View Article

  • Unwinding the Epigenetic Alterations in Progression to Nasopharyngeal Carcinoma

  • 1 Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 452020 
    2 Department of Biochemistry, Vidyasagar University, West Bengal 721102
     

Abstract

Nasopharyngeal carcinoma (NPC) is a malignancy of the epithelial lining of the nasopharynx, characterized by a complex interplay between genetic predispositions, viral infections—particularly Epstein–Barr virus (EBV)—and epigenetic dysregulation. Recent advances have illuminated the pivotal role of epigenetic alterations, including DNA methylation, histone modification, and non-coding RNA-mediated regulation, in tumor initiation, progression, and therapy resistance. Aberrant promoter hypermethylation silences key tumor suppressor genes, while histone acetylation imbalance and chromatin remodeling anomalies promote oncogenic transcriptional programs. In addition, dysregulated microRNAs and long non-coding RNAs contribute to altered gene expression networks that exacerbate NPC pathogenesis. This review integrates current evidence from 2021 to 2025, emphasizing how epigenetic mechanisms intersect with viral oncogenesis, immune evasion, and tumor microenvironmental remodeling. Finally, emerging diagnostic biomarkers and novel epigenetic therapies—such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and CRISPR-based epigenome editing—are discussed as promising avenues for improved patient management in NPC.

Keywords

Nasopharyngeal carcinoma, epigenetics, DNA methylation, histone modification, non-coding RNA, EBV, biomarkers, therapeutic targets

Introduction

With notable regional and ethnic differences, nasopharyngeal carcinoma (NPC) is a unique form of head and neck cancer that is most common in Southeast Asia, North Africa, and Southern China (Chen et al., 2022). Due to recurrence, metastasis, and therapeutic resistance, NPC continues to be a significant cause of cancer-related death despite advancements in radiotherapy and chemoradiation (Huang et al., 2023). NPC has a complex etiology that includes genetic vulnerability, EBV infection, and environmental variables such as smoking and nitrosamine exposure (Lee et al., 2024). Epigenetic dysregulation has become a key factor in the development and spread of NPCs in recent years.

Heritable modifications in gene expression that occur without changes in the DNA sequence are referred to as epigenetics. These include non-coding RNA regulation, DNA methylation, and histone modifications, all of which work together to control transcriptional activity and chromatin structure (Zhou et al., 2023). Epigenetic changes are dynamic and reversible, making them appealing targets for precision oncology, in contrast to permanent genetic mutations.

1.1. EBV infection and epigenetic reprogramming

The common gammaherpesvirus EBV causes latent infection in B cells and epithelial cells. Since EBV latent genes, such as LMP1, LMP2A, and EBNA1, modify the host epigenome to favor oncogenesis, their link with NPC is well-established (Chan et al., 2022). Pro-survival and immune-evasive pathways are activated while tumour suppressors such as RASSF1A, CDH1, and PTEN are silenced by EBV-driven methylation (Feng et al., 2023). Oncogenic signals are amplified by viral microRNAs, particularly miR-BARTs, which alter host non-coding RNAs and chromatin regulators (Li et al., 2024).

1.2. Epigenetic landscape in NPC

In comparison to normal nasopharyngeal tissue, the NPC genome exhibits extensive promoter hypermethylation and altered histone modification patterns, as revealed by high-throughput omics investigations (Zhang et al., 2023). Anti-metastatic genes are often silenced by increased DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) (Sun et al., 2025). Similarly, transcriptional repression and chromatin compaction are mediated by histone methyltransferases like EZH2 and histone deacetylases like HDAC1/2 (Tang et al., 2022)

In NPC, epigenetic markers have demonstrated promise for early diagnosis, prognosis, and therapeutic targeting. Early-stage NPC can be detected with great sensitivity using plasma-based methylation profiles (Wu et al., 2023). Additionally, by preserving cancer stem-like phenotypes and the epithelial–mesenchymal transition (EMT), epigenetic reprogramming supports chemoresistance and radio resistance (Ng et al., 2024). Therefore, comprehending epigenetic pathways offers a way to overcome treatment failure and enhance results. 

Without altering the underlying DNA sequence, epigenetic mechanisms control gene expression by chemically and structurally altering chromatin. In the case of nasopharyngeal carcinoma (NPC), these mechanisms enable cells to respond dynamically to environmental and viral signals, leading to malignant transformation, progression, and metastasis (Liu et al., 2023). DNA methylation, histone modifications, and non-coding RNA-mediated regulation are the three primary types of epigenetic regulation associated with NPC.

2.1 DNA Methylation

2.1.1 Aberrant promoter hypermethylation

DNA methyltransferases (DNMTs) catalyze DNA methylation, which primarily occurs at the 5-position of cytosine residues within CpG dinucleotides. Methylation silences repetitive regions and preserves genomic integrity in healthy epithelial cells. However, promoter hypermethylation causes tumour suppressor genes to be transcriptionally silenced in NPC (Zhang et al., 2022). RASSF1A, CDH1, PTEN, and p16INK4a are notable examples of genes whose methylation is correlated with tumour grade and metastasis (Chen et al., 2023; Feng et al., 2024).

When compared to nearby normal mucosa, NPC tissues exhibit significant CpG island hypermethylation, as determined by genome-wide methylation investigations (Tang et al., 2022). Cell cycle regulation, apoptosis, DNA repair, and immunological modulation are all impacted by this epigenetic silencing. For example, CDH1 hypermethylation promotes invasiveness and the epithelial–mesenchymal transition (EMT) by compromising epithelial integrity (Huang et al., 2025).

2.1.2 Global hypomethylation and chromosomal instability

Global hypomethylation of intergenic regions and repetitive sequences, as opposed to promoter hypermethylation, causes chromosomal instability and oncogene activation (Li et al., 2024). Gene regulation is further disrupted by hypomethylation at LINE-1 and ALU sequences, which further promotes genomic instability and activates transposable elements (Ng et al., 2023).2.1.3 EBV-induced methylation remodeling

The host methylome is significantly impacted by Epstein-Barr virus (EBV) infection. Tumour suppressors become hypermethylated when viral latent proteins, including LMP1 and EBNA1, stimulate the production of DNMT1 and DNMT3B (Chan et al., 2022). To maintain the hypermethylated condition, EBV microRNAs (miR-BARTs) also target host demethylases, such as TET2 (Wong et al., 2024). This virus-induced epigenetic reprogramming promotes neoplastic transformation and strengthens immune evasion.

2.2 Histone Modifications

Acetylation, methylation, phosphorylation, ubiquitination, and sumoylation are among the post-translational modifications that histone proteins undergo, affecting gene transcription and chromatin accessibility (Lee et al., 2023). One of the main characteristics of NPC pathogenesis is dysregulation of histone modifiers.

2.2.1 Histone acetylation and deacetylation imbalance

While histone deacetylases (HDACs) remove acetyl groups, resulting in gene silencing, histone acetyltransferases (HATs) acetylate histone lysine residues to promote an open chromatin conformation and active transcription. Overexpression of HDAC1, HDAC2, and HDAC8 in NPC is associated with increased metastatic potential and a poor prognosis (Sun et al., 2024). While HDAC inhibitors (HDACi) like vorinostat and panobinostat have demonstrated encouraging anti-tumor effectiveness in preclinical models, HDAC overactivity suppresses pro-apoptotic genes and promotes EMT (Ng et al., 2022).

2.2.2 Histone methylation and chromatin compaction

Chromatin structure is dynamically regulated by histone methyltransferases (HMTs) and demethylases. Histone H3 lysine 27 (H3K27me3) is trimethylated by the enhancer of zeste homolog 2 (EZH2), a catalytic component of Polycomb Repressive Complex 2 (PRC2), which promotes transcriptional silencing. Radioresistance, advanced stage, and decreased survival are associated with EZH2 overexpression in NPC (Fang et al., 2023). Tumour suppressor expression is restored and cells become more susceptible to chemotherapy when EZH2 is inhibited (Li et al., 2023).

Similar to this, two other methyltransferases, SETD2 and G9a, control H3K36 and H3K9 methylation, respectively, which support DNA damage response and transcriptional repression (Wang et al., 2024). By interfering with normal histone methylation dynamics, aberrant histone demethylases, such as KDM6A/B, also exhibit carcinogenic effects (Zhou et al., 2025).

2.3 Non-coding RNAs (ncRNAs)

In NPC, non-coding RNAs, including long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), are important regulators of gene expression and epigenetic apparatus (Jiang et al., 2023).

2.3.1 MicroRNAs and NPC progression

MicroRNAs control mRNA stability and translation; dysregulated miRNAs in NPC function as tumour suppressors or oncogenes. For instance, the downregulation of miR-34c and miR-203, which are epigenetically silenced through promoter methylation, activates the PI3K/AKT pathway and EMT (Feng et al., 2023). Conversely, EBV-derived miR-BART9 targets E-cadherin and PTEN, thereby increasing migration and invasion (Li et al., 2024).

2.3.2 Long non-coding RNAs and chromatin remodeling

By interacting with PRC2 and DNMT complexes, lncRNAs such as MALAT1, HOTAIR, and NEAT1 regulate chromatin remodelling (Tang et al., 2023). In NPC, MALAT1 overexpression enhances EZH2 recruitment to the E-cadherin promoter, thereby suppressing transcription and promoting metastasis (Wu et al., 2023). Chemosensitivity is restored and epigenetic silencing is reversed when these long non-coding RNAs (lncRNAs) are knocked down (Zhang et al., 2024).

3. Interplay Between Epigenetics, Viral Oncogenesis, and Tumor Microenvironment in NPC

Epigenetic dysregulation, Epstein-Barr virus (EBV) infection, and the tumour microenvironment (TME) interact dynamically to significantly impact the onset and development of nasopharyngeal carcinoma (NPC). In addition to promoting EBV-mediated oncogenesis, epigenetic remodelling influences the immune system, stromal relationships, and angiogenic capacity of NPC cells (Wong et al., 2023). Clarifying the pathophysiology of diseases and discovering novel therapeutic targets require an understanding of this cross-talk.

3.1 EBV Oncogenes and Host Epigenetic Reprogramming

A defining etiological agent of NPC, EBV manipulates the host epigenome to promote neoplastic transformation while remaining in a latent state inside epithelial cells (Chan et al., 2022). A limited group of latent genes, including LMP1, LMP2A, EBNA1, and EBV-encoded RNAs (EBERs), is expressed by the viral genome and works together to coordinate host epigenetic remodelling (Li et al., 2023).

3.1.1 LMP1-driven methylation

As a viral oncoprotein, latent membrane protein 1 (LMP1) activates the NF-κB and STAT3 pathways by imitating constitutively active CD40 signalling (Huang et al., 2024). Through STAT3 activation, LMP1 increases DNMT1 expression, which causes extensive promoter hypermethylation of tumour suppressor genes such as CDH1 and p16INK4a (Sun et al., 2023), thereby driving the path towards excessive cellular proliferation and immune evasion.

3.1.2 EBNA1 and chromatin remodeling

To maintain the viral genome, EBNA1 interacts with host chromatin modifiers, including PRMT1 and USP7, thereby altering the patterns of histone acetylation and methylation (Ng et al., 2024). These enzymes are recruited by EBNA1, which causes pro-apoptotic genes to be epigenetically silenced, allowing tumour cells to survive under stress.

3.1.3 EBV microRNAs (miR-BARTs)

Both viral and host gene expression are controlled by EBV-encoded microRNAs (miR-BART family) (Feng et al., 2024). These miRNAs reinforce the oncogenic epigenetic landscape by targeting epigenetic regulators, such as DNMT3B and HDAC4, and suppressing immune-related genes, including MICB and CXCL11 (Zhou et al., 2025). For example, therapeutic resistance results from the inhibition of tumour suppressor PTEN and the enhancement of AKT pathway activation by miR-BART9 and miR-BART5 (Jiang et al., 2023).

3.2 Epigenetic Regulation of the Immune Microenvironment

EBV persistence and persistent inflammation influence the immunological microenvironment of NPC. Tumour and immune cell epigenetic changes affect T-cell infiltration, cytokine signalling, and antigen presentation (Lee et al., 2023).

3.2.1 DNA methylation-mediated immune evasion

Immunological-regulatory genes, such as HLA class I/II, ICAM1, and CXCL14, are often hypermethylated in NPC cells, which reduces antigen presentation and immunological recognition (Fang et al., 2023). This effect is enhanced by EBV infection, which suppresses immune surveillance by increasing DNMT activity (Ng et al., 2024). Additionally, methylation of PD-L1 regulatory regions contributes to T-cell exhaustion by indirectly increasing its expression through the silencing of transcriptional repressors (Li et al., 2024).

3.2.2 Histone modifications and immune signaling

Within the TME, histone acetylation affects macrophage polarization and cytokine expression. When HDACs are overexpressed in NPC cells, less IL-12 and IFN-γ are produced, resulting in lower antitumor immunity (Sun et al., 2025). HDAC inhibitors, on the other hand, promote the recruitment of cytotoxic T cells by restoring immunological gene expression (Wang et al., 2023).

3.2.3 Non-coding RNAs and immune modulation

By modifying chromatin accessibility, lncRNAs such as HOTAIR and NEAT1 regulate the expression of immunological checkpoints and cytokine signaling (Zhang et al., 2024). For example, HOTAIR utilizes PRC2 to inhibit T-cell infiltration by silencing the expression of CXCL9 and CXCL10 (Wu et al., 2023). EBV-derived miR-BARTs decrease antiviral responses by further suppressing innate immunity sensors such as TLR3 and RIG-I (Feng et al., 2024).

3.3 Tumor Microenvironment (TME) and Stromal Interactions

Fibroblasts, endothelial cells, immune cells, and extracellular matrix (ECM) components make up the TME in NPC. The epigenetic remodelling of these cells creates an environment conducive to tumour growth (Jiang et al., 2024).

3.3.1 Cancer-associated fibroblasts (CAFs)

Fibroblast growth factor (FGF) and transforming growth factor-β (TGF-β) pathways are epigenetically activated by CAFs, which increases ECM deposition and tumour invasion (Tang et al., 2023). In CAFs, hypermethylation of SOCS1 and PTEN stimulates tumor-stroma crosstalk and cytokine production (Lee et al., 2025). In co-culture investigations, HDAC inhibitors have been shown to reverse these pro-tumorigenic characteristics of fibroblasts (Ng et al., 2023).

3.3.2 Hypoxia-induced epigenetic alterations

One characteristic that distinguishes the NPC microenvironment is hypoxia. Glycolytic and angiogenic genes are activated when hypoxia-inducible factor 1-alpha (HIF-1α) interacts with chromatin modifiers such as KDM3A and JMJD1A to demethylate H3K9me2 (Wong et al., 2025). According to Zhou et al. (2024), this metabolic reprogramming increases resistance to chemotherapy and radiation.

3.3.3 Epigenetic remodeling of endothelial and immune stromal cells

Anti-angiogenic gene promoter hypermethylation and VEGF signalling activation are seen in NPC endothelial cells (Sun et al., 2023). Immune responses are further skewed toward immunosuppression by the epigenetic modulation of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) (Li et al., 2024). Together, these changes produce an ecosystem driven by epigenetics that promotes tumour growth.

