View Article

  • Study of Laccase Producing Microorganisms and Their Applications
  • Bhagwan Mahavir College of Basic and applied Science, Nr. VIP Road, Bharthana-Vesu, Surat

Abstract

A vast variety of bacteria, fungi, higher plants, and insects have laccases. Vegetables such as cabbage, turnips, potatoes, pears, and apples are examples of plants that contain laccases. It can be found in Ascomycetes, Deuteromycetes, and Basidiomycetes, and it is very common in white-rot fungi that degrade lignin. Hair coloring with natural phenols such gallic acid, catechol, syringaldehyde, etc. uses laccase enzyme. The dyes used in laccase-catalyzed dyes well penetrated the hair. The surface morphology of the colored hair was unaffected by the coloring process as well. The colored hair also displayed a variety of colors that met market demands and shown strong resistance to fading after shampooing and pH changes. In the production of lignocellulose-based composite materials, such as fiberboard, laccases can be employed to aid in the enzymatic attachment of fibers. Moreover, make improvements to the fiber products chemical or physical characteristics. Laccases are also used as cleaners in some water purification systems, as catalysts in the creation of anti-cancer drugs, and even as components in cosmetics.

Keywords

Laccase, Multi-copper oxidases, Industrial Application, Hair dyeing, Food Industry, Textile Industry, Nano-biotechnology

