View Article

Abstract

Chronic respiratory diseases (CRDs), including Chronic Obstructive Pulmonary Disease (COPD), pneumonia, bronchitis, and lung infections, pose major global health challenges. These diseases often result in irreversible lung damage and are among the leading causes of death worldwide. COPD, in particular, is a progressive illness that contributes significantly to morbidity and mortality, especially in low- and middle-income countries. Conventional treatments, typically involving systemic therapies, have limitations in their effectiveness and patient adherence. Inhalable dry powder nano-formulations (IDPNs) represent a promising alternative for enhanced pulmonary drug delivery. By leveraging the benefits of nanotechnology and dry powder inhalation, IDPNs improve drug solubility, bioavailability, and enable targeted delivery to specific alveolar regions. Nanocarriers such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles offer controlled release of drugs and allow for combination therapies, addressing multiple facets of complex respiratory conditions. Recent research indicates that IDPNs can efficiently deliver a variety of therapeutic agents, including anti- inflammatory drugs, antibiotics, and gene therapies, directly to the lungs, thus enhancing treatment efficacy while minimizing systemic side effects. This review discusses the latest advancements in inhalable nanoformulations, focusing on their formulation strategies, physicochemical properties, and potential clinical applications. The development of these nanoformulations holds the potential to significantly improve the management of advanced pulmonary diseases, offering new prospects for better patient outcomes and alleviating healthcare burdens.

Keywords

Transferosomes, Transdermal, Nanocarriers, Edge Activators.

