Department Of Pharmacy, Late Bhagirathi Yashwantrao Pathrikar College Of Pharmacy ,Pathri, Ch. Sambhajinagar, Maharashtra, India.
Liposomes are composed of phospholipids and lipids, forming spherical or multilayered vesicles with a lipid bilayer structure in aqueous solutions due to self-assembly of diacyl chain phospholipids. The number of bilayers and the size of vesicles influence the amount of drug encapsulation in liposomes, a crucial factor in determining their circulation half-life. This method involves coating a medication and a lipid onto a soluble carrier to create a pro-liposome, which is free-flowing and granular. When hydrated, it forms an isotonic liposomal solution. This pro-liposome approach serves as a motivation for large-scale production of liposomes containing lipophilic medications at a low cost. These systems have unique properties, including increased drug solubility (as seen with amphotericin B), protection of molecules like DNA and RNA, enhanced intracellular uptake (especially for anticancer drugs), acting as a drug depot, and enhancing drug stability. Liposomes have been successfully utilized for the delivery of various drug categories such as anti-viral, anti-cancer, anti-inflammatory, antibiotics, and anti-fungal agents. Additionally, there have been efforts in the development and characterization of liposomal drug delivery systems, for instance, liposomes containing brimonidine tartrate for ocular applications. These advancements signify the transition of liposomes from a clinically established drug delivery system to a versatile nanoparticle platform for theragnostic nanomedicine
Ayush S. Jaiswal *, Rekha Gaukande, Gajanan Sanap, A Review on Liposomes As Drug Delivery System, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 12, 926-936. https://doi.org/10.5281/zenodo.10442217