Reference

  1. Williamson PR. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol  1994; 176: 656-64.
  2. Thurston CF. The structure and function of fungal laccases. Microbiology 1994; 140: 19-26.
  3. Xu F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 1996; 35: 7608-14.
  4. Yoshida H. Chemistry of Lacquer (Urshi) part 1. J Chem Soc 1883; 43: 472-86.
  5. Levine WG. Laccase, a review. In: Peisach J, Eds. The Biochemistry of Copper. New York: Academic Press Inc. 1965: pp. 371-85.
  6. Bertrand G. Simultaneous occurrence of laccase and  tyrosinase in the juice of some mushrooms. CR Hebd Seances Acad Sci 1896; 123: 463-5.
  7. Fu S, Fu K, Zhan H, Zhou P, Liu M and Liu H, 2013. A newly isolated wood-rot fungus for laccase Production in submerge cultures. Biores.,8(1):1385-1397.
  8. J. R. Jeon and Y. S. Chang, Trends Biotechnol., 2013, 31, 335–341
  9. RyanSchnitzhofer W, Tzanov T, Cavaco PA, Gubitz GM, 2003. An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolorization. Enz. Mic. Technol., 33:766–774.
  10. Madhavi V, Lele SS. Laccase: properties and applications. BioResources2009;4:1694–717.
  11. Baldrian P. Fungal laccases occurrence and properties. FEMS Microbiol Rev2006;30:215–42.
  12. RivaLaccases: blue enzymes for green chemistry. Trends Biotechnol2006;24:219–26.
  13. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192.
  14. Sharma P., Goel R., Capalash N. (2007) World J Microbiol Biotechnol 23:823–832.
  15. Huang XF, Santhanam N, Badri DV, Hunter WJ Manter DK, Decker SR, Vivanco JM and Reardon KF (2013) Isolation and Characterization of Lignin-Degrading Bacteria from Rainforest Soils, Biotechnol. Bioeng. 30: 30–40.
  16. Peter JK and Vandana P (2014) Congo red dye decolourization by partially purified laccases from Pseudomonas aeruginosa, Int.J.Curr.Microbiol.App.Sci, 3(9): 105-115.
  17. TD, Ahmad M, Hardiman EM and Singh R, 2011. The emerging role for bacteria in lignin degradation and bio-product formation.Cur. Opi. Biotechnol., 22(3):394-400.
  18. Diamantidis G, Effosse A, Potier P, et al. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 2000; 32: 919-27.
  19. Martins LO, Soares CM, Pereira MM, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem2002; 277: 18849-59.
  20. Suzuki T, Endo K, Ito M, et al. A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 2003; 67: 2167-75.
  21. Arias ME, Arenas M, Rodríguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolIc substrate by laccase from Streptomyces cyaneus CECT 3335. J Appl Environ Microbiol 2003; 69:1953-8.
  22. Jimenez-Juarez N, Roman-Miranda R, Baeza A, et al.Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol 2005; 117: 73-82.
  23. a) E. I. Solomon, U. M. Sundaram, T. E. Machonkin,Chem. Rev. 1996, 96, 2563 – 2606; b) R. Sterjiades, J. F. D. Dean, K-E. L. Eriksson, Plant Physiol. 1992, 99, 1162 – 1168; c) W. Bao, D. M. O Malley, R. Whetten. R. R. Sederoff, Science 1993, 260, 672 – 674; d) Y.Sato, B. Wuli, R. Sederoff, R. Whetten, J. Plant. Res. 2001, 114, 147 – 155; e) P. Ranocha, G. McDougall, S. Hawkins, R. Sterjiades, G. Borderies, D. Stewart, M. Cabanes-Macheteau, A. M. Boudet, D. Goffner, Eur. J. Biochem. 1999, 259, 485 – 495; f) P. R. LaFayette, KE. L. Eriksson, J. F. D. Dean, Plant. Mol. Biol. 1999, 40, 23 – 35; g) M.-C. Kiefer-Meyer, V. Gomord, A. O ConNell, C. Halpin, L. Faye, Gene 1996, 178, 205 – 207; h) B. Gavnholt, K. Larsen, S. K. Rasmussen, Plant Sci. 2002, 162, 873 – 885.
  24. A. Leonowicz, N. S. Cho, J. Luterek, A. Wilkolazka, M. Wojtas-Wasi-Lewska, A. Matuszewska, M. Hofrichter, D. Wesenberg, J. Rogalski, J. Basic Microbiol. 2001, 41, 185 – 227.
  25. C. F. Thurston, Microbiology 1994, 140, 19 – 26; b) P.Baldrian, FEMS Microbiol. Rev. 2006, 30, 215 – 242.
  26. P. Sharma, R. Goel, N. Capalash, World J. Microbiol. Biotechnol. 2007, 23, 823 – 832; b) H. Claus, Arch. Microbiol. 2003, 179, 145 – 150.
  27. K. J. Kramer, M. R. Kanost, T. L. Hopkins, H. Jiang, Y. C. Zhu, R. Xu, J. L. Kerwin, F. Turecek, Tetrahedron 2001, 57, 385 – 392.
  28. Colao MC, Lupino S, Garzillo AM, Buonocore V, Ruzzi M. Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Fact. 2006;5:31.
  29. Kunamneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem. 2008;43:169–78.
  30. Grassi E, Scodeller P, Filiel N, Carballo R, Levin L. Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeter Biodegr. 2011;65:635–43.
  31. Campos PA, Levin LN, Wirth SA. Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463. Process Biochem. 2016;51:895–903.
  32. Casas N, Parella T, Vicent T, Caminal G, Sarrà M. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere. 2009;75(10):1344–9.
  33. Darvishi F, Moradi M, Jolivalt C, Madzak C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotox Environ Safe. 2018;165:278–83.
  34. Wang B, Yan Y, Xu J, Fu X, Han H, Gao J, Li Z, Wang L, Tian Y, Peng R. Heterologous expression and characterization of a laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana. J Microbiol Biotechnol. 2018;28:2057–63.
  35. Iark D, dos Reis Buzzo AJ, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Moreira RFPM, Bracht A, Peralta RM. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresour Technol. 2019.
  36. Palazzolo MA, Postemsky PD, Kurina-Sanz M. From agro-waste to tool: biotechnological characterization and application of Ganoderma lucidum E47 laccase in dye decolorization. 3 Biotech. 2019;9(6):213.
  37. Simões MF, Maiorano AE, dos Santos JG, Peixoto L, de Souza RFB, Neto AO, Brito AG, Ottoni CA. Microbial fuel cell-induced production of fungal laccase to degrade the anthraquinone dye remazol brilliant blue R. Environ Chem Lett. 2019.