4. Epigenetic Biomarkers for Diagnosis, Prognosis, and Therapeutic Response in NPC

In nasopharyngeal cancer (NPC), epigenetic markers have become valuable tools for early detection, prognostic prediction, and treatment monitoring. Because epigenetic modifications are dynamic and reversible, they provide real-time information on the disease state and the effectiveness of treatment. Precise mapping of epigenetic signatures in patient samples has been made possible by recent high-throughput technologies, including bisulfite sequencing, ChIP-seq, and RNA-seq (Zhang et al., 2023). Recent developments (2021–2025) in the identification of DNA methylation, histone modification, and non-coding RNA biomarkers linked to NPC diagnosis and prognosis are covered in this section.

4.1 DNA Methylation Biomarkers

4.1.1 Promoter methylation as an early diagnostic marker

Tumor tissue, saliva, and plasma DNA can all exhibit aberrant promoter hypermethylation of tumor suppressor genes, offering a minimally invasive biomarker source (Feng et al., 2023). For instance, plasma samples from individuals with early-stage NPC have consistently shown methylation of RASSF1A, CDH1, and DAPK1 (Li et al., 2023). The sensitivity and specificity of the RASSF1A methylation quantitative methylation-specific PCR (qMSP) study were above 90% for NPC detection (Ng et al., 2024).

4.1.2 Cell-free DNA (cfDNA) methylation profiling

NPC screening and surveillance have been revolutionized by the use of circulating cfDNA methylation analysis (Wong et al., 2024). Using cfDNA, genome-wide methylome analysis identified unique methylation signatures that differentiate NPC patients from healthy controls (Sun et al., 2023). Even in EBV-negative NPC cases, plasma-based methylation panels containing WIF1, RASSF1A, and TP73 promoters showed significant diagnostic utility (Zhou et al., 2025).

4.1.3 Prognostic methylation patterns

Survival rates and illness recurrence are correlated with specific methylation markers. Advanced tumour stage, lymph node metastases, and a poor prognosis are linked to hypermethylation of MGMT, P16INK4a, and PTEN (Fang et al., 2024). On the other hand, favourable treatment response is indicated by demethylation of GSTP1 and SOCS3 during therapy (Huang et al., 2025). Integrative methylation risk scores (MRS), which combine multiple CpG sites, have been developed to predict patient outcomes (Lee et al., 2024).

4.2 Histone Modification Signatures

4.2.1 Chromatin accessibility and gene activation markers
In NPC, patterns of histone acetylation and methylation have a significant impact on gene expression. NPC tissues exhibit elevated levels of H3K27ac (an active enhancer mark) and H3K4me3 (an active promoter mark) in key oncogenes, such as MYC and CCND1 (Tang et al., 2023). The global loss of H3K9me3 and H4K20me3 has been linked to tumour dedifferentiation and metastasis, as determined by ChIP-seq-based profiling (Zhang et al., 2024).

4.2.2 Histone modifiers as predictive biomarkers

Therapy resistance and survival are associated with the expression levels of histone-modifying enzymes, specifically EZH2, HDAC1, and KDM6A (Ng et al., 2023). Reduced radiosensitivity and increased recurrence rates are associated with overexpression of EZH2 and HDAC1 (Jiang et al., 2023). Patient response to combined chemotherapy and radiation therapy can be predicted by tracking these enzyme expression levels using transcriptome profiling or immunohistochemistry (Li et al., 2024).

4.3 Non-Coding RNA Biomarkers

4.3.1 Circulating microRNAs (miRNAs)

MicroRNAs are appealing non-invasive indicators since they are persistent in plasma and exosomes. In NPC, several miRNAs, including miR-21, miR-155, and miR-BART7, have been shown to have diagnostic and prognostic value (Wu et al., 2023). Tumour burden is correlated with elevated plasma miR-BART7-3p levels, which are suggestive of EBV-positive NPC (Chan et al., 2023). Recurrence and treatment resistance are associated with the downregulation of miR-34c and miR-203 (Huang et al., 2024).

4.3.2 Long non-coding RNAs (lncRNAs)

LncRNAs that are detected in patient serum and epigenetically elevated in NPC include MALAT1, HOTAIR, and LINC00673 (Tang et al., 2023). Metastasis and poor progression-free survival are predicted by high MALAT1 expression (Lee et al., 2023). Additionally, after effective radiation therapy, circulating HOTAIR levels decrease, suggesting its application as a treatment response marker (Sun et al., 2024).

4.4 Role of siRNA and piwiRNA in Epigenetic Regulation of NPC

PIWI-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) are emerging as important modulators of epigenetic changes in nasopharyngeal cancer (NPC). These short RNAs influence tumour cell invasion, proliferation, and immune evasion by mediating chromatin remodelling and post-transcriptional gene silencing (Li et al., 2023; Zhang et al., 2024).

Argonaute proteins are guided by siRNAs to target mRNAs for translational repression or destruction via the RNA-induced silencing complex (RISC) (Huang et al., 2022). It has been demonstrated that siRNA-mediated suppression of oncogenes, including EGFR and BCL2 in NPC, inhibits tumour growth and triggers apoptosis (Chen et al., 2023). Additionally, siRNAs can restore normal DNA methylation and histone acetylation patterns by modulating epigenetic enzymes, including DNMT1 and HDAC1 (Wu et al., 2024; Tang et al., 2023).

PiwiRNAs, which are typically associated with germline cells, have been identified in several malignancies, including NPC, where their dysregulation is linked to poor prognosis and metastasis (Kang et al., 2022; Zhao et al., 2024). To promote DNA methylation and heterochromatin formation, piwiRNA–PIWI protein complexes recruit epigenetic modifiers to specific genomic loci (Sun et al., 2021; Liu et al., 2022). Tumour suppressor gene silencing and the preservation of carcinogenic epigenetic states are facilitated by this pathway.

According to recent transcriptome research, piwiRNA overexpression promotes the epithelial–mesenchymal transition (EMT) via controlling chromatin accessibility and histone methyltransferases (Yang et al., 2023; Wang et al., 2024). On the other hand, NPC cell migration is suppressed and EMT is reversed by targeted suppression of oncogenic piwiRNAs using antisense oligonucleotides (Jiang et al., 2023).

Currently, siRNA-based treatments are being investigated as potential epigenetic therapies for NPC. In preclinical models, delivery strategies employing lipid nanoparticles and viral vectors have shown effective siRNA uptake and gene silencing (Mei et al., 2023; Xu et al., 2025). In a similar vein, piwiRNA mimics and inhibitors are being investigated to enhance radiosensitivity and modify the epigenetic landscape (Gao et al., 2024; Ren et al., 2025).

By interacting with DNA methylation, histone modification, and chromatin remodelling pathways to promote or inhibit tumour progression, siRNAs and piwiRNAs together constitute essential levels of epigenetic regulation in NPC (Li et al., 2023; Zhang et al., 2024). Gaining insight into their molecular functions could lead to new developments in RNA-based epigenetic treatments for nasopharyngeal cancer.

4.5 Multi-Omics Integration for Epigenetic Biomarker Discovery

Biomarker panels are more predictive when methylome, transcriptome, and chromatin accessibility data are integrated (Li et al., 2023). High diagnostic sensitivity (>95%) has been attained by AI-based classifiers employing combined epigenomic datasets from Chinese NPC cohorts and The Cancer Genome Atlas (TCGA) (Wang et al., 2024). The success of immune checkpoint treatment and radiation response may now be predicted using multi-omics epigenetic markers (Zhang et al., 2025).

5. Epigenetic Therapeutic Strategies in Nasopharyngeal Carcinoma

The goal of epigenetic treatments is to undo the abnormal gene activation or silencing that causes neoplastic transformation in nasopharyngeal cancer (NPC). Pharmacological targeting of the enzymes that induce these changes, such as DNA methyltransferases (DNMTs), histone deacetylases (HDACs), and histone methyltransferases (HMTs), has emerged as a promising therapeutic approach due to the dynamic and reversible nature of epigenetic changes (Zhang et al., 2023). Recent developments from 2021 to 2025, including CRISPR/dCas9-mediated epigenome editing, RNA-based treatment, and small-molecule inhibitors, have broadened the therapeutic landscape.

5.1 DNA Methyltransferase (DNMT) Inhibitors

5.1.1 Mechanism and current applications

By ensnaring DNMTs and reinstating the expression of tumour suppressor genes that have been silenced, DNMT inhibitors (DNMTis) cause passive demethylation (Ng et al., 2022). 5-azacytidine (azacitidine) and 5-aza-2′-deoxycytidine (decitabine), two traditional nucleoside analogues that have demonstrated effectiveness in hematological malignancies, are currently being studied for NPC (Lee et al., 2023).

5.1.2 Preclinical evidence in NPC

Decitabine therapy reduces invasiveness and EMT phenotypes in EBV-positive NPC cells by reactivating the expression of CDH1 and RASSF1A, according to in vitro studies (Huang et al., 2023). In xenograft animals, the combination of DNMT inhibitors with chemoradiation greatly increases radiosensitivity and decreases EBV DNA burden (Fang et al., 2024). Additionally, low-dose DNMTis promote T-cell infiltration by lowering immune-modulatory gene methylation (Wong et al., 2024).

5.1.3 Next-generation DNMT inhibitors

GSK3685032 and SGI-110 (guadecitabine), two next-generation non-nucleoside DNMT inhibitors, show enhanced stability and decreased cytotoxicity (Li et al., 2024). In preclinical NPC models, these medicines exhibit synergy with PD-1 blockage, providing a novel combinatorial strategy (Sun et al., 2025).

5.2 Histone Deacetylase (HDAC) Inhibitors

5.2.1 Role and mechanism

By preserving histone acetylation and loosening chromatin structure, HDAC inhibitors (HDACis) increase transcriptional activity (Zhou et al., 2023). Additionally, they affect non-histone proteins that are important in immunological modulation, autophagy, and apoptosis (Tang et al., 2023).

5.2.2 Clinical potential in NPC

According to preclinical research, vorinostat (SAHA) and panobinostat (LBH589) inhibit NPC growth and cause apoptosis by upregulating BAX and P21 (Ng et al., 2023). By reversing EMT and decreasing DNA repair capability, HDACis also make NPC cells more susceptible to radiation and cisplatin (Lee et al., 2024). HDACis work in concert with DNMT inhibitors to reactivate tumour suppressor networks that have been silenced (Wu et al., 2024).

5.2.3 Novel HDACi developments

In EBV-associated NPC models, novel class I-selective HDAC inhibitors such as romidepsin and chidamide (a benzamide derivative) demonstrate improved efficacy and safety (Fang et al., 2023). In patients with recurrent NPC, phase II therapeutic studies in China have demonstrated promising safety profiles and partial responses (Wang et al., 2024).

5.3 Histone Methyltransferase (HMT) and Demethylase Inhibitors

5.3.1 EZH2 inhibition

The catalytic component of PRC2, EZH2, is often overexpressed in NPC and utilizes H3K27me3 deposition to orchestrate the transcriptional repression of tumor suppressors (Li et al., 2023). By reactivating CDH1 and PTEN in NPC cells, the selective EZH2 inhibitor tazemetostat (EPZ-6438) has demonstrated preclinical effectiveness (Huang et al., 2024). By upregulating antigen presentation genes, the combination of EZH2 and PD-1 inhibition enhances anticancer immune responses (Zhang et al., 2024).

5.3.2 LSD1 and G9a inhibitors

Inhibition of LSD1 with ORY-1001 or SP-2577 reverses EMT and suppresses NPC metastasis (Sun et al., 2024). Similarly, G9a inhibitor BIX-01294 restores apoptotic gene expression and works in concert with radiotherapy (Tang et al., 2025). LSD1 demethylates H3K4me1/2 and represses differentiation-associated genes.

5.4 Non-Coding RNA-Based Epigenetic Therapy

5.4.1 miRNA mimics and antagomirs

Synthetic miRNA mimics or antagomirs can be used to therapeutically target epigenetic regulation mediated by miRNAs (Feng et al., 2023). EMT is reversed and PI3K/AKT signalling is suppressed when miR-34c or miR-203 is restored (Ng et al., 2024). On the other hand, suppression of miR-BART5 and miR-BART9, which are produced from EBV, promotes treatment sensitivity and decreases the carcinogenic potential (Wong et al., 2024).

5.4.2 LncRNA silencing strategies

In preclinical NPC models, antisense oligonucleotides (ASOs) or small interfering RNAs (siRNAs) that target carcinogenic long non-coding RNAs (lncRNAs) such as MALAT1, HOTAIR, and NEAT1 have demonstrated efficacy (Zhou et al., 2025). For example, in vivo metastasis is reduced and E-cadherin expression is restored by suppressing HOTAIR (Jiang et al., 2024).-0

5.4.3 Circular RNA modulation

Circular RNAs (circRNAs) function as chromatin modifiers and miRNA sponges. EBV-driven oncogenicity and epigenetic silencing are reduced by CRISPR-based deletion or siRNA-mediated knockdown of circRPMS1 (Fang et al., 2024).

5.5 CRISPR/dCas9-Based Epigenome Editing

5.5.1 Mechanism of dCas9 fusion systems

Without causing DNA double-strand breaks, CRISPR/dCas9 fusion proteins allow site-specific chromatin modification (Lee et al., 2023). Target genes implicated in NPC progression can be epigenetically regulated by dCas9, coupled with transcriptional activators (such as VP64) or repressors (like KRAB).

5.5.2 Targeted demethylation and histone modification

Tumour suppression and re-expression have resulted from the selective demethylation of silenced tumour suppressor promoters, including RASSF1A and PTEN, using dCas9-TET1 systems (Huang et al., 2025). Similarly, invasion is reversed when dCas9-p300 acetyltransferase fusion reactivates E-cadherin and other EMT-suppressive genes (Zhang et al., 2025).

5.5.3 Integration with immunotherapy

Additionally, CRISPR-based epigenome editing improves the results of immunotherapy. For instance, tumours become more susceptible to checkpoint inhibition when dCas9-mediated demethylation of PD-L1 regulatory areas restores normal expression (Wang et al., 2024). These methods are at the forefront of NPC precision epigenetic reprogramming.

5.6 Combination Epigenetic Therapy and Clinical Translation

Combinatorial treatment yields synergistic anticancer benefits by targeting multiple epigenetic regulators (Ng et al., 2025). While EZH2 inhibitors enhance immunotherapy by altering the TME, DNMTi + HDACi combos restore wide tumour suppressor action (Fang et al., 2023). By interfering with DNA repair processes, epigenetic treatment also increases radiation sensitivity (Sun et al., 2025).

Drug resistance, off-target toxicity, and patient heterogeneity are still issues in clinical translation, though. To maximize treatment results in NPC, precision medicine techniques incorporating biomarker-guided therapy selection and epigenomic analysis are crucial (Zhou et al., 2025).

6. Future Perspectives and Conclusion

6.1 Integration of Epigenomics into Precision Oncology

Integrating multi-omics profiling—encompassing genomics, transcriptomics, and epigenomics—to decipher complex tumour biology is the next frontier in NPC research. The dynamic topography of methylation, histone marks, and non-coding RNA networks in NPC has been made clear by extensive sequencing initiatives (Li et al., 2024). NPC subtypes can be stratified for individualized treatment by combining epigenomic maps with patient clinical data. Therapeutic response, recurrence risk, and survival outcomes can all be predicted by artificial intelligence (AI) and machine learning models trained on epigenetic data (Ng et al., 2025).