Reference

  1. Marrie, T. J., & File, T. M. (2005). "Pneumonia." Lancet, 367(9515) 1260- 1270. DOI:      10.1016/S0140- 6736(05)74446-X.
  2. Wenzel, R. P., & Fowler, A. A. (2006). "Acute bronchitis." New England Journal of Medicine, 355(20), 2125-2130. DOI: 10.1056/NEJMcp063456.
  3. Bhavane, R., Karathanasis, E., & Annapragada, A. (2019). "Nanotechnology for              inhaled    drugs." Wiley Interdisciplinary          Reviews: Nanomedicine and Nanobiotechnology, 11(3), e1550. DOI: 10.1002/wnan.1550.
  4. Labiris, N. R., & Dolovich, M. B. (2003). "Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications." British Journal of Clinical Pharmacology, 56(6), 588–599. DOI:10.1046/j.13652125.2003.01892.
  5. Organization WH. Chronic Obstructive Pulmonary Disease (COPD) Geneva. Switzerland: World Health Organization. 2017.
  6. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: Systematic review and meta– analysis. Journal of global health. 2015;5(2).
  7. Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley.
  8. Patil, S. M., & Vaidya, V. D. (2014). Nanoparticle-based drug delivery systems for the treatment of lung cancer. Journal of Nanomedicine & Nanotechnology, 5(1), 1-9.
  9. Lee, S. J., et al. (2018). Inhalable nanoformulations for the treatment of lung diseases: A review. Drug Delivery, 25(1), 165180.
  10. Chougule, M. B., & Vaidya, B. (2019). Advances in inhalable dry powder formulations for lung diseases. International Journal of Pharmaceutics, 557, 10- 20.
  11. GOLD Report: Global Initiative for Chronic Obstructive Lung Disease. "Global Strategy for the Diagnosis Management, and Prevention of COPD."
  12. GINA Report: Global Initiative for Asthma. "Global Strategy for Asthma Management and Prevention."
  13. Definition Task Force: Ranieri, V.M., et al. "Acute respiratory distress syndrome: The Berlin Definition." JAMA, 2012.
  14. Harrison's Principles of Internal Medicine: Jameson, J.L., et al. "Respiratory Diseases," 20th edition.
  15. Liao Q, Yip L, Chow MYT, Chow SF, Chan HK, Kwok PCL, et al. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int J Pharm.2019;560:144–154. doi: 10.1016/j.ijpharm.2019.01.057. [PubMed] [CrossRef] [Google Scholar].
  16. Wan KY, Weng J, Wong SN, Kwok PCL, Chow SF, Chow B. AHL. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Eur J Pharm Biopharm. 2020;149:238–247. doi: 10.1016/j.ejpb.2020.02.010. [PubMed] [CrossRef] [Google Scholar].
  17. Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38(6):782–797. doi: 10.1038/aps.2017.34. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
  18. Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991. [CrossRef] [PubMed].
  19. Gour, N.; Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75, 68–78. [CrossRef] [PubMed].
  20. Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica,  G.W.; Heffler, E.    Interleukin-5  in    the  Pathophysiology  of Severe Asthma. Front. Physiol. 2019, 10, 1514. [CrossRef].
  21. Drake, M.G.; Cook, M.; Fryer, A.D.; Jacoby, D.B.; Scott, G.D. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front. Physiol. 2021, 12, 720538. [CrossRef] [PubMed].
  22. Global Initiative for Asthma (GINA). "Global Strategy for Asthma Management and Prevention."
  23. Global Initiative for Chronic Obstructive Lung Disease (GOLD). "Global Strategy for the Diagnosis, Management, and Prevention of COPD."
  24. Barnes, P.J. "Pathophysiology of asthma." The Journal of Allergy and Clinical Immunology, 2011.
  25. Seemungal, T.A.R., et al. "The importance of exacerbations in COPD." Respiratory Medicine, 2000.
  26. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the   pathobiology   and
  27. heterogeneity of a complex disorder. Lancet Respir Med 2022; 10: 485–96. [DOI] [PMC free article] [PubMed] [Google Scholar].
  28. Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med 2013; 188: 941–47. [DOI] [PMC free article] [PubMed] [Google Scholar].
  29. Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene– environment interactions across the lifespan. Lancet Respir Med 2022; 10: 512–24. [DOI] [PubMed] [Google Scholar].
  30. El-Boraie A, Tyndale RF. The role of pharmacogenetics in smoking. Clin Pharmacol Ther 2021; 110: 599–606. [DOI] [PubMed] [Google Scholar].
  31. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379: 2162–72. [DOI] [PubMed] [Google Scholar].
  32. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med 2007; 357: 1946–55. [DOI] [PubMed] [Google Scholar].
  33. Perret JL, Lodge CJ, Lowe AJ, et al. Childhood pneumonia, pleurisy and lung function: a cohort study from the first to sixth decade of life. Thorax 2020; 75: 28–37. [DOI] [PubMed] [Google Scholar].
  34. Menezes AM, Hallal PC, Perez-Padilla R, et al. Tuberculosis and airflow obstruction: evidence from the PLATINO study in Latin America. Eur Respir J 2007; 30: 1180– 85. [DOI] [PubMed] [Google Scholar].
  35. Gingo MR, Nouraie M, Kessinger CJ, et al. Decreased lung function and all- cause mortality in HIV-infected individuals. Ann Am Thorac Soc 2018; 15: 192–99. [DOI] [PMC free article] [PubMed] [Google Scholar].
  36. Khan, Y., et al. (2019). "Nanoparticles: Properties and Applications." Materials Today, 12(3), 23-31.
  37. Hirsch,  A.   (2010).         "Functionalization   of Carbon Nanotubes." Chemical Communications, 46(14), 2570-2578.
  38. Buzea, C., et al. (2007). "Nanomaterials and Nanoparticles: Sources and Toxicity." Biointerphases, 2(4),MR17-MR71.
  39. Food and Drug Administration. Guidance for Industry Considering Whether an FDA-Regulated Product Involves the Application  of     Nanotechnolog Contains              Nonbinding Recommendations; Food and Drug Administration: Silver Spring, MD, USA, 2014.
  40. Jeevanandam,       J.;        Chan, Y.S.; Danquah, M.K.Nano Formulations of Drugs: Recent Developments, Impact and Challenges. Biochimie 2016, 128–129, 99–112. [Cross Ref] [PubMed].
  41. Jones, M.-C.; Leroux, J.-C. Polymeric Micelles—A New Generation of Colloidal Drug Carriers. Eur. J. Pharm. Biopharm. 1999, 48, 101–111. [CrossRef] [PubMed].
  42. Kwon, G.S. Polymeric Micelles as New Drug Carriers. Adv. Drug Deliv. Rev. 1996, 21, 107–116. [CrossRef].
  43. Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, Development and Applications in Drug Delivery. J. Control. Release 2017, 252, 28–49. [CrossRef].
  44. Singh, R.; Lillard, J.W. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. [CrossRef]
  45. Agarwal, A.K.; Raja, A.; Brown, B.D. Chronic Obstructive Pulmonary Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar].
  46. Leving, M.; Wouters, H.; de la Hoz, A.; Bosnic-Anticevich, S.; Dekhuijzen, R.; Gardev, A.; Lavorini, F.; Meijer, J.; Price, D.; Rodríguez, M.R.; et al. Impact of PIF, Inhalation Technique and Medication Adherence on Health Status and Exacerbations in COPD: Protocol of a Real-World Observational Study (PIFotal COPD Study). Pulm. Ther. 2021, 7, 591–606. [Google Scholar] [CrossRef].
  47. Rogliani, P.; Calzetta, L.; Coppola, A.; Cavalli, F.; Ora, J.; Puxeddu, E.; Matera, M.G.; Cazzola, M. Optimizing Drug Delivery in COPD: The Role of Inhaler Devices. Respir. Med. 2017, 124, 6–14. [Google Scholar] [CrossRef] [PubMed].
  48. Jessamine, V.; Mehndiratta, S.; De Rubis, G.; Paudel, K.R.; Shetty, S.; Suares, D.; Chellappan, D.K.; Oliver, B.G.;
  49. Hansbro, P.M.; Dua, K. The Application of Nanoparticles as Advanced Drug Delivery Systems in Attenuating COPD. Heliyon 2024, 10, e25393. [Google Scholar] [CrossRef].
  50. Taghavizadeh Yazdi, M.E.; Qayoomian, M.; Beigoli, S.; Boskabady, M.H. Recent Advances in Nanoparticle Applications in Respiratory Disorders: A Review. Front. Pharmacol.  2023, 14,   1059343.   [Google Scholar] [Cross Ref] [PubMed].
  51. Lee, Y.J.; Park, Y.-B. Inhaled Corticosteroids Is Not Associated with the Risk of Pneumonia in Asthma. Tuberc. Respir. Dis. 2023, 86, 151–157. [Google Scholar] [Cross Ref] [PubMed].
  52. Global Initiative for Chronic Obstructive Lung Disease (GOLD) reports provide guidelines on the management and treatment of COPD, emphasizing the role of inhaled therapies.
  53. National Heart, Lung, and Blood Institute (NHLBI) resources offer insights into the use of inhalers and their effectiveness in managing COPD symptoms.
  54. For more specific studies or guidelines, you may refer to clinical literature or articles in journals like "Chest" or "Respiratory Medicine."

