View Article

Abstract

Red Blood Cells (RBCs)-derived particles are an emerging group of novel drug delivery systems. The natural attributes of RBCs make them potential candidates for use as a drug carrier or nanoparticle camouflaging material as they are innately biocompatible. RBCs have been studied for multiple decades in drug delivery applications but their evolution in the clinical arena are considerably slower. They have been garnering attention for the unique capability of conserving their membrane proteins post fabrication that help them to stay non-immunogenic in the biological environment prolonging their circulation time and improving therapeutic efficiency. In this review, we discuss about the synthesis, significance, and various biomedical applications of the above-mentioned classes of engineered RBCs. This article is focused on the current state of clinical translation and the analysis of the hindrances associated with the transition from lab to clinic applications.

Keywords

red blood cells, erythrocytes, nanoerythrosomes, drug delivery systems, nanovesicles

Reference

  1. Agrawal, V., Hee WooWoo, J., Borthakur, G., Kantarjian, H., and E. Frankel, A. (2013). Red Blood Cell-Encapsulated L-Asparaginase: Potential Therapy of Patients with Asparagine Synthetase Deficient Acute Myeloid Leukemia. Ppl 20 (4), 392–402. doi:10.2174/0929866511320040003.
  2. Antonelli, A., Sfara, C., Weber, O., Pison, U., Manuali, E., Salamida, S., et al. (2016). Characterization of Ferucarbotran-Loaded RBCs as Long Circulating Magnetic Contrast Agents. Nanomedicine 11 (21), 2781–2795. doi:10.2217/nnm-2016-0216.
  3. Jain, S., Jain, S. K., and Dixit, V. K. (1997). Magnetically Guided Rat Erythrocytes Bearing Isoniazid: Preparation, Characterization, and Evaluation. Drug Dev. Ind. Pharm. 23, 999–1006. doi:10.3109/03639049709149153.
  4. Jiang, A., Song, B., Ji, X., Peng, F., Wang, H., Su, Y., et al. (2018). Doxorubicin-Loaded Silicon Nanoparticles Impregnated into Red Blood Cells Featuring Bright Fluorescence, Strong Photostability, and Lengthened Blood Residency. Nano Res. 11 (4), 2285–2294. doi:10.1007/ s12274-017-1850-6.
  5. Kriebardis, A. G., Antonelou, M. H., Stamoulis, K. E., Economou-Petersen, E., Margaritis, L. H., and Papassideri, I. S. (2008). RBC-derived Vesicles during Storage: Ultrastructure, Protein Composition, Oxidation, and Signaling Components. Transfusion 48 (9), 1943–1953. doi:10.1111/j.1537-2995.2008. 01794.x.
  6. Li, C., Yang, X.-Q., An, J., Cheng, K., Hou, X.-L., Zhang, X.-S., et al. (2020a). Red Blood Cell Membrane-Enveloped O2 Self-Supplementing Biomimetic Nanoparticles for Tumor Imaging- Guided Enhanced Sonodynamic Therapy. Theranostics 10 (2), 867–879. doi:10.7150/thno.37930.
  7. Li, H., Peng, Q., Yang, L., Lin, Y., Chen, S., Qin, Y., et al. (2020b). HighPerformance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods. ACS Appl. Mater. Inter. 12 (52), 57732–57745. doi:10.1021/acsami.0c18287.
  8. Li, Y.-J., Wu, J.-Y., Liu, J., Qiu, X., Xu, W., Tang, T., et al. (2021). From Blood to Brain: Blood Cell-Based Biomimetic Drug Delivery Systems. Drug Deliv. 28 (1), 1214–1225. doi:10.1080/10717544.2021.1937384.
  9. Liu, T., Shi, C., Duan, L., Zhang, Z., Luo, L., Goel, S., et al. (2018). A Highly Hemocompatible Erythrocyte Membrane-Coated Ultrasmall Selenium Nanosystem for Simultaneous Cancer Radiosensitization and Precise Antiangiogenesis. J. Mater. Chem. B 6 (29), 4756–4764. doi:10.1039/ c8tb01398e.
  10. Magnani, M., Balestra, E., Fraternale, A., Aquaro, S., Paiardini, M., Cervasi, B., et al. (2003). Drug-Loaded Red Blood Cell-Mediated Clearance of HIV-1 Macrophage Reservoir by Selective Inhibition of STAT1 Expression. J. Leukoc. Biol. 74 (5), 764–771. doi:10.1189/jlb.0403156.
  11. Malhotra, S., Dumoga, S., and Singh, N. (2022). Red Blood Cells Membrane-derived Nanoparticles: Applications and Key Challenges in Their Clinical Translation. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1776.
  12. Malhotra, S., Dumoga, S., Sirohi, P., and Singh, N. (2019). Red Blood Cells-Derived Vesicles for Delivery of Lipophilic Drug Camptothecin. ACS Appl. Mater. Inter. 11 (25), 22141–22151. doi:10.1021/acsami.9B04827.
  13. Matos, B., Martins, M., Samamed, A. C., Sousa, D., FerreiraDiniz, I., and Diniz, M. S. (2020). Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish (Danio Rerio). Ijerph 17 (1), 232. doi:10.3390/ ijerph17010232.
  14. Mohanty, J. G., Nagababu, E., and Rifkind, J. M. (2014). Red Blood Cell Oxidative Stress Impairs Oxygen Delivery and Induces Red Blood Cell Aging. Front. Physiol. 5, 84. doi:10.3389/fphys.2014.00084.
  15. Nash, G. B., and Meiselman, H. J. (1983). Red Cell and Ghost Viscoelasticity. Effects of Hemoglobin Concentration and In Vivo Aging. Biophysical J. 43 (1), 63–73. doi:10.1016/S0006- 3495(83)84324-0.
  16. Piao, J.-G., Wang, L., Gao, F., You, Y.-Z., Xiong, Y., and Yang, L. (2014). Erythrocyte Membrane Is an Alternative Coating to Polyethylene Glycol for Prolonging the Circulation Lifetime of Gold Nanocages for Photothermal Therapy. ACS Nano 8 (10), 10414–10425. doi:10.1021/nn503779d.
  17. Pierigè, F., Serafini, S., Rossi, L., and Magnani, M. (2008). Cell-Based Drug Delivery. Adv. Drug Deliv. Rev. 60 (2), 286–295. doi:10.1016/J.ADDR.2007. 08.029.
  18. Rao, L., Cai, B., Bu, L.-L., Liao, Q.-Q., Guo, S.-S., ZhaoZhao, X.-Z., et al. (2017). Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte MembraneCoated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano 11 (4), 3496–3505. doi:10.1021/acsnano.7b00133.
  19. Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D. S., and van Hest, J. C. M. (2018). Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano 12 (5), 4877–4885. doi:10.1021/acsnano. 8B01772.
  20. Shi, X., Zhang, Y., Tian, Y., Xu, S., Ren, E., Bai, S., et al. (2021). Multi-Responsive Bottlebrush-Like Unimolecules Self-Assembled Nano-Riceball for Synergistic Sono- Chemotherapy. Small Methods 5 (3), 2000416. doi:10.1002/smtd. 202000416.