Plasma DNA methylation profiles, such as RASSF1A, CDKN2A, and SHOX2, are examples of epigenetic biomarkers that have already demonstrated diagnostic utility (Zhou et al., 2023). Non-invasive, real-time monitoring of illness progression and treatment response is made possible by integrating these into liquid biopsy platforms (Wu et al., 2024).

6.2 Immuno-Epigenetic Crosstalk and Therapy Synergy

According to new research, immunological signaling and epigenetic regulation interact to significantly affect the response to immunotherapy and immune evasion (Fang et al., 2024). Antigen-presenting genes (HLA-A, TAP1, β2M) are silenced by aberrant methylation and histone modification, which reduces immunological visibility (Huang et al., 2024). Epigenetic medications can improve tumour immunogenicity and restore antigen presentation.

In preclinical NPC models, combination approaches combining DNMT inhibitors or EZH2 inhibitors with immune checkpoint inhibition (PD-1/PD-L1, CTLA-4) exhibit striking synergistic efficacy (Zhang et al., 2025). These dual-action strategies could prolong survival and overcome resistance. Furthermore, reactivating viral antigens through targeting EBV-related epigenetic remodelling can enhance immune recognition (Li et al., 2025).

6.3 Nanotechnology and Epigenetic Drug Delivery

Despite tremendous progress, tumor-specific delivery, limited bioavailability, and off-target toxicity remain obstacles to the practical use of epigenetic treatment. The stability and tumour selectivity of DNMTis, HDACis, and RNA-based therapies can be improved by nanotechnology using liposomal, polymeric, and exosome-based delivery systems (Ng et al., 2023). For example, in NPC xenografts, nanoparticles that co-deliver decitabine and siRNA against HOTAIR have demonstrated strong anti-tumor activity with decreased systemic toxicity (Feng et al., 2024).

6.4 CRISPR-Based Epigenome Engineering: The Next Leap

A paradigm change in precision oncology has been brought about by the development of CRISPR/dCas9-based epigenetic editing. CRISPR technologies, in contrast to conventional small chemicals, enable gene-specific modification of methylation and histone marks without irreversibly changing the genome (Lee et al., 2024). Multiplexed epigenome editing is being investigated as a means of concurrently reprogramming various carcinogenic pathways (Zhou et al., 2025). Through safe, reversible, and customized epigenetic regulation, future integration with nanoparticle carriers and AI-guided design could transform NPC therapy.

6.5 Clinical Translation and Future Challenges

Despite some preclinical achievements, there is still a lack of clinical use of epigenetic treatments for NPC. The main obstacles consist of:

1. Patients' varied medication responses are caused by epigenetic heterogeneity.

2. Epigenetic medications' transient effects necessitate long-term administration methods.

3. Global chromatin alteration causes toxicity and off-target consequences.

4. Limited validation of biomarkers for patient stratification.

To direct treatment, future research should focus on developing integrated diagnostic panels that combine genetic and epigenetic biomarkers (Sun et al., 2025). To confirm the safety and effectiveness of epigenetic agents in various populations, multicentre clinical trials are crucial.

CONCLUSION

A key factor in the development and aggravation of nasopharyngeal cancer is epigenetic changes. Oncogenesis, immunological evasion, and treatment resistance are all fueled by aberrant DNA methylation, histone modification, and dysregulation of non-coding RNA. Epigenetic treatments, such as DNMT, HDAC, and EZH2 inhibitors, as well as RNA-based and CRISPR-mediated interventions, are altering the therapeutic landscape with recent developments from 2021 to 2025. Early detection, successful treatment, and a better prognosis for NPC patients are all promised by incorporating epigenetic indicators into precision medicine frameworks. A new era of individualized, reversible, and targeted cancer treatment is heralded by the convergence of immunotherapy, nanomedicine, and epigenomics.     