Photo
Muskare Mayuri
Corresponding author

Shivlingeshwar College of Pharmacy Latur.

Photo
Pandhare Jayashri
Co-author

Shivlingeshwar College of Pharmacy Latur.

Photo
Majge Shashank
Co-author

Shivlingeshwar College of Pharmacy Latur.

Photo
Pandhare Priya
Co-author

VSS Institute of Pharmacy Badnapur.

Pandhare Priya, Muskare Mayuri*, Pandhare Jayashri, Majge Shashank, The Inhalable Dry Powder Nano- Formulation Advancing Lung Disease Therapy, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 2, 787-798. https://doi.org/10.5281/zenodo.14851964

More related articles
Formulation And Evaluation Of Nebivolol Transderma...
K. Mugilan, A. Vasanthan, Senthilkumar K. L., Karthick S., ...
The Formulation, Development, And Evaluation Of An...
Kamlesh S Pathak, D.M.Waghmode, Santosh Jain, ...
Role of Herbal Drug Delivery Systems in Chronic Di...
Dukare Sagar , Gaurav Kale , Sachin Datkhile , Rahul Lokhande , ...
Skin-Deep Insights: Exploring Transdermal Drug Delivery Systems in a Brief Revie...
Rudrajit Saha, S. K. Riazul, Rounak Bhattacharya, Somenath Mondal, Titin Debnath, ...
Related Articles
Review on lipid based carrier as a drug delivery system...
Pranali Subhash jadhav, Pranali Hatwar, Gajanan Sanap, ...
Transferosomes, Revolutionizing NSAIDS Delivery For Improved Therapeutic Efficac...
Anjitha M, K. Selvaraju, N. L. Gowrishankar, Athulya Prasad, Arun Giri Raj. V, Shabna. S, ...
Role of Herbal Drug Delivery Systems in Chronic Disease Management...
Dukare Sagar , Gaurav Kale , Sachin Datkhile , Rahul Lokhande , Rutuja Chavan , ...
Nanogels Based Drug Delivery System: A Promising Therapeutic Strategy...
Majedul Hoque, Shuvo Nath Saha, Taharat Akram, ...
Formulation And Evaluation Of Nebivolol Transdermal Drug Delivery System ...
K. Mugilan, A. Vasanthan, Senthilkumar K. L., Karthick S., ...
More related articles
Formulation And Evaluation Of Nebivolol Transdermal Drug Delivery System ...
K. Mugilan, A. Vasanthan, Senthilkumar K. L., Karthick S., ...
Role of Herbal Drug Delivery Systems in Chronic Disease Management...
Dukare Sagar , Gaurav Kale , Sachin Datkhile , Rahul Lokhande , Rutuja Chavan , ...
Formulation And Evaluation Of Nebivolol Transdermal Drug Delivery System ...
K. Mugilan, A. Vasanthan, Senthilkumar K. L., Karthick S., ...
Role of Herbal Drug Delivery Systems in Chronic Disease Management...
Dukare Sagar , Gaurav Kale , Sachin Datkhile , Rahul Lokhande , Rutuja Chavan , ...