Photo
Daphne sherine
Corresponding author

P. S. V. College of Pharmaceutical Science and Research. Krishnagiri, Pincode: 635108

Photo
Dr. Ravichandran
Co-author

P. S. V. College of Pharmaceutical Science and Research. Krishnagiri, Pincode: 635108

Photo
Sukesh kumar B.
Co-author

P. S. V. College of Pharmaceutical Science and Research. Krishnagiri, Pincode: 635108

Photo
Abjel A.
Co-author

P. S. V. College of Pharmaceutical Science and Research. Krishnagiri, Pincode: 635108

Photo
Gopi S.
Co-author

P. S. V. College of Pharmaceutical Science and Research. Krishnagiri, Pincode: 635108

Daphne Sherine*, Dr. Ravichandran, Sukesh Kumar B., Abjel A., Gopi S., Red Blood Cell Membrane Camouflaged Nano Particles, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 11, 458-472. https://doi.org/10.5281/zenodo.10204647

More related articles
A Review on Various Analytical Methodologies for B...
Vikas R. Patil, Vinay V. Sarode, Samir B. Tadvi, Bhushan P. Patil...
Comparative Analysis Of Blood Glucose Level By Usi...
Amee G. Upadhyay, Janvi Kachhia, Saraswati Thapa, Jignasa Mansuri...
Silver Nanoparticles Of Tetrahydrocurcumin Attenua...
Manivasagam Thamilarasan, Aruna D. Selvaraj, Justin T. Arokiasamy...
Cyclodextrin Based Nanosponges: A Novel Approach For Targeted Drug Delivery...
Kanika, Chinu Kumari, Dev Prakash Dahiya, Nikhil Rana, Rahul Sharma, Abhilash Rai, Abhishek Soni, ...
Floating Drug Delivery System: A Review...
Shaikh Amaan Zahid, Quazi Majaz, Rehan Deshmukh, Shaikh Imran, G. J. Khan, Mansoori Safwan Salim, ...
Related Articles
A Review on Nanorobotics...
Vivek MC, Madhumitha R., Meenaloshini B., Santhanavel M., Dinesh P., Riyaz Ahamed B., Aravinth T., N...
Nanostructured Lipid Carrier:A Review...
Kandalkar Shradha Ganpat , Choursiya Kajal A, Saba Shaikh , Pradnya Gangurde , Sheetal B.Gondkar, Ri...
Sublingual Dosage Form...
Namrata S. Revar, Samruddhi B. Sawant, Sanjeevani D. Rupwate, ...
A Review On Nanotechnology In Herbal Medicine...
Vaibhav Narwade , Madhuri D. Game, Sanket G. Kadam, ...
A Review on Various Analytical Methodologies for Buspirone...
Vikas R. Patil, Vinay V. Sarode, Samir B. Tadvi, Bhushan P. Patil, Vaishali Badgujar, ...
More related articles
A Review on Various Analytical Methodologies for Buspirone...
Vikas R. Patil, Vinay V. Sarode, Samir B. Tadvi, Bhushan P. Patil, Vaishali Badgujar, ...
Comparative Analysis Of Blood Glucose Level By Using A Semi-Auto Analyser And Gl...
Amee G. Upadhyay, Janvi Kachhia, Saraswati Thapa, Jignasa Mansuriya, ...
Silver Nanoparticles Of Tetrahydrocurcumin Attenuate The Oxidative Stress And Mi...
Manivasagam Thamilarasan, Aruna D. Selvaraj, Justin T. Arokiasamy, Gomathi Balavinayagam, ...
A Review on Various Analytical Methodologies for Buspirone...
Vikas R. Patil, Vinay V. Sarode, Samir B. Tadvi, Bhushan P. Patil, Vaishali Badgujar, ...
Comparative Analysis Of Blood Glucose Level By Using A Semi-Auto Analyser And Gl...
Amee G. Upadhyay, Janvi Kachhia, Saraswati Thapa, Jignasa Mansuriya, ...
Silver Nanoparticles Of Tetrahydrocurcumin Attenuate The Oxidative Stress And Mi...
Manivasagam Thamilarasan, Aruna D. Selvaraj, Justin T. Arokiasamy, Gomathi Balavinayagam, ...