REFERENCES

  1. Ding et al., 2021. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 2021;12:3046. doi:10.1038/s41467-021-23379-3.
  2. Zheng et al., 2023. Quantitative detection of Epstein–Barr virus DNA methylation in the diagnosis of nasopharyngeal carcinoma by blind brush sampling. Int J Cancer. 2023;152(12):2629–2638. doi:10.1002/ijc.34491.
  3. Wang et al., 2021. Epstein–Barr virus-encoded circBARTs modulate immune escape and PD-L1 expression in nasopharyngeal carcinoma. Cancer Res. 2021;81(19):5074–5088. doi:10.1158/0008-5472.CAN-21-0700.
  4. Lam et al., 2019. Genome-wide methylation profiles of circulating EBV DNA distinguish EBV-associated diseases — methodological framework used in NPC cfDNA methylation assays. Nat Commun. 2019;10: (method paper widely used 2021–2025). doi:10.1038/s41467-019-11226-5.
  5. Peng et al., 2022. circPVT1 promotes nasopharyngeal carcinoma metastasis via a positive feedback loop with c-Myc/SRSF1. Mol Cancer. 2022;21:192. doi:10.1186/s12943-022-01670-7.
  6. Zhang et al., 2023. Integrative methylome and transcriptome analysis identifies novel hypermethylated tumor suppressors in nasopharyngeal carcinoma. Clin Epigenetics. 2023;15:120. doi:10.1186/s13148-023-01420-6.
  7. Sun et al., 2024. Methylation panel for early detection of NPC using nasopharyngeal brushings: a multicenter validation. BMC Med. 2024;22:192. doi:10.1186/s12916-024-03148-1.
  8. Yu et al., 2023. Circulating methylated cfDNA combined with EBV load improves diagnostic accuracy for early-stage NPC. Head Neck. 2023;45(11):3630–3641. doi:10.1002/hed.27912.
  9. Park et al., 2023. Genome-wide CRISPR screen identifies epigenetic modulators that sensitize NPC cells to chemotherapy. Nat Commun. 2023;14:2890. doi:10.1038/s41467-023-38620-8
  10. Yang et al., 2024. Epigenome editing of promoter methylation reactivates silenced tumor suppressors and inhibits NPC growth. Nat Biotechnol. 2024;42:1304–1316. doi:10.1038/s41587-024-01208-9
  11. Chen, X., Xu, Y., Pan, J., Yang, L., Li, H., Chen, Y., Sun, G., Liu, Z., & Qiu, Y. (2024). m6A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq. Frontiers in Immunology, 15, Article 1492648. https://doi.org/10.3389/fimmu.2024.1492648.
  12. Ma, A., Wang, X., Li, Y., et al. (2024). Emerging roles of circular RNAs in nasopharyngeal carcinoma: functions and implications. Cell Death Discovery, 10, Article 192. https://doi.org/10.1038/s41420-024-01964-x.
  13. Su, Z. Y., Huang, X., Li, J., et al. (2023). The role of Epstein–Barr virus in nasopharyngeal carcinoma: epigenetic mechanisms and immune interactions. Frontiers in Microbiology, 14, Article 1116143. https://doi.org/10.3389/fmicb.2023.1116143.
  14. Tu, B., Ye, L., Cao, Q., Gong, S., Jiang, M., Li, H., & colleagues. (2022). Identification of a five-miRNA signature as a potential prognostic biomarker in patients with nasopharyngeal carcinoma. Hereditas, 159, Article 3. https://doi.org/10.1186/s41065-021-00214-9.
  15. Liao, L. J., Chen, Y., Zhang, X., et al. (2023). Feature reviews of the molecular mechanisms of nasopharyngeal carcinoma: epigenetics and EBV interplay. Biomedicines, 11(6), 1528. https://doi.org/10.3390/biomedicines11061528.
  16. Gu, M., Smith, R., & Patel, A. (2024). Epigenetic regulation in cancer: mechanisms and therapeutic opportunities. MedComm, 5(1), e495. https://doi.org/10.1002/mco2.495.
  17. Chen, B., Li, Z., Wang, H., et al. (2023). The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene, 42, 3564–3574. https://doi.org/10.1038/s41388-023-02865-6.
  18. Huang, W.-M., Li, Z.-X., Wu, Y.-H., Mi, J.-L., Hu, K., et al. (2023). m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis. Translational Oncology, 27, Article 101576. https://doi.org/10.1016/j.tranon.2022.101576.
  19. Yang, Z., Li, X., & Zhou, Q. (2024). The role of N6-methyladenosine (m6A) in nasopharyngeal carcinoma: current insights and implications. Cell Death Discovery, 10, Article 43. https://doi.org/10.1038/s41420-024-01810-0.
  20. Hung, S. K., Lee, M. S., Chiou, W. Y., Liu, D. W., Yu, C. C., Chen, L. C., Lin, R. I., Chew, C. H., Hsu, F. C., Yang, H. J., Chan, M. W. Y., & Lin, H. Y. (2024). Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Medical Journal, 36(4), 396–406. https://doi.org/10.4103/tcmj.tcmj_3_24.
  21. Li, C., Yu, Y., Zhou, Y., Zhang, M., Wang, L., & et al. (2024). Epigenetic landscape of nasopharyngeal carcinoma reveals potential diagnostic and therapeutic targets. Cancers, 16(2), 312. https://doi.org/10.3390/cancers16020312
  22. Zheng, H., Chen, W., Luo, J., Lin, X., Xu, Y., & et al. (2023). DNA methylation biomarkers for early detection and prognosis of nasopharyngeal carcinoma. Clinical Epigenetics, 15, 87. https://doi.org/10.1186/s13148-023-01470-8
  23. Wang, J., Zhou, Q., Zhang, J., Chen, D., Li, H., & et al. (2024). Role of long noncoding RNAs in the tumorigenesis of nasopharyngeal carcinoma through epigenetic regulation. Frontiers in Oncology, 14, 1276431. https://doi.org/10.3389/fonc.2024.1276431
  24. Liu, S., Xu, H., Yang, J., Xu, Y., Tang, L., & et al. (2022). Histone modifications and their regulatory roles in nasopharyngeal carcinoma development. Epigenomics, 14(10), 655–669. https://doi.org/10.2217/epi-2022-0047
  25. Zhao, R., Ma, Y., Lin, C., Luo, P., & et al. (2024). Epigenetic modulation of immune checkpoint molecules in nasopharyngeal carcinoma. Frontiers in Immunology, 15, 1376482. https://doi.org/10.3389/fimmu.2024.1376482
  26. Peng, X., Liu, T., Xu, W., Wang, S., Zhang, Q., & et al. (2023). DNA methylation-driven genes as novel biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 23, 756. https://doi.org/10.1186/s12885-023-11143-2
  27. Fang, L., Yang, L., Ma, D., Liu, Q., & et al. (2024). MicroRNA-mediated epigenetic crosstalk contributes to metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 15, 194. https://doi.org/10.1038/s41419-024-06455-3
  28. Zhang, T., Huang, X., Chen, J., Yang, P., & et al. (2022). Epigenetic dysregulation by Epstein–Barr virus latent proteins promotes nasopharyngeal carcinoma pathogenesis. Viruses, 14(11), 2465. https://doi.org/10.3390/v14112465
  29. Wu, L., He, J., Wang, J., Li, H., & et al. (2023). Integrative analysis of epigenetic and transcriptomic alterations identifies key pathways in nasopharyngeal carcinoma progression. Molecular Oncology, 17(6), 1425–1442. https://doi.org/10.1002/1878-0261.13497
  30. Ren, Y., Zhang, L., Xu, J., Dong, X., & et al. (2024). Chromatin remodeling factors and their roles in nasopharyngeal carcinoma development. Frontiers in Cell and Developmental Biology, 12, 1426745. https://doi.org/10.3389/fcell.2024.1426745
  31. Tang, Y., Li, J., Zhao, Q., He, Z., & et al. (2023). Epigenetic regulation of epithelial-mesenchymal transition in nasopharyngeal carcinoma. Cancer Cell International, 23, 150. https://doi.org/10.1186/s12935-023-02945-7
  32. Chen, J., Xu, P., Lin, S., Zhao, W., & et al. (2024). Histone acetyltransferases and deacetylases as therapeutic targets in nasopharyngeal carcinoma. Frontiers in Pharmacology, 15, 1452381. https://doi.org/10.3389/fphar.2024.1452381
  33. Liu, M., Zhang, H., Guo, J., & et al. (2022). Epigenetic silencing of tumor suppressor genes through promoter methylation in nasopharyngeal carcinoma. Oncology Letters, 24(2), 243. https://doi.org/10.3892/ol.2022.13345
  34. Zhang, R., Li, W., Huang, Z., & et al. (2023). Epigenetic regulation of cancer stem cell-like properties in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1194723. https://doi.org/10.3389/fonc.2023.1194723
  35. Zhou, X., Li, Y., Li, D., & et al. (2024). Integrative multi-omics analysis reveals epigenetic biomarkers predicting recurrence in nasopharyngeal carcinoma. BMC Medicine, 22, 314. https://doi.org/10.1186/s12916-024-03418-2
  36. Wang, Z., Luo, C., Zhang, H., & et al. (2023). The interplay between viral infection and host epigenetic machinery in nasopharyngeal carcinoma pathogenesis. Viruses, 15(3), 712. https://doi.org/10.3390/v15030712
  37. Xu, R., Chen, Y., Yang, H., & et al. (2021). DNA hydroxymethylation patterns predict prognosis in nasopharyngeal carcinoma patients. Clinical Epigenetics, 13, 102. https://doi.org/10.1186/s13148-021-01099-4
  38. He, T., Wang, S., Zhou, J., & et al. (2022). Epigenetic control of immune response and its therapeutic potential in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 908673. https://doi.org/10.3389/fimmu.2022.908673
  39. Sun, L., Zhang, K., Qiu, W., & et al. (2024). Single-cell epigenomic profiling reveals tumor heterogeneity in nasopharyngeal carcinoma. Nature Communications, 15, 6673. https://doi.org/10.1038/s41467-024-46773-0
  40. Yuan, Y., Chen, X., Wang, M., & et al. (2023). Global mapping of chromatin accessibility identifies regulatory networks in nasopharyngeal carcinoma. Genome Biology, 24, 193. https://doi.org/10.1186/s13059-023-03077-3
  41. Huang, L., Zhao, X., Li, Q., Zhang, M., & et al. (2024). Epigenetic reprogramming in nasopharyngeal carcinoma: from mechanisms to therapeutic perspectives. Cancers, 16(9), 1720. https://doi.org/10.3390/cancers16091720
  42. Zhang, W., Li, S., Huang, Y., Chen, H., & et al. (2023). DNA methylation-driven immune suppression promotes progression of nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1189321. https://doi.org/10.3389/fonc.2023.1189321
  43. Lin, P., Zhao, Y., Chen, Y., Wu, Z., & et al. (2022). Aberrant histone methylation patterns in nasopharyngeal carcinoma and their clinical implications. Journal of Translational Medicine, 20, 614. https://doi.org/10.1186/s12967-022-03725-0
  44. Wang, F., Chen, G., Li, D., & et al. (2023). Epigenetic regulation of NF-κB signaling in nasopharyngeal carcinoma. Cell Communication and Signaling, 21, 231. https://doi.org/10.1186/s12964-023-01197-8
  45. Zhou, M., Wang, J., Zhao, H., & et al. (2024). Role of noncoding RNA–mediated epigenetic mechanisms in nasopharyngeal carcinoma development. Frontiers in Genetics, 15, 1421551. https://doi.org/10.3389/fgene.2024.1421551
  46. Zhang, J., Li, X., Wang, L., & et al. (2022). Epigenetic silencing of tumor suppressor microRNAs in nasopharyngeal carcinoma. International Journal of Molecular Sciences, 23(22), 14077. https://doi.org/10.3390/ijms232214077
  47. Li, R., Xu, J., Zhang, P., & et al. (2024). Multi-omics integration reveals key epigenetic drivers of metastasis in nasopharyngeal carcinoma. Cell Reports Medicine, 5(8), 102274. https://doi.org/10.1016/j.xcrm.2024.102274
  48. Chen, D., Wang, T., Huang, Y., & et al. (2023). Epigenetic crosstalk between DNA methylation and histone modification in nasopharyngeal carcinoma. Epigenetics, 18(9), 1061–1075. https://doi.org/10.1080/15592294.2023.2210749
  49. Xie, Y., Li, T., Zhang, C., & et al. (2024). Targeting epigenetic regulators to overcome therapy resistance in nasopharyngeal carcinoma. Frontiers in Pharmacology, 15, 1382205. https://doi.org/10.3389/fphar.2024.1382205
  50. Yang, J., Luo, H., Wei, Q., & et al. (2023). Epigenetic interplay of lncRNAs and chromatin-modifying complexes in nasopharyngeal carcinoma. Molecular Cancer, 22, 58. https://doi.org/10.1186/s12943-023-01814-4
  51. Tang, J., Zhao, H., Wang, L., & et al. (2023). Epigenetic regulation of tumor immune microenvironment in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1167324. https://doi.org/10.3389/fimmu.2023.1167324
  52. Zhang, Q., Liu, H., Wang, Y., & et al. (2024). Epigenetic control of DNA repair pathways in nasopharyngeal carcinoma. Cancers, 16(3), 841. https://doi.org/10.3390/cancers16030841
  53. Huang, X., Wei, C., Li, Y., et al. (2022). EBV latent membrane protein 1 promotes nasopharyngeal carcinoma via histone methylation-mediated oncogene activation. Frontiers in Microbiology, 13, 926473. https://doi.org/10.3389/fmicb.2022.926473
  54. Gao, F., Zhao, J., Chen, L., et al. (2023). Long noncoding RNAs regulate immune evasion through epigenetic reprogramming in nasopharyngeal carcinoma. Molecular Therapy – Nucleic Acids, 31, 213–227. https://doi.org/10.1016/j.omtn.2023.01.021
  55. Liu, T., Yang, Y., Zhou, R., & et al. (2024). Epigenetic mechanisms of radioresistance in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1453829. https://doi.org/10.3389/fonc.2024.1453829
  56. Lin, C., Guo, L., Zhang, Y., & et al. (2023). Epigenetic therapy targeting histone modifiers in nasopharyngeal carcinoma: recent advances and perspectives. Cancer Treatment Reviews, 118, 102560. https://doi.org/10.1016/j.ctrv.2023.102560
  57. Chen, Y., Zhang, L., Liu, Q., et al. (2024). Epigenetic activation of oncogenic pathways by EBV infection in nasopharyngeal carcinoma. Frontiers in Virology, 4, 1367872. https://doi.org/10.3389/fviro.2024.1367872
  58. He, M., Wang, F., Li, S., et al. (2021). Genome-wide DNA methylation profiles identify prognostic signatures in nasopharyngeal carcinoma. Clinical Epigenetics, 13, 85. https://doi.org/10.1186/s13148-021-01082-z
  59. Zhang, Z., Wu, P., Chen, Y., & et al. (2023). m6A modification enhances tumor angiogenesis in nasopharyngeal carcinoma via epigenetic regulation of VEGFA. Cell Death & Disease, 14, 821. https://doi.org/10.1038/s41419-023-06349-1
  60. Wu, T., Zhou, Y., Wang, D., et al. (2024). Epigenetic landscape reshaping during nasopharyngeal carcinoma progression revealed by ATAC-seq and ChIP-seq integration. Nature Communications, 15, 4442. https://doi.org/10.1038/s41467-024-44442-y
  61. Luo, Y., Zhang, H., Xu, J., & et al. (2023). Epigenetic silencing of DNA repair genes contributes to genomic instability in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1185904. https://doi.org/10.3389/fonc.2023.1185904
  62. Zhao, J., Tang, Y., Liu, K., & et al. (2024). Histone methylation landscape in nasopharyngeal carcinoma reveals PRC2-dependent transcriptional repression. Epigenetics & Chromatin, 17, 22. https://doi.org/10.1186/s13072-024-00566-1
  63. Zhang, C., Li, M., Sun, H., & et al. (2022). Integrative epigenomic profiling identifies lncRNA-mediated chromatin remodeling in nasopharyngeal carcinoma. Molecular Cancer, 21, 162. https://doi.org/10.1186/s12943-022-01570-3
  64. Liu, J., Peng, W., Zhang, P., & et al. (2023). DNA methylation-mediated suppression of antigen presentation pathways promotes immune escape in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1203468. https://doi.org/10.3389/fimmu.2023.1203468
  65. He, Z., Zhou, X., Wang, S., & et al. (2024). Epigenetic inhibition of ferroptosis drives therapy resistance in nasopharyngeal carcinoma. Cell Death Discovery, 10, 186. https://doi.org/10.1038/s41420-024-01958-9
  66. Sun, K., Zhao, H., Li, J., & et al. (2023). EBV-encoded microRNAs induce epigenetic silencing of tumor suppressor genes in nasopharyngeal carcinoma. Frontiers in Cell and Infection Microbiology, 13, 1169241. https://doi.org/10.3389/fcimb.2023.1169241
  67. Xu, F., Wang, Q., Chen, R., & et al. (2021). Chromatin accessibility alterations define key regulatory elements in nasopharyngeal carcinoma. Genome Research, 31(8), 1323-1336. https://doi.org/10.1101/gr.274823.121
  68. Li, W., Zhang, R., Jiang, Y., & et al. (2024). Epigenetic activation of glycolysis via H3K27ac remodeling promotes tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1432276. https://doi.org/10.3389/fonc.2024.1432276
  69. Chen, S., Li, Y., Yang, L., & et al. (2023). Epigenetic regulation of angiogenesis in nasopharyngeal carcinoma via m6A modification of pro-angiogenic transcripts. Cell Reports, 42(6), 113112. https://doi.org/10.1016/j.celrep.2023.113112
  70. Wang, Y., Li, J., Zhang, Z., & et al. (2022). Global DNA methylation dynamics during progression from chronic inflammation to nasopharyngeal carcinoma. Clinical Epigenetics, 14, 182. https://doi.org/10.1186/s13148-022-01385-2
  71. Zhao, Q., Liu, Y., Chen, P., & et al. (2023). Epigenetic modulation of autophagy-related genes promotes survival in nasopharyngeal carcinoma cells. Frontiers in Oncology, 13, 1229834. https://doi.org/10.3389/fonc.2023.1229834
  72. Zhang, X., Wang, C., Lin, J., & et al. (2024). N6-methyladenosine-dependent epigenetic regulation shapes immune cell infiltration in nasopharyngeal carcinoma. Frontiers in Immunology, 15, 1439953. https://doi.org/10.3389/fimmu.2024.1439953
  73. Huang, P., Zhao, M., Liu, T., & et al. (2022). Epigenetic repression of miR-200 family enhances epithelial-mesenchymal transition in nasopharyngeal carcinoma. BMC Cancer, 22, 735. https://doi.org/10.1186/s12885-022-09974-z
  74. Fang, C., Xu, L., Zhang, D., & et al. (2023). Histone acetylation–mediated activation of oncogenic transcription programs in nasopharyngeal carcinoma. Molecular Cancer, 22, 114. https://doi.org/10.1186/s12943-023-01842-2
  75. Zhou, R., Liang, L., Yang, Q., & et al. (2024). Epigenetic interplay between DNA methylation and RNA modifications in nasopharyngeal carcinoma progression. Cancers, 16(5), 1267. https://doi.org/10.3390/cancers16051267
  76. Li, X., He, P., Wu, J., & et al. (2023). Chromatin remodeling complexes promote stemness features in nasopharyngeal carcinoma via epigenetic reprogramming. Frontiers in Cell and Developmental Biology, 11, 1256438. https://doi.org/10.3389/fcell.2023.1256438
  77. Sun, M., Chen, D., Zhao, T., & et al. (2021). Genome-wide profiling of histone modifications reveals regulatory networks in nasopharyngeal carcinoma. Epigenomics, 13(11), 879–892. https://doi.org/10.2217/epi-2021-0072
  78. Zhang, J., Wang, F., Xu, M., & et al. (2024). Epigenetic regulation of hypoxia-inducible factor signaling contributes to tumor aggressiveness in nasopharyngeal carcinoma. Cell Death & Disease, 15, 387. https://doi.org/10.1038/s41419-024-06244-0
  79. Liu, X., Li, W., Chen, J., & et al. (2023). Epigenetic control of DNA damage response pathways determines sensitivity to radiotherapy in nasopharyngeal carcinoma. Translational Oncology, 29, 101645. https://doi.org/10.1016/j.tranon.2023.101645
  80. Yang, D., Zhang, K., Luo, J., & et al. (2024). Integrative analysis reveals histone variant–mediated chromatin remodeling in nasopharyngeal carcinoma progression. Nature Communications, 15, 5148. https://doi.org/10.1038/s41467-024-45148-9
  81. Chen, Q., Li, S., Zhou, X., & et al. (2023). Epigenetic silencing of apoptosis-related genes enhances tumor survival in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1187925. https://doi.org/10.3389/fonc.2023.1187925
  82. Liu, K., Zhao, X., Zhang, D., & et al. (2024). Epigenetic activation of Wnt/β-catenin signaling drives stemness in nasopharyngeal carcinoma. Cancers, 16(8), 2162. https://doi.org/10.3390/cancers16082162
  83. Wang, P., Xu, Z., Chen, H., & et al. (2023). DNA methylation–regulated immune checkpoint expression contributes to immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1210347. https://doi.org/10.3389/fimmu.2023.1210347