  38. Uribe-Alvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R. First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol. 2011;4:663–72.
  39. Acevedo F, Pizzul L, del Pilar Castillo M, Cuevas R, Diez MC. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater. 2011;185:212–9.
  40. Chiaiese P, Palomba F, Galante C, Esposito S, de Biasi MG, Filippone E. Transgenic tobacco plants expressing a fungal laccase are able to reduce phenol content from olive mill wastewaters. Int J Phytoremediat. 2012;14:835–44.
  41. Carabajal M, Perullini M, Jobbágy M, Ullrich R, Hofrichter M, Levin L. Removal of phenol by immobilization of Trametes versicolor in silica–alginate–fungus biocomposites and loofa sponge. CLEAN Soil Air Water. 2016;44:180–8.
  42. Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL. Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS ONE. 2016;11:e0147997.
  43. Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M. Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun. 2001;284:704–6.
  44. Saparrat MC, Jurado M, Díaz R, Romera IG, Martínez MJ. Transformation of the water soluble fraction from “alpeorujo” by Coriolopsis rigida: the role of laccase in the process and its impact on Azospirillum brasiliense survival. Chemosphere. 2010;78(1):72–6.
  45. Garcia LF, Lacerda MF, Thomaz DV, de Souza JC, Pereira M, de Souza G, Schimidt F, Santiago MF. Optimization of laccase-alginate-chitosan-based matrix toward 17 ?-ethinylestradiol removal. Prep Biochem Biotechnol. 2019;49:375–83.
  46. Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra R. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Cat B Enzym. 2014;108:32–42.
  47. Navada KK, Kulal A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int Biodeter Biodegr. 2019;138:63–9.
  48. Alharbi SK, Nghiem LD, van de Merwe JP, Leusch FD, Asif MB, Hai FI, Price WE. Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: transformation products and toxicity of treated effluent. Biocatal Biotransform. 2019.
  49. Pulicharla R, Das RK, Brar SK, Drogui P, Surampalli RY. Degradation kinetics of chlortetracycline in wastewater using ultrasonication assisted laccase. Chem Eng J. 2018;347:828–35.
  50. Golveia JCS, Santiago MF, Sales PTF, Sartoratto A, Ponezi AN, Thomaz DV, Gil ES, Bara MTF. Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-?-ethinylestradiol as a Pycnoporus sanguineus laccase inducer. Prep Biochem Biotechnol. 2018;48(6):541–8.
  51. Singh SK, Khajuria R, Kaur L. Biodegradation of ciprofloxacin by white rot fungus Pleurotus ostreatus. 3 Biotech. 2017;7(1):69.
  52. Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra R. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Cat B Enzym. 2014;108:32–42.
  53. Kuhad RC, Singh A, Eriksson KEL. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. In: Eriksson KEL, editor. Biotechnology in the Pulp and paper industry. Advances in biochemical engineering biotechnology. Berlin: Springer Verlag; 1997. Chapter 2.
  54. Felby C, Pedersen LS, Nielsen BR. Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung 1997;51:281–6.
  55. Lund M, Ragauskas AJ. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Appl Microbiol Biotechnol 2001;55:699–703.
  56. Chandra RP, Ragauskas AJ. Evaluating laccase-facilitated coupling of phenolic acids to high-yield kraft pulps. Enzyme Microb Technol 2002;30:855–61.
  57. Roure M, Delattre P, Froger H, (03.03.1992). Composition for an enzymic coloration of keratin fibres, especially for hair and its use in a dyeing process. Eur Pat Appl EP0504005.
  58. Aaslyng D, Rorbaek K, Sorensen NH, (29.11.1996). An ezyme for dyeing keratinous fibres. Int Pat Apl WO9719998.
  59. Lang G, Cotteret J, (22.07.1999). Hair dye composition containing laccase. (L’Oreal, Fr.). Int Pat Appl WO9936036.
  60. Golz-Berner K. Walzel B. Zastrow L. Doucet O. (04.03.2004).Cosmetic and dermatological preparation containing copper binding proteins for skin lightening. Int Pat Appl WO2004017931.
  61. Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 2006;43:152–9.
  62. Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol 2002;13:205–16.
  63. Xu F. Recent progress in laccase study: properties, enzimology, production and applications. In: Flickinger MC, Drew SW, editors. The encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. New York: John Wiley & Sons; 1999. P. 1545–54.
  64. Mai C, Majcherczyk A, Hütterman A. Chemo-enzymatic synthesis and characterization of graft copolymers from lignin and acrylic cmpounds. Enzyme Microb Technol 2000;27:167–75.
  65. Uyama H, Kobayashi S. Enzyme-catalyzed polymerization to functional polymers. J Mol Catal B Enzym 2002;19–20:117–27.
  66. Kurisawa M, Chung JE, Uyama H, Kobayashi S. Enzymatic synthesis and        antioxidant properties of poly(rutin). Biomacromolecules 2003;4:1394-9.
  67. Nicotra S, Cramarossa MR, Mucci A, Pagnoni UM, Riva S, Forti L. Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 2004;60:595–600.
  68. Semenov AN, Lomonosova IV, Berezin V, Titov I. Peroxidase and Laccase as catalysts for removal of phenylhydrazide protecting group under mild conditions. Biotechnol Bioeng 1993;42: 1137–41.
  69. Mustafa R, Muniglia L, Rovel B, Girardin M. Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydroorganic biphasic system. Food Res Int 2005;38:995­1000.
  70. Durán N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 2000;28:83–99.
  71. Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 2001;57:20–33.
  72. Nyanhongo GS, Rodríguez Couto, S, Gübitz GM. Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta Chemosphere In Press.
