management Of Diabetes: A Short Re...
Saurabh T. Shinde, Arun D. Shinde, Pritam S. Shinde, Shravani J. Shinde, Vaishnavi T. Shinde, Vinod ...
Advancements in Understanding the Neuromuscular Junction: Implications for Muscl...
Arnab Roy, K. Rajeswar Dutt, Mahesh Kumar Yadav, Sudarshan Rawani, Gangadhar Singh, Suraj Kumar, Ami...
Drug-Device Combinations And Materiovigilance In The Cardiology Department Of A ...
Abhirami Jose, Jeeva Santhiya, eepika Kumar, Anjali M. A., Manjula Devi A. S, R. Vickram Vignesh, ...