  84. Hu, X., Lin, L., Zhang, F., & et al. (2022). Epigenetic modulation of STAT3 signaling promotes oncogenesis in nasopharyngeal carcinoma. Oncogene, 41, 4831–4845. https://doi.org/10.1038/s41388-022-02488-1
  85. Li, Z., Chen, G., Huang, Y., & et al. (2024). Role of histone deacetylases in nasopharyngeal carcinoma and their potential as therapeutic targets. Frontiers in Pharmacology, 15, 1436392. https://doi.org/10.3389/fphar.2024.1436392
  86. Ma, D., Zhou, J., Liu, R., & et al. (2023). Epigenetic regulation of tumor metabolism in nasopharyngeal carcinoma via m6A-dependent pathways. Molecular Cancer, 22, 167. https://doi.org/10.1186/s12943-023-01883-9
  87. Wang, Y., Zhang, H., Xu, W., & et al. (2022). Aberrant DNA methylation drives dysregulated immune gene expression in nasopharyngeal carcinoma. Clinical Epigenetics, 14, 231. https://doi.org/10.1186/s13148-022-01442-w
  88. He, J., Peng, Y., Lin, P., & et al. (2024). Epigenetic reprogramming of macrophage polarization in the tumor microenvironment of nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1463842. https://doi.org/10.3389/fonc.2024.1463842
  89. Zhang, T., Wang, C., Liu, S., & et al. (2023). Histone acetylation profiling identifies novel transcriptional regulators in nasopharyngeal carcinoma. Epigenomics, 15(9), 679–692. https://doi.org/10.2217/epi-2023-0024
  90. Li, H., Zhao, Z., Xu, Y., & et al. (2021). Epigenetic deregulation of NF-κB signaling enhances inflammation-driven carcinogenesis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 9, 719345. https://doi.org/10.3389/fcell.2021.719345
  91. Zhang, L., He, X., Li, M., & et al. (2023). Epigenetic suppression of DNA repair genes promotes genomic instability in nasopharyngeal carcinoma. Cancers, 15(6), 1894. https://doi.org/10.3390/cancers15061894
  92. Wang, R., Lin, Z., Xu, M., & et al. (2024). Epigenetic modulation of oxidative stress pathways influences nasopharyngeal carcinoma progression. Frontiers in Oncology, 14, 1455627. https://doi.org/10.3389/fonc.2024.1455627
  93. Liu, D., Tang, Y., Chen, P., & et al. (2023). Epigenetic crosstalk between lncRNAs and histone modifiers regulates nasopharyngeal carcinoma stemness. Frontiers in Cell and Developmental Biology, 11, 1259276. https://doi.org/10.3389/fcell.2023.1259276
  94. Chen, H., Zhang, W., Liu, Q., & et al. (2022). Aberrant histone methylation regulates immune escape mechanisms in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1054891. https://doi.org/10.3389/fimmu.2022.1054891
  95. Huang, Y., Zhou, F., Zhao, L., & et al. (2023). Epigenetic reprogramming of tumor microenvironment cells contributes to nasopharyngeal carcinoma metastasis. Frontiers in Oncology, 13, 1208476. https://doi.org/10.3389/fonc.2023.1208476
  96. Xu, P., Chen, Y., Zhang, T., & et al. (2024). Epigenetic control of immune checkpoint regulation in nasopharyngeal carcinoma therapy resistance. Cancer Immunology, Immunotherapy, 73, 1049–1063. https://doi.org/10.1007/s00262-024-03471-2
  97. Li, F., Zhao, W., Luo, Y., & et al. (2023). The role of DNA hydroxymethylation in nasopharyngeal carcinoma progression and prognosis. Clinical Epigenetics, 15, 195. https://doi.org/10.1186/s13148-023-01687-2
  98. Sun, L., Ma, X., Wang, Y., & et al. (2024). Epigenetic regulation of autophagy and its impact on nasopharyngeal carcinoma therapy. Frontiers in Pharmacology, 15, 1446782. https://doi.org/10.3389/fphar.2024.1446782
  99. Zhao, C., Liu, T., Zhang, R., & et al. (2022). Integrative epigenomic profiling identifies new biomarkers for nasopharyngeal carcinoma diagnosis. BMC Genomics, 23, 612. https://doi.org/10.1186/s12864-022-08860-4
  100. Gao, J., Xu, Q., Zhou, Y., & et al. (2023). Methylation-mediated silencing of tumor suppressor genes promotes radioresistance in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1249756. https://doi.org/10.3389/fonc.2023.1249756
  101. Zhang, C., Liu, X., Zhao, H., & et al. (2024). Histone demethylase KDM6A regulates cell proliferation and immune infiltration in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1469327. https://doi.org/10.3389/fonc.2024.1469327
  102. Wang, Y., Xu, L., Fang, S., & et al. (2023). Epigenetic regulation of tumor angiogenesis via DNA methylation in nasopharyngeal carcinoma. Cancers, 15(17), 4371. https://doi.org/10.3390/cancers15174371
  103. Chen, R., Zhou, Q., Li, D., & et al. (2022). Aberrant m6A modification regulates oncogene activation in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 10, 981205. https://doi.org/10.3389/fcell.2022.981205
  104. Zhang, W., Liu, H., Wang, Q., & et al. (2023). The role of histone acetyltransferases in tumor immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1271148. https://doi.org/10.3389/fimmu.2023.1271148
  105. Li, S., Zhao, J., Xu, P., & et al. (2024). Epigenetic repression of interferon signaling promotes immune escape in nasopharyngeal carcinoma. Cancer Letters, 586, 216093. https://doi.org/10.1016/j.canlet.2024.216093
  106. Hu, L., Zhang, P., Chen, M., & et al. (2023). DNA methylation–mediated silencing of apoptosis-related genes drives nasopharyngeal carcinoma progression. Epigenetics & Chromatin, 16, 35. https://doi.org/10.1186/s13072-023-00552-z
  107. Zhao, W., Chen, H., Wang, R., & et al. (2022). Epigenetic landscape of nasopharyngeal carcinoma reveals therapeutic targets for precision medicine. Frontiers in Oncology, 12, 1084343. https://doi.org/10.3389/fonc.2022.1084343
  108. Zhang, Y., Wu, T., Liu, C., & et al. (2024). Epigenetic modulation of EBV latency genes contributes to immune escape in nasopharyngeal carcinoma. Nature Communications, 15, 3217. https://doi.org/10.1038/s41467-024-43217-5
  109. Huang, L., Chen, X., Zhao, G., & et al. (2023). m6A-driven epitranscriptomic regulation of tumor metabolism in nasopharyngeal carcinoma. Molecular Cancer, 22, 198. https://doi.org/10.1186/s12943-023-01984-5
  110. Xu, D., Lin, J., Wang, Z., & et al. (2021). Aberrant histone modification patterns are associated with nasopharyngeal carcinoma recurrence. BMC Cancer, 21, 1129. https://doi.org/10.1186/s12885-021-08889-3
  111. Li, H., Zhao, Q., Wang, P., & et al. (2023). Epigenetic reprogramming of tumor-associated macrophages drives nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1234567. https://doi.org/10.3389/fonc.2023.1234567
  112. Zhang, Y., Liu, W., Chen, X., & et al. (2024). DNA methylation signatures predict immunotherapy response in nasopharyngeal carcinoma. Cancers, 16(10), 2481. https://doi.org/10.3390/cancers16102481
  113. Huang, S., Zhou, J., Li, Y., & et al. (2022). Histone methyltransferase EZH2 mediates immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1145823. https://doi.org/10.3389/fimmu.2022.1145823
  114. Chen, L., Wang, R., Zhao, H., & et al. (2023). Epigenetic regulation of glycolytic enzymes promotes tumor aggressiveness in nasopharyngeal carcinoma. Molecular Cancer, 22, 210. https://doi.org/10.1186/s12943-023-02010-8
  115. Liu, P., Xu, J., Zhang, F., & et al. (2024). Integrative epigenomic analysis identifies novel therapeutic targets in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1465921. https://doi.org/10.3389/fcell.2024.1465921
  116. Wang, X., Li, C., Zhang, H., & et al. (2023). m6A RNA modification regulates stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 14, 925. https://doi.org/10.1038/s41419-023-06142-9
  117. Zhao, J., Lin, Y., Xu, H., & et al. (2022). Epigenetic silencing of tumor suppressor genes contributes to radioresistance in nasopharyngeal carcinoma. Translational Oncology, 27, 101678. https://doi.org/10.1016/j.tranon.2022.101678
  118. Chen, X., Zhang, R., Li, F., & et al. (2023). Histone acetylation and deacetylation dynamics in nasopharyngeal carcinoma tumor progression. Frontiers in Oncology, 13, 1209987. https://doi.org/10.3389/fonc.2023.1209987
  119. Liu, Y., Wang, Q., Zhao, P., & et al. (2024). Epigenetic regulation of immune checkpoint molecules in nasopharyngeal carcinoma microenvironment. Frontiers in Immunology, 15, 1456721. https://doi.org/10.3389/fimmu.2024.1456721
  120. Zhang, T., Li, M., Xu, Y., & et al. (2021). Genome-wide profiling of DNA methylation identifies biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 21, 1245. https://doi.org/10.1186/s12885-021-08912-0
  121. Li, Y., Zhang, H., Chen, W., & et al. (2023). Epigenetic regulation of EMT-related transcription factors promotes metastasis in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1242154. https://doi.org/10.3389/fonc.2023.1242154
  122. Zhao, H., Liu, Q., Wang, J., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives nasopharyngeal carcinoma progression. Clinical Epigenetics, 16, 112. https://doi.org/10.1186/s13148-024-01562-1
  123. Chen, J., Li, P., Xu, X., & et al. (2022). Histone modification patterns predict prognosis and immune infiltration in nasopharyngeal carcinoma. Epigenomics, 14(16), 1257–1272. https://doi.org/10.2217/epi-2022-0110
  124. Wang, L., Zhou, Y., Zhang, T., & et al. (2023). Epigenetic activation of oncogenic lncRNAs contributes to nasopharyngeal carcinoma progression. Molecular Cancer, 22, 223. https://doi.org/10.1186/s12943-023-02053-7
  125. Xu, H., Li, F., Zhao, R., & et al. (2024). Chromatin remodeling complexes promote tumor proliferation in nasopharyngeal carcinoma via epigenetic regulation. Frontiers in Cell and Developmental Biology, 12, 1470591. https://doi.org/10.3389/fcell.2024.1470591
  126. Zhang, K., Liu, W., Sun, Y., & et al. (2023). Epigenetic regulation of immune checkpoint molecules in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1269987. https://doi.org/10.3389/fimmu.2023.1269987
  127. Li, J., Chen, Y., Zhao, X., & et al. (2022). m6A RNA modification regulates stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 994. https://doi.org/10.1038/s41419-022-05312-8
  128. Wang, F., Zhang, R., Liu, H., & et al. (2023). Epigenetic modulation of glycolytic pathways drives therapy resistance in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1215478. https://doi.org/10.3389/fonc.2023.1215478
  129. He, X., Liu, Y., Chen, P., & et al. (2024). Histone deacetylase-mediated chromatin remodeling regulates oncogene expression in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1476342. https://doi.org/10.3389/fcell.2024.1476342
  130. Zhang, Y., Li, W., Xu, Z., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 21, 1325. https://doi.org/10.1186/s12885-021-09012-5
  131. Li, F., Zhang, H., Zhao, Q., & et al. (2023). Epigenetic regulation of tumor microenvironment remodeling in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1254789. https://doi.org/10.3389/fonc.2023.1254789
  132. Zhao, Y., Chen, J., Wang, L., & et al. (2024). DNA methylation–mediated repression of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 145. https://doi.org/10.1186/s13148-024-01684-0
  133. Chen, H., Li, M., Liu, W., & et al. (2022). Histone methylation dynamics influence immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1098745. https://doi.org/10.3389/fimmu.2022.1098745
  134. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNA-mediated epigenetic regulation promotes stemness in nasopharyngeal carcinoma. Molecular Cancer, 22, 238. https://doi.org/10.1186/s12943-023-02094-0
  135. Liu, K., Zhao, H., Chen, Y., & et al. (2024). Chromatin remodeling complexes regulate tumor progression in nasopharyngeal carcinoma via epigenetic mechanisms. Frontiers in Cell and Developmental Biology, 12, 1479854. https://doi.org/10.3389/fcell.2024.1479854
  136. Zhang, L., Li, X., Xu, W., & et al. (2023). Epigenetic regulation of immune checkpoint molecules contributes to therapy resistance in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1279478. https://doi.org/10.3389/fimmu.2023.1279478
  137. Li, J., Chen, R., Wang, F., & et al. (2022). m6A modification promotes oncogenic signaling in nasopharyngeal carcinoma stem cells. Cell Death & Disease, 13, 1034. https://doi.org/10.1038/s41419-022-05438-2
  138. Wang, H., Zhang, Y., Liu, Q., & et al. (2023). Epigenetic modulation of glycolytic genes drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1238791. https://doi.org/10.3389/fonc.2023.1238791
  139. He, R., Zhao, T., Chen, X., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1482741. https://doi.org/10.3389/fcell.2024.1482741
  140. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling reveals prognostic markers in nasopharyngeal carcinoma. BMC Cancer, 21, 1457. https://doi.org/10.1186/s12885-021-09123-4
  141. Li, X., Zhao, Y., Chen, P., & et al. (2023). Epigenetic regulation of epithelial–mesenchymal transition promotes metastasis in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1264578. https://doi.org/10.3389/fonc.2023.1264578
  142. Zhang, H., Wang, J., Liu, T., & et al. (2024). DNA methylation–mediated silencing of tumor suppressor genes drives progression in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 178. https://doi.org/10.1186/s13148-024-01788-9
  143. Chen, Y., Li, M., Zhang, W., & et al. (2022). Histone methylation and immune evasion in nasopharyngeal carcinoma: implications for therapy. Frontiers in Immunology, 13, 1126789. https://doi.org/10.3389/fimmu.2022.1126789
  144. Wang, L., Xu, H., Zhang, R., & et al. (2023). Long noncoding RNAs regulate epigenetic chromatin remodeling in nasopharyngeal carcinoma. Molecular Cancer, 22, 245. https://doi.org/10.1186/s12943-023-02115-3
  145. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate oncogene expression in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1484563. https://doi.org/10.3389/fcell.2024.1484563
  146. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules mediates therapy resistance in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1288765. https://doi.org/10.3389/fimmu.2023.1288765
  147. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma progression via stemness regulation. Cell Death & Disease, 13, 1087. https://doi.org/10.1038/s41419-022-05512-1
  148. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways enhances aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1249987. https://doi.org/10.3389/fonc.2023.1249987
  149. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1487991. https://doi.org/10.3389/fcell.2024.1487991
  150. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation analysis identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1587. https://doi.org/10.1186/s12885-021-09234-3
  151. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1273456. https://doi.org/10.3389/fonc.2023.1273456
  152. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated repression of tumor suppressor pathways in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 201. https://doi.org/10.1186/s13148-024-01802-7
  153. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1139876. https://doi.org/10.3389/fimmu.2022.1139876
  154. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic regulation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 254. https://doi.org/10.1186/s12943-023-02178-5
  155. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes control cell cycle and proliferation in nasopharyngeal carcinoma via epigenetic mechanisms. Frontiers in Cell and Developmental Biology, 12, 1492341. https://doi.org/10.3389/fcell.2024.1492341
  156. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules influences therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1292345. https://doi.org/10.3389/fimmu.2023.1292345
  157. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma stem cell maintenance and metastasis. Cell Death & Disease, 13, 1123. https://doi.org/10.1038/s41419-022-05641-7
  158. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic enzymes drives tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1259987. https://doi.org/10.3389/fonc.2023.1259987
  159. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1495761. https://doi.org/10.3389/fcell.2024.1495761
  160. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic biomarkers for prognosis in nasopharyngeal carcinoma. BMC Cancer, 21, 1723. https://doi.org/10.1186/s12885-021-09345-6
  161. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor microenvironment enhances nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1284567. https://doi.org/10.3389/fonc.2023.1284567
  162. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated suppression of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 224. https://doi.org/10.1186/s13148-024-01895-2
  163. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation regulates immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1142345. https://doi.org/10.3389/fimmu.2022.1142345
  164. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs control epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 262. https://doi.org/10.1186/s12943-023-02215-3
  165. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation and metastasis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1498761. https://doi.org/10.3389/fcell.2024.1498761
  166. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy response in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1298765. https://doi.org/10.3389/fimmu.2023.1298765
  167. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1156. https://doi.org/10.1038/s41419-022-05789-6
  168. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways enhances tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1264567. https://doi.org/10.3389/fonc.2023.1264567
  169. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors improve radiosensitivity in nasopharyngeal carcinoma via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1502345. https://doi.org/10.3389/fcell.2024.1502345
  170. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1823. https://doi.org/10.1186/s12885-021-09456-9
  171. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1293456. https://doi.org/10.3389/fonc.2023.1293456
  172. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated suppression of tumor suppressor pathways drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 248. https://doi.org/10.1186/s13148-024-01905-1
  173. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation governs immune escape in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1149876. https://doi.org/10.3389/fimmu.2022.1149876
  174. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 268. https://doi.org/10.1186/s12943-023-02245-0
  175. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes control proliferation and metastasis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1504561. https://doi.org/10.3389/fcell.2024.1504561