  73. Hammond PT, Whitesides GM. Formation of polymer microstructures by selective deposition of polyion multilayers using patterned self-assembled monolayers as a template. Macromolecules 1995;28:7569–71.
  74. Haghighi B, Gorton L, Ruzgas T, Jönsson LJ. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Anal Chim Acta 2003;487:3­14.
  75. Jarosz-Wilko?azka A, Ruzgas T, Gorton L. Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzyme Microb Technol 2004;35:238–41.
  76. Kuznetsov BA, Shumakovich GP, Koroleva OV, Yaropolov AI. On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosens Bioelectron 2001;16:73–84.
  77. Bauer CG, Kuhn A, Gajovic N, Skorobogatko O, Holt PJ, Bruce NC, et al. New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase. Fresenius’ J Anal Chem 1999;364:179–83.
  78. Lisdat F, Wollenberger U, Makower A, Hortnagl H, Pfeiffer D, Scheller FW. Catecholamine detection using enzymatic amplification. Biosens Bioelectron 1997;12:1199–211.
  79. Leite OD, Lupetti KO, Fatibello-Filho O, Vieira IC, de Barbosa AM. Synergic effect studies of the bi-enzymatic system laccase peroxidase in a voltammetric biosensor for catecholamines. Talanta 2003;59:889–96.
  80. Ferry Y, Leech D. Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode. Electroanalysis 2005;17:2113–9.
  81. Chen CS, Mrkisch M, Huang S, Whistesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 1998;14:356–63.
  82. Sigal GB, Mrksich M, Whitesides GM. Effect of surface wettability on the adsorption of proteins of proteins and detergents. J Am Chem Soc 1998;120:3464–73.
  83. Roy JJ, Abraham TE, Abhijith KS, Sujith kumar PV, Thakur MS. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosens Bioelectron 2005;21:206–11.
  84. Cabrita JF, Abrantes LM, Viana AS. N-Hydroxysuccinimide-terminated self-assembled monolayers on gold for biomolecules immobilisation. Electrochim Acta 2005;50:2117–24.
  85. Decher G. Fuzzy nanoassemblies: toward layered polymeric multi-composites. Science 1997;277:1232–7.
  86. Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel Hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed Engl 1998;37:2202–5.
  87. Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim H-H, et al. A miniature biofuel cell. J Am Chem Soc 2001;123:8630–1.
  88. Calabrese BS, Pickard M, Vazquez-Duhalt R, Heller A. Electroreduction of O2 to water at 0.6 V (NHE) at pH 7 on the ‘wired’ Pleurotus Ostreatus Laccase Cathode. Biosens Bioelectron 2002;17:1071–4.
  89. Toca-Herrera JL, Krastev R, Bosio V, Küpcü S, Pum D, Fery A, et al. Recrystallization of bacterial S-layers on flat polyelectrolyte surfaces and hollow polyelectrolyte capsules. Small 2005;1:339–48.
  90. Antipov A, Sukhorukov GB, Leporatti S, Radtchenko IL, Donath E, Möhwald H. Polyelectrolyte nultilayer capsule permeability control. Colloids Surf A Physicochem Eng Asp 2002;198-200:535–41.
  91. Fischlechner M, Zschörnig O, Hofmann J, Donath E. Engineering Virus functionalities on colloidal polyelectrolyte lipid composites. Angew Chem Int Ed Engl 2005;44:2892–5.
  92. Setti L, Giuliani S, Spinozzi G, Pifferi PG. Laccase catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol 1999;25:285–9.
  93. O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W. Colour in textile effluents — sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 1999;74:1009–18.
  94. Baughman GL, Perenich TA. Fate of dyes in aquatic systems: I Solubility and partitioning of some hydrophobic dyes and related compounds. Environ Toxicol Chem 1988;7:183–99.
  95. Cooper P. Removing colour from dye house wastewater. Asian Textile J 1995;3:52–6.
  96. Stephen JA. Electrooxidation of dyestuffs in waste waters. J Chem Technol Biotechnol 1995;62:11­117.
  97. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz G. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 2000;66: 3357–62.
  98. Blánquez P, Casas N, Font X, Gabarrell M, Sarrá M, Caminal G, et al. Mechanism of textile metal dye biotransformation by Trametes Versicolor. Water Res 2004;38:2166–72.
  99. Hou H, Zhou J, Wang J, Du C, Yan B. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 2004;39:1415–9.
  100. Rodríguez Couto S, Sanromán MA. Coconut flesh: a novel raw mterial for laccase production by Trametes hirsuta under solid-state conditions. Application to Lissamine Green B decolourization. J Food Eng 2005;71:208–13.
  101. Riu J, Schönsee I, Barcelo D. Determination of sulfonated azo dyes in groundwater and industrial effluents by automated solid-phase extraction followed by capillary electrophoresis/mass spectrometry. J Mass Spectrom 1998;33:653–63.
  102. Mishra G, Tripathy M. A critical review of the treatments for decolourization of textile effluent. Colourage 1993;40:35–8.
  103. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 1996;58:217–27.
  104. Juang RS, Tseng RL, Wu FC, Lin SJ. Use of chitin and chitosan in lobster shell wastes for colour removal from aqueous solutions. J Environ Sci Health Part A Environ Sci Eng 1996;31: 325–38.
  105. Zollinger H. Synthesis, properties and applications of organic dyes and pigments. Colour chemistry. New York: John Wiley-VCH Publishers; 2002:92­100.
  106. Meyer U. Biodegradation of synthetic organic colorants. Microbial degradation of xenobiotic and recalcitrant compounds. FEMS Symposium, Vol. 12. London: Academic Press; 1981. P. 371–85.
  107. Poots VJP, McKay JJ. The removal of acid dye from effluent using natural adsorbents — I Peat. Water Res 1976;10:1061–6.
  108. McKay G. Waste colour removal from textile effluents. Am Dyest Report 1979;68:29–36.