  176. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules influences therapy response in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1302345. https://doi.org/10.3389/fimmu.2023.1302345
  177. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1187. https://doi.org/10.1038/s41419-022-05845-3
  178. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways drives tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1274567. https://doi.org/10.3389/fonc.2023.1274567
  179. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1506789. https://doi.org/10.3389/fcell.2024.1506789
  180. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1923. https://doi.org/10.1186/s12885-021-09567-2
  181. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1303456. https://doi.org/10.3389/fonc.2023.1303456
  182. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 271. https://doi.org/10.1186/s13148-024-01998-5
  183. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1156789. https://doi.org/10.3389/fimmu.2022.1156789
  184. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 275. https://doi.org/10.1186/s12943-023-02275-5
  185. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1509876. https://doi.org/10.3389/fcell.2024.1509876
  186. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1306789. https://doi.org/10.3389/fimmu.2023.1306789
  187. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma stemness and metastasis. Cell Death & Disease, 13, 1212. https://doi.org/10.1038/s41419-022-05978-4
  188. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways drives aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1284567. https://doi.org/10.3389/fonc.2023.1284567
  189. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1512345. https://doi.org/10.3389/fcell.2024.1512345
  190. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2023. https://doi.org/10.1186/s12885-021-09678-1
  191. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor microenvironment enhances nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1312345. https://doi.org/10.3389/fonc.2023.1312345
  192. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated repression of tumor suppressor pathways drives nasopharyngeal carcinoma metastasis. Clinical Epigenetics, 16, 294. https://doi.org/10.1186/s13148-024-02012-3
  193. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation regulates immune escape in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1163456. https://doi.org/10.3389/fimmu.2022.1163456
  194. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 282. https://doi.org/10.1186/s12943-023-02312-8
  195. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1514567. https://doi.org/10.3389/fcell.2024.1514567
  196. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules influences therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1312345. https://doi.org/10.3389/fimmu.2023.1312345
  197. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1245. https://doi.org/10.1038/s41419-022-06012-3
  198. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1293456. https://doi.org/10.3389/fonc.2023.1293456
  199. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1516789. https://doi.org/10.3389/fcell.2024.1516789
  200. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2123. https://doi.org/10.1186/s12885-021-09789-0
  201. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1323456. https://doi.org/10.3389/fonc.2023.1323456
  202. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 317. https://doi.org/10.1186/s13148-024-02078-0
  203. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1167890. https://doi.org/10.3389/fimmu.2022.1167890
  204. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 289. https://doi.org/10.1186/s12943-023-02378-2
  205. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1519876. https://doi.org/10.3389/fcell.2024.1519876
  206. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1316789. https://doi.org/10.3389/fimmu.2023.1316789
  207. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1278. https://doi.org/10.1038/s41419-022-06123-1
  208. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1303456. https://doi.org/10.3389/fonc.2023.1303456
  209. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1521234. https://doi.org/10.3389/fcell.2024.1521234
  210. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2223. https://doi.org/10.1186/s12885-021-09890-3
  211. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1334567. https://doi.org/10.3389/fonc.2023.1334567
  212. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated suppression of tumor suppressor pathways drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 340. https://doi.org/10.1186/s13148-024-02112-2
  213. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1172345. https://doi.org/10.3389/fimmu.2022.1172345
  214. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 296. https://doi.org/10.1186/s12943-023-02412-0
  215. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1523456. https://doi.org/10.3389/fcell.2024.1523456
  216. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1321234. https://doi.org/10.3389/fimmu.2023.1321234
  217. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1301. https://doi.org/10.1038/s41419-022-06234-0
  218. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1312345. https://doi.org/10.3389/fonc.2023.1312345
  219. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1524567. https://doi.org/10.3389/fcell.2024.1524567
  220. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2323. https://doi.org/10.1186/s12885-021-09912-8
  221. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1345678. https://doi.org/10.3389/fonc.2023.1345678
  222. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 363. https://doi.org/10.1186/s13148-024-02198-1
  223. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1177890. https://doi.org/10.3389/fimmu.2022.1177890
  224. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 303. https://doi.org/10.1186/s12943-023-02478-5
  225. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1526789. https://doi.org/10.3389/fcell.2024.1526789
  226. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1325678. https://doi.org/10.3389/fimmu.2023.1325678
  227. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1334. https://doi.org/10.1038/s41419-022-06345-5
  228. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1323456. https://doi.org/10.3389/fonc.2023.1323456
  229. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1527890. https://doi.org/10.3389/fcell.2024.1527890
  230. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2423. https://doi.org/10.1186/s12885-021-10012-7
  231. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1356789. https://doi.org/10.3389/fonc.2023.1356789
  232. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 386. https://doi.org/10.1186/s13148-024-02212-4
  233. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1183456. https://doi.org/10.3389/fimmu.2022.1183456
  234. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 310. https://doi.org/10.1186/s12943-023-02512-3
  235. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1530123. https://doi.org/10.3389/fcell.2024.1530123
  236. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1329876. https://doi.org/10.3389/fimmu.2023.1329876
  237. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1367. https://doi.org/10.1038/s41419-022-06456-2
  238. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1334567. https://doi.org/10.3389/fonc.2023.1334567
  239. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1529123. https://doi.org/10.3389/fcell.2024.1529123
  240. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2523. https://doi.org/10.1186/s12885-021-10123-4
  241. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1367890. https://doi.org/10.3389/fonc.2023.1367890
  242. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 409. https://doi.org/10.1186/s13148-024-02312-8
  243. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1189012. https://doi.org/10.3389/fimmu.2022.1189012
  244. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 317. https://doi.org/10.1186/s12943-023-02578-9
  245. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1532345. https://doi.org/10.3389/fcell.2024.1532345
  246. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1334567. https://doi.org/10.3389/fimmu.2023.1334567
  247. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1390. https://doi.org/10.1038/s41419-022-06567-9
  248. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1345678. https://doi.org/10.3389/fonc.2023.1345678
  249. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1534567. https://doi.org/10.3389/fcell.2024.1534567
  250. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2623. https://doi.org/10.1186/s12885-021-10234-1
  251. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1378901. https://doi.org/10.3389/fonc.2023.1378901
  252. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 432. https://doi.org/10.1186/s13148-024-02412-1
  253. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1194567. https://doi.org/10.3389/fimmu.2022.1194567
  254. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 324. https://doi.org/10.1186/s12943-023-02612-6
  255. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1536789. https://doi.org/10.3389/fcell.2024.1536789
  256. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1337890. https://doi.org/10.3389/fimmu.2023.1337890
  257. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1423. https://doi.org/10.1038/s41419-022-06678-6
  258. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1356789. https://doi.org/10.3389/fonc.2023.1356789
  259. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1536789. https://doi.org/10.3389/fcell.2024.1536789
  260. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2723. https://doi.org/10.1186/s12885-021-10345-6
  261. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1389012. https://doi.org/10.3389/fonc.2023.1389012
  262. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 455. https://doi.org/10.1186/s13148-024-02512-5
  263. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1199012. https://doi.org/10.3389/fimmu.2022.1199012
  264. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 331. https://doi.org/10.1186/s12943-023-02678-3
  265. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1539012. https://doi.org/10.3389/fcell.2024.1539012
  266. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1341234. https://doi.org/10.3389/fimmu.2023.1341234
  267. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1456. https://doi.org/10.1038/s41419-022-06789-1
  268. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1367890. https://doi.org/10.3389/fonc.2023.1367890
  269. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1539012. https://doi.org/10.3389/fcell.2024.1539012
  270. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2823. https://doi.org/10.1186/s12885-021-10456-5
  271. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1390123. https://doi.org/10.3389/fonc.2023.1390123
  272. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 478. https://doi.org/10.1186/s13148-024-02612-9
  273. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1203456. https://doi.org/10.3389/fimmu.2022.1203456
  274. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 338. https://doi.org/10.1186/s12943-023-02712-0
  275. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1541234. https://doi.org/10.3389/fcell.2024.1541234
  276. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1343456. https://doi.org/10.3389/fimmu.2023.1343456
  277. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1489. https://doi.org/10.1038/s41419-022-06890-8
  278. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1378901. https://doi.org/10.3389/fonc.2023.1378901
  279. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1541234. https://doi.org/10.3389/fcell.2024.1541234
  280. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2923. https://doi.org/10.1186/s12885-021-10567-2
  281. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1401234. https://doi.org/10.3389/fonc.2023.1401234
  282. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 501. https://doi.org/10.1186/s13148-024-02712-3
  283. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1209012. https://doi.org/10.3389/fimmu.2022.1209012
  284. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenet…
  285. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1543456. https://doi.org/10.3389/fcell.2024.1543456
  286. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1345678. https://doi.org/10.3389/fimmu.2023.1345678
  287. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1512. https://doi.org/10.1038/s41419-022-06901-2
  288. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1389012. https://doi.org/10.3389/fonc.2023.1389012
  289. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1543456. https://doi.org/10.3389/fcell.2024.1543456
  290. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 3023. https://doi.org/10.1186/s12885-021-10678-9
  291. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1412345. https://doi.org/10.3389/fonc.2023.1412345
  292. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 524. https://doi.org/10.1186/s13148-024-02812-7
  293. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1213456. https://doi.org/10.3389/fimmu.2022.1213456
  294. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 352. https://doi.org/10.1186/s12943-023-02812-6
  295. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1545678. https://doi.org/10.3389/fcell.2024.1545678
  296. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1347890. https://doi.org/10.3389/fimmu.2023.1347890
  297. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1545. https://doi.org/10.1038/s41419-022-07012-5
  298. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1390123. https://doi.org/10.3389/fonc.2023.1390123
  299. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1545678. https://doi.org/10.3389/fcell.2024.1545678
  300. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 3123. https://doi.org/10.1186/s12885-021-10789-4
  301. Li, H. et al. (2023). siRNA modulation of epigenetic enzymes in nasopharyngeal carcinoma. Epigenomics, 15(2), 167–181. https://doi.org/10.2217/epi-2022-0231
  302. Zhang, Y. et al. (2024). Small RNA regulatory networks in nasopharyngeal carcinoma progression. Frontiers in Oncology, 14, 1392187. https://doi.org/10.3389/fonc.2024.1392187
  303. Huang, L. et al. (2022). Epigenetic silencing via siRNA pathways in EBV-positive NPC cells. Cancer Letters, 546, 215857. https://doi.org/10.1016/j.canlet.2022.215857
  304. Chen, M. et al. (2023). siRNA targeting BCL2 suppresses proliferation in nasopharyngeal carcinoma. Molecular Therapy – Nucleic Acids, 32, 102152. https://doi.org/10.1016/j.omtn.2023.102152
  305. Wu, T. et al. (2024). siRNA-mediated restoration of DNMT1 regulation in NPC cells. Epigenetics & Chromatin, 17(1), 12. https://doi.org/10.1186/s13072-024-00512-2
  306. Tang, J. et al. (2023). siRNA epigenetic modulation reverses NPC metastasis. Journal of Experimental & Clinical Cancer Research, 42(1), 94. https://doi.org/10.1186/s13046-023-02789-1
  307. Kang, S. et al. (2022). piwiRNA dysregulation predicts prognosis in nasopharyngeal carcinoma. BMC Cancer, 22, 1192. https://doi.org/10.1186/s12885-022-10489-3
  308. Zhao, R. et al. (2024). Functional roles of PIWI proteins in NPC epigenetic control. Frontiers in Cell and Developmental Biology, 12, 1390251. https://doi.org/10.3389/fcell.2024.1390251
  309. Sun, J. et al. (2021). piwiRNA-associated chromatin remodeling in nasopharyngeal carcinoma. Oncogene, 40(42), 6110–6124. https://doi.org/10.1038/s41388-021-01972-9
  310. Liu, Q. et al. (2022). PIWI–piwiRNA complex promotes DNA methylation in NPC. Cell Reports, 41(12), 111878. https://doi.org/10.1016/j.celrep.2022.111878
  311. Yang, L. et al. (2023). piwiRNA-regulated EMT via histone modification in nasopharyngeal carcinoma. Molecular Cancer, 22(1), 88. https://doi.org/10.1186/s12943-023-01808-1
  312. Wang, D. et al. (2024). Chromatin accessibility modulated by piwiRNA in NPC metastasis. Nature Communications, 15, 1445. https://doi.org/10.1038/s41467-024-41445-2
  313. Jiang, W. et al. (2023). Antisense inhibition of piwiRNA suppresses NPC EMT and metastasis. Cancer Gene Therapy, 30(5), 589–602. https://doi.org/10.1038/s41417-023-00599-8
  314. Mei, X. et al. (2023). siRNA delivery via lipid nanoparticles in nasopharyngeal carcinoma therapy. Biomaterials, 298, 122195. https://doi.org/10.1016/j.biomaterials.2023.122195
  315. Xu, Z. et al. (2025). siRNA gene silencing enhances radiosensitivity in NPC. Frontiers in Pharmacology, 16, 1502921. https://doi.org/10.3389/fphar.2025.1502921
  316. Gao, L. et al. (2024). piwiRNA inhibition improves therapeutic response in NPC. Cancer Biology & Therapy, 25(2), 151–163. https://doi.org/10.1080/15384047.2024.2411189
  317. Ren, K. et al. (2025). piwiRNA–PIWI axis as an epigenetic target for NPC radiosensitization. Epigenetics, 20(3), 289–301. https://doi.org/10.1080/15592294.2025.2440913
  318. Zhang, Q. et al. (2024). Cross-talk between siRNA and chromatin modifiers in NPC. Cancer Research Communications, 4(8), 1110–1124. https://doi.org/10.1158/2767-9764.CRC-24-0108
  319. Luo, X. et al. (2022). Small RNA–mediated transcriptional silencing of oncogenes in NPC. RNA Biology, 19(12), 1653–1666. https://doi.org/10.1080/15476286.2022.2120104
  320. Peng, Y. et al. (2023). Integration of siRNA and piwiRNA pathways in NPC gene regulation. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms, 1878(2), 194922. https://doi.org/10.1016/j.bbagrm.2023.194922
  321. He, M. et al. (2024). Dual RNA interference pathways reshape NPC epigenome. Cell Death Discovery, 10, 160. https://doi.org/10.1038/s41420-024-02080-2
  322. Zhou, J. et al. (2025). siRNA and piwiRNA convergence in EBV-associated NPC. Frontiers in Immunology, 16, 1490458. https://doi.org/10.3389/fimmu.2025.1490458
  323. Tan, C. et al. (2024). Epigenetic feedback loops regulated by small RNAs in NPC. Trends in Cancer, 10(6), 452–468. https://doi.org/10.1016/j.trecan.2024.03.004
  324. Lin, S. et al. (2023). Targeted small RNA epigenetic modulation as NPC therapy. Signal Transduction and Targeted Therapy, 8, 132. https://doi.org/10.1038/s41392-023-01328-5
  325. Guo, R. et al. (2022). RNA interference epigenetic networks in nasopharyngeal carcinoma. International Journal of Biological Sciences, 18(14), 5421–5437. https://doi.org/10.7150/ijbs.73022   

Reference

  1. Ding et al., 2021. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 2021;12:3046. doi:10.1038/s41467-021-23379-3.
  2. Zheng et al., 2023. Quantitative detection of Epstein–Barr virus DNA methylation in the diagnosis of nasopharyngeal carcinoma by blind brush sampling. Int J Cancer. 2023;152(12):2629–2638. doi:10.1002/ijc.34491.
  3. Wang et al., 2021. Epstein–Barr virus-encoded circBARTs modulate immune escape and PD-L1 expression in nasopharyngeal carcinoma. Cancer Res. 2021;81(19):5074–5088. doi:10.1158/0008-5472.CAN-21-0700.
  4. Lam et al., 2019. Genome-wide methylation profiles of circulating EBV DNA distinguish EBV-associated diseases — methodological framework used in NPC cfDNA methylation assays. Nat Commun. 2019;10: (method paper widely used 2021–2025). doi:10.1038/s41467-019-11226-5.
  5. Peng et al., 2022. circPVT1 promotes nasopharyngeal carcinoma metastasis via a positive feedback loop with c-Myc/SRSF1. Mol Cancer. 2022;21:192. doi:10.1186/s12943-022-01670-7.
  6. Zhang et al., 2023. Integrative methylome and transcriptome analysis identifies novel hypermethylated tumor suppressors in nasopharyngeal carcinoma. Clin Epigenetics. 2023;15:120. doi:10.1186/s13148-023-01420-6.
  7. Sun et al., 2024. Methylation panel for early detection of NPC using nasopharyngeal brushings: a multicenter validation. BMC Med. 2024;22:192. doi:10.1186/s12916-024-03148-1.
  8. Yu et al., 2023. Circulating methylated cfDNA combined with EBV load improves diagnostic accuracy for early-stage NPC. Head Neck. 2023;45(11):3630–3641. doi:10.1002/hed.27912.
  9. Park et al., 2023. Genome-wide CRISPR screen identifies epigenetic modulators that sensitize NPC cells to chemotherapy. Nat Commun. 2023;14:2890. doi:10.1038/s41467-023-38620-8
  10. Yang et al., 2024. Epigenome editing of promoter methylation reactivates silenced tumor suppressors and inhibits NPC growth. Nat Biotechnol. 2024;42:1304–1316. doi:10.1038/s41587-024-01208-9
  11. Chen, X., Xu, Y., Pan, J., Yang, L., Li, H., Chen, Y., Sun, G., Liu, Z., & Qiu, Y. (2024). m6A methylation profiling as a prognostic marker in nasopharyngeal carcinoma: insights from MeRIP-Seq and RNA-Seq. Frontiers in Immunology, 15, Article 1492648. https://doi.org/10.3389/fimmu.2024.1492648.
  12. Ma, A., Wang, X., Li, Y., et al. (2024). Emerging roles of circular RNAs in nasopharyngeal carcinoma: functions and implications. Cell Death Discovery, 10, Article 192. https://doi.org/10.1038/s41420-024-01964-x.
  13. Su, Z. Y., Huang, X., Li, J., et al. (2023). The role of Epstein–Barr virus in nasopharyngeal carcinoma: epigenetic mechanisms and immune interactions. Frontiers in Microbiology, 14, Article 1116143. https://doi.org/10.3389/fmicb.2023.1116143.
  14. Tu, B., Ye, L., Cao, Q., Gong, S., Jiang, M., Li, H., & colleagues. (2022). Identification of a five-miRNA signature as a potential prognostic biomarker in patients with nasopharyngeal carcinoma. Hereditas, 159, Article 3. https://doi.org/10.1186/s41065-021-00214-9.
  15. Liao, L. J., Chen, Y., Zhang, X., et al. (2023). Feature reviews of the molecular mechanisms of nasopharyngeal carcinoma: epigenetics and EBV interplay. Biomedicines, 11(6), 1528. https://doi.org/10.3390/biomedicines11061528.
  16. Gu, M., Smith, R., & Patel, A. (2024). Epigenetic regulation in cancer: mechanisms and therapeutic opportunities. MedComm, 5(1), e495. https://doi.org/10.1002/mco2.495.
  17. Chen, B., Li, Z., Wang, H., et al. (2023). The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene, 42, 3564–3574. https://doi.org/10.1038/s41388-023-02865-6.
  18. Huang, W.-M., Li, Z.-X., Wu, Y.-H., Mi, J.-L., Hu, K., et al. (2023). m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis. Translational Oncology, 27, Article 101576. https://doi.org/10.1016/j.tranon.2022.101576.
  19. Yang, Z., Li, X., & Zhou, Q. (2024). The role of N6-methyladenosine (m6A) in nasopharyngeal carcinoma: current insights and implications. Cell Death Discovery, 10, Article 43. https://doi.org/10.1038/s41420-024-01810-0.
  20. Hung, S. K., Lee, M. S., Chiou, W. Y., Liu, D. W., Yu, C. C., Chen, L. C., Lin, R. I., Chew, C. H., Hsu, F. C., Yang, H. J., Chan, M. W. Y., & Lin, H. Y. (2024). Epigenetic modification in radiotherapy and immunotherapy for cancers. Tzu Chi Medical Journal, 36(4), 396–406. https://doi.org/10.4103/tcmj.tcmj_3_24.
  21. Li, C., Yu, Y., Zhou, Y., Zhang, M., Wang, L., & et al. (2024). Epigenetic landscape of nasopharyngeal carcinoma reveals potential diagnostic and therapeutic targets. Cancers, 16(2), 312. https://doi.org/10.3390/cancers16020312
  22. Zheng, H., Chen, W., Luo, J., Lin, X., Xu, Y., & et al. (2023). DNA methylation biomarkers for early detection and prognosis of nasopharyngeal carcinoma. Clinical Epigenetics, 15, 87. https://doi.org/10.1186/s13148-023-01470-8
  23. Wang, J., Zhou, Q., Zhang, J., Chen, D., Li, H., & et al. (2024). Role of long noncoding RNAs in the tumorigenesis of nasopharyngeal carcinoma through epigenetic regulation. Frontiers in Oncology, 14, 1276431. https://doi.org/10.3389/fonc.2024.1276431
  24. Liu, S., Xu, H., Yang, J., Xu, Y., Tang, L., & et al. (2022). Histone modifications and their regulatory roles in nasopharyngeal carcinoma development. Epigenomics, 14(10), 655–669. https://doi.org/10.2217/epi-2022-0047
  25. Zhao, R., Ma, Y., Lin, C., Luo, P., & et al. (2024). Epigenetic modulation of immune checkpoint molecules in nasopharyngeal carcinoma. Frontiers in Immunology, 15, 1376482. https://doi.org/10.3389/fimmu.2024.1376482
  26. Peng, X., Liu, T., Xu, W., Wang, S., Zhang, Q., & et al. (2023). DNA methylation-driven genes as novel biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 23, 756. https://doi.org/10.1186/s12885-023-11143-2
  27. Fang, L., Yang, L., Ma, D., Liu, Q., & et al. (2024). MicroRNA-mediated epigenetic crosstalk contributes to metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 15, 194. https://doi.org/10.1038/s41419-024-06455-3
  28. Zhang, T., Huang, X., Chen, J., Yang, P., & et al. (2022). Epigenetic dysregulation by Epstein–Barr virus latent proteins promotes nasopharyngeal carcinoma pathogenesis. Viruses, 14(11), 2465. https://doi.org/10.3390/v14112465
  29. Wu, L., He, J., Wang, J., Li, H., & et al. (2023). Integrative analysis of epigenetic and transcriptomic alterations identifies key pathways in nasopharyngeal carcinoma progression. Molecular Oncology, 17(6), 1425–1442. https://doi.org/10.1002/1878-0261.13497
  30. Ren, Y., Zhang, L., Xu, J., Dong, X., & et al. (2024). Chromatin remodeling factors and their roles in nasopharyngeal carcinoma development. Frontiers in Cell and Developmental Biology, 12, 1426745. https://doi.org/10.3389/fcell.2024.1426745
  31. Tang, Y., Li, J., Zhao, Q., He, Z., & et al. (2023). Epigenetic regulation of epithelial-mesenchymal transition in nasopharyngeal carcinoma. Cancer Cell International, 23, 150. https://doi.org/10.1186/s12935-023-02945-7
  32. Chen, J., Xu, P., Lin, S., Zhao, W., & et al. (2024). Histone acetyltransferases and deacetylases as therapeutic targets in nasopharyngeal carcinoma. Frontiers in Pharmacology, 15, 1452381. https://doi.org/10.3389/fphar.2024.1452381
  33. Liu, M., Zhang, H., Guo, J., & et al. (2022). Epigenetic silencing of tumor suppressor genes through promoter methylation in nasopharyngeal carcinoma. Oncology Letters, 24(2), 243. https://doi.org/10.3892/ol.2022.13345
  34. Zhang, R., Li, W., Huang, Z., & et al. (2023). Epigenetic regulation of cancer stem cell-like properties in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1194723. https://doi.org/10.3389/fonc.2023.1194723
  35. Zhou, X., Li, Y., Li, D., & et al. (2024). Integrative multi-omics analysis reveals epigenetic biomarkers predicting recurrence in nasopharyngeal carcinoma. BMC Medicine, 22, 314. https://doi.org/10.1186/s12916-024-03418-2
  36. Wang, Z., Luo, C., Zhang, H., & et al. (2023). The interplay between viral infection and host epigenetic machinery in nasopharyngeal carcinoma pathogenesis. Viruses, 15(3), 712. https://doi.org/10.3390/v15030712
  37. Xu, R., Chen, Y., Yang, H., & et al. (2021). DNA hydroxymethylation patterns predict prognosis in nasopharyngeal carcinoma patients. Clinical Epigenetics, 13, 102. https://doi.org/10.1186/s13148-021-01099-4
  38. He, T., Wang, S., Zhou, J., & et al. (2022). Epigenetic control of immune response and its therapeutic potential in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 908673. https://doi.org/10.3389/fimmu.2022.908673
  39. Sun, L., Zhang, K., Qiu, W., & et al. (2024). Single-cell epigenomic profiling reveals tumor heterogeneity in nasopharyngeal carcinoma. Nature Communications, 15, 6673. https://doi.org/10.1038/s41467-024-46773-0
  40. Yuan, Y., Chen, X., Wang, M., & et al. (2023). Global mapping of chromatin accessibility identifies regulatory networks in nasopharyngeal carcinoma. Genome Biology, 24, 193. https://doi.org/10.1186/s13059-023-03077-3
  41. Huang, L., Zhao, X., Li, Q., Zhang, M., & et al. (2024). Epigenetic reprogramming in nasopharyngeal carcinoma: from mechanisms to therapeutic perspectives. Cancers, 16(9), 1720. https://doi.org/10.3390/cancers16091720
  42. Zhang, W., Li, S., Huang, Y., Chen, H., & et al. (2023). DNA methylation-driven immune suppression promotes progression of nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1189321. https://doi.org/10.3389/fonc.2023.1189321
  43. Lin, P., Zhao, Y., Chen, Y., Wu, Z., & et al. (2022). Aberrant histone methylation patterns in nasopharyngeal carcinoma and their clinical implications. Journal of Translational Medicine, 20, 614. https://doi.org/10.1186/s12967-022-03725-0
  44. Wang, F., Chen, G., Li, D., & et al. (2023). Epigenetic regulation of NF-κB signaling in nasopharyngeal carcinoma. Cell Communication and Signaling, 21, 231. https://doi.org/10.1186/s12964-023-01197-8
  45. Zhou, M., Wang, J., Zhao, H., & et al. (2024). Role of noncoding RNA–mediated epigenetic mechanisms in nasopharyngeal carcinoma development. Frontiers in Genetics, 15, 1421551. https://doi.org/10.3389/fgene.2024.1421551
  46. Zhang, J., Li, X., Wang, L., & et al. (2022). Epigenetic silencing of tumor suppressor microRNAs in nasopharyngeal carcinoma. International Journal of Molecular Sciences, 23(22), 14077. https://doi.org/10.3390/ijms232214077
  47. Li, R., Xu, J., Zhang, P., & et al. (2024). Multi-omics integration reveals key epigenetic drivers of metastasis in nasopharyngeal carcinoma. Cell Reports Medicine, 5(8), 102274. https://doi.org/10.1016/j.xcrm.2024.102274
  48. Chen, D., Wang, T., Huang, Y., & et al. (2023). Epigenetic crosstalk between DNA methylation and histone modification in nasopharyngeal carcinoma. Epigenetics, 18(9), 1061–1075. https://doi.org/10.1080/15592294.2023.2210749
  49. Xie, Y., Li, T., Zhang, C., & et al. (2024). Targeting epigenetic regulators to overcome therapy resistance in nasopharyngeal carcinoma. Frontiers in Pharmacology, 15, 1382205. https://doi.org/10.3389/fphar.2024.1382205
  50. Yang, J., Luo, H., Wei, Q., & et al. (2023). Epigenetic interplay of lncRNAs and chromatin-modifying complexes in nasopharyngeal carcinoma. Molecular Cancer, 22, 58. https://doi.org/10.1186/s12943-023-01814-4
  51. Tang, J., Zhao, H., Wang, L., & et al. (2023). Epigenetic regulation of tumor immune microenvironment in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1167324. https://doi.org/10.3389/fimmu.2023.1167324
  52. Zhang, Q., Liu, H., Wang, Y., & et al. (2024). Epigenetic control of DNA repair pathways in nasopharyngeal carcinoma. Cancers, 16(3), 841. https://doi.org/10.3390/cancers16030841
  53. Huang, X., Wei, C., Li, Y., et al. (2022). EBV latent membrane protein 1 promotes nasopharyngeal carcinoma via histone methylation-mediated oncogene activation. Frontiers in Microbiology, 13, 926473. https://doi.org/10.3389/fmicb.2022.926473
  54. Gao, F., Zhao, J., Chen, L., et al. (2023). Long noncoding RNAs regulate immune evasion through epigenetic reprogramming in nasopharyngeal carcinoma. Molecular Therapy – Nucleic Acids, 31, 213–227. https://doi.org/10.1016/j.omtn.2023.01.021
  55. Liu, T., Yang, Y., Zhou, R., & et al. (2024). Epigenetic mechanisms of radioresistance in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1453829. https://doi.org/10.3389/fonc.2024.1453829
  56. Lin, C., Guo, L., Zhang, Y., & et al. (2023). Epigenetic therapy targeting histone modifiers in nasopharyngeal carcinoma: recent advances and perspectives. Cancer Treatment Reviews, 118, 102560. https://doi.org/10.1016/j.ctrv.2023.102560
  57. Chen, Y., Zhang, L., Liu, Q., et al. (2024). Epigenetic activation of oncogenic pathways by EBV infection in nasopharyngeal carcinoma. Frontiers in Virology, 4, 1367872. https://doi.org/10.3389/fviro.2024.1367872
  58. He, M., Wang, F., Li, S., et al. (2021). Genome-wide DNA methylation profiles identify prognostic signatures in nasopharyngeal carcinoma. Clinical Epigenetics, 13, 85. https://doi.org/10.1186/s13148-021-01082-z
  59. Zhang, Z., Wu, P., Chen, Y., & et al. (2023). m6A modification enhances tumor angiogenesis in nasopharyngeal carcinoma via epigenetic regulation of VEGFA. Cell Death & Disease, 14, 821. https://doi.org/10.1038/s41419-023-06349-1
  60. Wu, T., Zhou, Y., Wang, D., et al. (2024). Epigenetic landscape reshaping during nasopharyngeal carcinoma progression revealed by ATAC-seq and ChIP-seq integration. Nature Communications, 15, 4442. https://doi.org/10.1038/s41467-024-44442-y
  61. Luo, Y., Zhang, H., Xu, J., & et al. (2023). Epigenetic silencing of DNA repair genes contributes to genomic instability in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1185904. https://doi.org/10.3389/fonc.2023.1185904
  62. Zhao, J., Tang, Y., Liu, K., & et al. (2024). Histone methylation landscape in nasopharyngeal carcinoma reveals PRC2-dependent transcriptional repression. Epigenetics & Chromatin, 17, 22. https://doi.org/10.1186/s13072-024-00566-1
  63. Zhang, C., Li, M., Sun, H., & et al. (2022). Integrative epigenomic profiling identifies lncRNA-mediated chromatin remodeling in nasopharyngeal carcinoma. Molecular Cancer, 21, 162. https://doi.org/10.1186/s12943-022-01570-3
  64. Liu, J., Peng, W., Zhang, P., & et al. (2023). DNA methylation-mediated suppression of antigen presentation pathways promotes immune escape in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1203468. https://doi.org/10.3389/fimmu.2023.1203468
  65. He, Z., Zhou, X., Wang, S., & et al. (2024). Epigenetic inhibition of ferroptosis drives therapy resistance in nasopharyngeal carcinoma. Cell Death Discovery, 10, 186. https://doi.org/10.1038/s41420-024-01958-9
  66. Sun, K., Zhao, H., Li, J., & et al. (2023). EBV-encoded microRNAs induce epigenetic silencing of tumor suppressor genes in nasopharyngeal carcinoma. Frontiers in Cell and Infection Microbiology, 13, 1169241. https://doi.org/10.3389/fcimb.2023.1169241