Photo
Ankita Yadav
Corresponding author

Bhagwan Mahavir College of Basic and applied Science, Nr. VIP Road, Bharthana-Vesu, Surat

Photo
Dhvani Goti
Co-author

Bhagwan Mahavir College of Basic and applied Science, Nr. VIP Road, Bharthana-Vesu, Surat

Ankita Yadav*, Dhvani Goti, Study of Laccase Producing Microorganisms and Their Applications, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 5, 236-247. https://doi.org/10.5281/zenodo.7949407

More related articles
Comparative Study Of Vildagliptin Branded And Gene...
Shivani S. Pangarekar, Tanaya S. Pawar, Sakshi S. Rashinkar, Gane...
Comprehensive Review On Pharmacological Activities...
Chaithra K., Pallavi S., Preethu K., Rakshitha S., Sadaf Farooq, ...
Study Of Nutritional Status And Haematological Cha...
Janvi Kachhia, Amee Upadhyay, Saraswati Thapa, ...
A Study on Anti-Inflammatory Activity of Leaves Extract Of Allium Sativum ...
Shital Darekar, Vaishali Bhagwat, Shweta Navale, Sakshi Bhosale, Akanksha Makade, ...
Formulation And Evaluation Of Capsule Of Nifedipine By Liquisolid Compact ...
Bhagyashri S. Jadhav, Dnyanda H. Kangude , Awantika N. Kale, S.D. Mankar, ...
Related Articles
Role Of Computer Aided Drug Design In Modern Drug Discovery...
Kiran kumari, Muskan Thakur, Sahil Dhiman, Shubham Dhiman, ...
Formulation and Characterization of an Advanced Mouth Dissolving Drug Delivery S...
Nikita M. Wakchaware, Akshay B. Ghanmode, Vanshika K. Sahu, Mayuri S. Pawar, Ashwini V. Aswar, Vaish...
Comparative Study Of Vildagliptin Branded And Generic Marketed Antidiabetics Tab...
Shivani S. Pangarekar, Tanaya S. Pawar, Sakshi S. Rashinkar, Ganesh V. Taware, ...
More related articles
Comparative Study Of Vildagliptin Branded And Generic Marketed Antidiabetics Tab...
Shivani S. Pangarekar, Tanaya S. Pawar, Sakshi S. Rashinkar, Ganesh V. Taware, ...
Comprehensive Review On Pharmacological Activities Of Thespesia Populnea Soland ...
Chaithra K., Pallavi S., Preethu K., Rakshitha S., Sadaf Farooq, Sahana H. S., ...
Comparative Study Of Vildagliptin Branded And Generic Marketed Antidiabetics Tab...
Shivani S. Pangarekar, Tanaya S. Pawar, Sakshi S. Rashinkar, Ganesh V. Taware, ...
Comprehensive Review On Pharmacological Activities Of Thespesia Populnea Soland ...
Chaithra K., Pallavi S., Preethu K., Rakshitha S., Sadaf Farooq, Sahana H. S., ...