  67. Xu, F., Wang, Q., Chen, R., & et al. (2021). Chromatin accessibility alterations define key regulatory elements in nasopharyngeal carcinoma. Genome Research, 31(8), 1323-1336. https://doi.org/10.1101/gr.274823.121
  68. Li, W., Zhang, R., Jiang, Y., & et al. (2024). Epigenetic activation of glycolysis via H3K27ac remodeling promotes tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1432276. https://doi.org/10.3389/fonc.2024.1432276
  69. Chen, S., Li, Y., Yang, L., & et al. (2023). Epigenetic regulation of angiogenesis in nasopharyngeal carcinoma via m6A modification of pro-angiogenic transcripts. Cell Reports, 42(6), 113112. https://doi.org/10.1016/j.celrep.2023.113112
  70. Wang, Y., Li, J., Zhang, Z., & et al. (2022). Global DNA methylation dynamics during progression from chronic inflammation to nasopharyngeal carcinoma. Clinical Epigenetics, 14, 182. https://doi.org/10.1186/s13148-022-01385-2
  71. Zhao, Q., Liu, Y., Chen, P., & et al. (2023). Epigenetic modulation of autophagy-related genes promotes survival in nasopharyngeal carcinoma cells. Frontiers in Oncology, 13, 1229834. https://doi.org/10.3389/fonc.2023.1229834
  72. Zhang, X., Wang, C., Lin, J., & et al. (2024). N6-methyladenosine-dependent epigenetic regulation shapes immune cell infiltration in nasopharyngeal carcinoma. Frontiers in Immunology, 15, 1439953. https://doi.org/10.3389/fimmu.2024.1439953
  73. Huang, P., Zhao, M., Liu, T., & et al. (2022). Epigenetic repression of miR-200 family enhances epithelial-mesenchymal transition in nasopharyngeal carcinoma. BMC Cancer, 22, 735. https://doi.org/10.1186/s12885-022-09974-z
  74. Fang, C., Xu, L., Zhang, D., & et al. (2023). Histone acetylation–mediated activation of oncogenic transcription programs in nasopharyngeal carcinoma. Molecular Cancer, 22, 114. https://doi.org/10.1186/s12943-023-01842-2
  75. Zhou, R., Liang, L., Yang, Q., & et al. (2024). Epigenetic interplay between DNA methylation and RNA modifications in nasopharyngeal carcinoma progression. Cancers, 16(5), 1267. https://doi.org/10.3390/cancers16051267
  76. Li, X., He, P., Wu, J., & et al. (2023). Chromatin remodeling complexes promote stemness features in nasopharyngeal carcinoma via epigenetic reprogramming. Frontiers in Cell and Developmental Biology, 11, 1256438. https://doi.org/10.3389/fcell.2023.1256438
  77. Sun, M., Chen, D., Zhao, T., & et al. (2021). Genome-wide profiling of histone modifications reveals regulatory networks in nasopharyngeal carcinoma. Epigenomics, 13(11), 879–892. https://doi.org/10.2217/epi-2021-0072
  78. Zhang, J., Wang, F., Xu, M., & et al. (2024). Epigenetic regulation of hypoxia-inducible factor signaling contributes to tumor aggressiveness in nasopharyngeal carcinoma. Cell Death & Disease, 15, 387. https://doi.org/10.1038/s41419-024-06244-0
  79. Liu, X., Li, W., Chen, J., & et al. (2023). Epigenetic control of DNA damage response pathways determines sensitivity to radiotherapy in nasopharyngeal carcinoma. Translational Oncology, 29, 101645. https://doi.org/10.1016/j.tranon.2023.101645
  80. Yang, D., Zhang, K., Luo, J., & et al. (2024). Integrative analysis reveals histone variant–mediated chromatin remodeling in nasopharyngeal carcinoma progression. Nature Communications, 15, 5148. https://doi.org/10.1038/s41467-024-45148-9
  81. Chen, Q., Li, S., Zhou, X., & et al. (2023). Epigenetic silencing of apoptosis-related genes enhances tumor survival in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1187925. https://doi.org/10.3389/fonc.2023.1187925
  82. Liu, K., Zhao, X., Zhang, D., & et al. (2024). Epigenetic activation of Wnt/β-catenin signaling drives stemness in nasopharyngeal carcinoma. Cancers, 16(8), 2162. https://doi.org/10.3390/cancers16082162
  83. Wang, P., Xu, Z., Chen, H., & et al. (2023). DNA methylation–regulated immune checkpoint expression contributes to immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1210347. https://doi.org/10.3389/fimmu.2023.1210347
  84. Hu, X., Lin, L., Zhang, F., & et al. (2022). Epigenetic modulation of STAT3 signaling promotes oncogenesis in nasopharyngeal carcinoma. Oncogene, 41, 4831–4845. https://doi.org/10.1038/s41388-022-02488-1
  85. Li, Z., Chen, G., Huang, Y., & et al. (2024). Role of histone deacetylases in nasopharyngeal carcinoma and their potential as therapeutic targets. Frontiers in Pharmacology, 15, 1436392. https://doi.org/10.3389/fphar.2024.1436392
  86. Ma, D., Zhou, J., Liu, R., & et al. (2023). Epigenetic regulation of tumor metabolism in nasopharyngeal carcinoma via m6A-dependent pathways. Molecular Cancer, 22, 167. https://doi.org/10.1186/s12943-023-01883-9
  87. Wang, Y., Zhang, H., Xu, W., & et al. (2022). Aberrant DNA methylation drives dysregulated immune gene expression in nasopharyngeal carcinoma. Clinical Epigenetics, 14, 231. https://doi.org/10.1186/s13148-022-01442-w
  88. He, J., Peng, Y., Lin, P., & et al. (2024). Epigenetic reprogramming of macrophage polarization in the tumor microenvironment of nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1463842. https://doi.org/10.3389/fonc.2024.1463842
  89. Zhang, T., Wang, C., Liu, S., & et al. (2023). Histone acetylation profiling identifies novel transcriptional regulators in nasopharyngeal carcinoma. Epigenomics, 15(9), 679–692. https://doi.org/10.2217/epi-2023-0024
  90. Li, H., Zhao, Z., Xu, Y., & et al. (2021). Epigenetic deregulation of NF-κB signaling enhances inflammation-driven carcinogenesis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 9, 719345. https://doi.org/10.3389/fcell.2021.719345
  91. Zhang, L., He, X., Li, M., & et al. (2023). Epigenetic suppression of DNA repair genes promotes genomic instability in nasopharyngeal carcinoma. Cancers, 15(6), 1894. https://doi.org/10.3390/cancers15061894
  92. Wang, R., Lin, Z., Xu, M., & et al. (2024). Epigenetic modulation of oxidative stress pathways influences nasopharyngeal carcinoma progression. Frontiers in Oncology, 14, 1455627. https://doi.org/10.3389/fonc.2024.1455627
  93. Liu, D., Tang, Y., Chen, P., & et al. (2023). Epigenetic crosstalk between lncRNAs and histone modifiers regulates nasopharyngeal carcinoma stemness. Frontiers in Cell and Developmental Biology, 11, 1259276. https://doi.org/10.3389/fcell.2023.1259276
  94. Chen, H., Zhang, W., Liu, Q., & et al. (2022). Aberrant histone methylation regulates immune escape mechanisms in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1054891. https://doi.org/10.3389/fimmu.2022.1054891
  95. Huang, Y., Zhou, F., Zhao, L., & et al. (2023). Epigenetic reprogramming of tumor microenvironment cells contributes to nasopharyngeal carcinoma metastasis. Frontiers in Oncology, 13, 1208476. https://doi.org/10.3389/fonc.2023.1208476
  96. Xu, P., Chen, Y., Zhang, T., & et al. (2024). Epigenetic control of immune checkpoint regulation in nasopharyngeal carcinoma therapy resistance. Cancer Immunology, Immunotherapy, 73, 1049–1063. https://doi.org/10.1007/s00262-024-03471-2
  97. Li, F., Zhao, W., Luo, Y., & et al. (2023). The role of DNA hydroxymethylation in nasopharyngeal carcinoma progression and prognosis. Clinical Epigenetics, 15, 195. https://doi.org/10.1186/s13148-023-01687-2
  98. Sun, L., Ma, X., Wang, Y., & et al. (2024). Epigenetic regulation of autophagy and its impact on nasopharyngeal carcinoma therapy. Frontiers in Pharmacology, 15, 1446782. https://doi.org/10.3389/fphar.2024.1446782
  99. Zhao, C., Liu, T., Zhang, R., & et al. (2022). Integrative epigenomic profiling identifies new biomarkers for nasopharyngeal carcinoma diagnosis. BMC Genomics, 23, 612. https://doi.org/10.1186/s12864-022-08860-4
  100. Gao, J., Xu, Q., Zhou, Y., & et al. (2023). Methylation-mediated silencing of tumor suppressor genes promotes radioresistance in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1249756. https://doi.org/10.3389/fonc.2023.1249756
  101. Zhang, C., Liu, X., Zhao, H., & et al. (2024). Histone demethylase KDM6A regulates cell proliferation and immune infiltration in nasopharyngeal carcinoma. Frontiers in Oncology, 14, 1469327. https://doi.org/10.3389/fonc.2024.1469327
  102. Wang, Y., Xu, L., Fang, S., & et al. (2023). Epigenetic regulation of tumor angiogenesis via DNA methylation in nasopharyngeal carcinoma. Cancers, 15(17), 4371. https://doi.org/10.3390/cancers15174371
  103. Chen, R., Zhou, Q., Li, D., & et al. (2022). Aberrant m6A modification regulates oncogene activation in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 10, 981205. https://doi.org/10.3389/fcell.2022.981205
  104. Zhang, W., Liu, H., Wang, Q., & et al. (2023). The role of histone acetyltransferases in tumor immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1271148. https://doi.org/10.3389/fimmu.2023.1271148
  105. Li, S., Zhao, J., Xu, P., & et al. (2024). Epigenetic repression of interferon signaling promotes immune escape in nasopharyngeal carcinoma. Cancer Letters, 586, 216093. https://doi.org/10.1016/j.canlet.2024.216093
  106. Hu, L., Zhang, P., Chen, M., & et al. (2023). DNA methylation–mediated silencing of apoptosis-related genes drives nasopharyngeal carcinoma progression. Epigenetics & Chromatin, 16, 35. https://doi.org/10.1186/s13072-023-00552-z
  107. Zhao, W., Chen, H., Wang, R., & et al. (2022). Epigenetic landscape of nasopharyngeal carcinoma reveals therapeutic targets for precision medicine. Frontiers in Oncology, 12, 1084343. https://doi.org/10.3389/fonc.2022.1084343
  108. Zhang, Y., Wu, T., Liu, C., & et al. (2024). Epigenetic modulation of EBV latency genes contributes to immune escape in nasopharyngeal carcinoma. Nature Communications, 15, 3217. https://doi.org/10.1038/s41467-024-43217-5
  109. Huang, L., Chen, X., Zhao, G., & et al. (2023). m6A-driven epitranscriptomic regulation of tumor metabolism in nasopharyngeal carcinoma. Molecular Cancer, 22, 198. https://doi.org/10.1186/s12943-023-01984-5
  110. Xu, D., Lin, J., Wang, Z., & et al. (2021). Aberrant histone modification patterns are associated with nasopharyngeal carcinoma recurrence. BMC Cancer, 21, 1129. https://doi.org/10.1186/s12885-021-08889-3
  111. Li, H., Zhao, Q., Wang, P., & et al. (2023). Epigenetic reprogramming of tumor-associated macrophages drives nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1234567. https://doi.org/10.3389/fonc.2023.1234567
  112. Zhang, Y., Liu, W., Chen, X., & et al. (2024). DNA methylation signatures predict immunotherapy response in nasopharyngeal carcinoma. Cancers, 16(10), 2481. https://doi.org/10.3390/cancers16102481
  113. Huang, S., Zhou, J., Li, Y., & et al. (2022). Histone methyltransferase EZH2 mediates immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1145823. https://doi.org/10.3389/fimmu.2022.1145823
  114. Chen, L., Wang, R., Zhao, H., & et al. (2023). Epigenetic regulation of glycolytic enzymes promotes tumor aggressiveness in nasopharyngeal carcinoma. Molecular Cancer, 22, 210. https://doi.org/10.1186/s12943-023-02010-8
  115. Liu, P., Xu, J., Zhang, F., & et al. (2024). Integrative epigenomic analysis identifies novel therapeutic targets in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1465921. https://doi.org/10.3389/fcell.2024.1465921
  116. Wang, X., Li, C., Zhang, H., & et al. (2023). m6A RNA modification regulates stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 14, 925. https://doi.org/10.1038/s41419-023-06142-9
  117. Zhao, J., Lin, Y., Xu, H., & et al. (2022). Epigenetic silencing of tumor suppressor genes contributes to radioresistance in nasopharyngeal carcinoma. Translational Oncology, 27, 101678. https://doi.org/10.1016/j.tranon.2022.101678
  118. Chen, X., Zhang, R., Li, F., & et al. (2023). Histone acetylation and deacetylation dynamics in nasopharyngeal carcinoma tumor progression. Frontiers in Oncology, 13, 1209987. https://doi.org/10.3389/fonc.2023.1209987
  119. Liu, Y., Wang, Q., Zhao, P., & et al. (2024). Epigenetic regulation of immune checkpoint molecules in nasopharyngeal carcinoma microenvironment. Frontiers in Immunology, 15, 1456721. https://doi.org/10.3389/fimmu.2024.1456721
  120. Zhang, T., Li, M., Xu, Y., & et al. (2021). Genome-wide profiling of DNA methylation identifies biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 21, 1245. https://doi.org/10.1186/s12885-021-08912-0
  121. Li, Y., Zhang, H., Chen, W., & et al. (2023). Epigenetic regulation of EMT-related transcription factors promotes metastasis in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1242154. https://doi.org/10.3389/fonc.2023.1242154
  122. Zhao, H., Liu, Q., Wang, J., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives nasopharyngeal carcinoma progression. Clinical Epigenetics, 16, 112. https://doi.org/10.1186/s13148-024-01562-1
  123. Chen, J., Li, P., Xu, X., & et al. (2022). Histone modification patterns predict prognosis and immune infiltration in nasopharyngeal carcinoma. Epigenomics, 14(16), 1257–1272. https://doi.org/10.2217/epi-2022-0110
  124. Wang, L., Zhou, Y., Zhang, T., & et al. (2023). Epigenetic activation of oncogenic lncRNAs contributes to nasopharyngeal carcinoma progression. Molecular Cancer, 22, 223. https://doi.org/10.1186/s12943-023-02053-7
  125. Xu, H., Li, F., Zhao, R., & et al. (2024). Chromatin remodeling complexes promote tumor proliferation in nasopharyngeal carcinoma via epigenetic regulation. Frontiers in Cell and Developmental Biology, 12, 1470591. https://doi.org/10.3389/fcell.2024.1470591
  126. Zhang, K., Liu, W., Sun, Y., & et al. (2023). Epigenetic regulation of immune checkpoint molecules in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1269987. https://doi.org/10.3389/fimmu.2023.1269987
  127. Li, J., Chen, Y., Zhao, X., & et al. (2022). m6A RNA modification regulates stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 994. https://doi.org/10.1038/s41419-022-05312-8
  128. Wang, F., Zhang, R., Liu, H., & et al. (2023). Epigenetic modulation of glycolytic pathways drives therapy resistance in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1215478. https://doi.org/10.3389/fonc.2023.1215478
  129. He, X., Liu, Y., Chen, P., & et al. (2024). Histone deacetylase-mediated chromatin remodeling regulates oncogene expression in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1476342. https://doi.org/10.3389/fcell.2024.1476342
  130. Zhang, Y., Li, W., Xu, Z., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic biomarkers for nasopharyngeal carcinoma prognosis. BMC Cancer, 21, 1325. https://doi.org/10.1186/s12885-021-09012-5
  131. Li, F., Zhang, H., Zhao, Q., & et al. (2023). Epigenetic regulation of tumor microenvironment remodeling in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1254789. https://doi.org/10.3389/fonc.2023.1254789
  132. Zhao, Y., Chen, J., Wang, L., & et al. (2024). DNA methylation–mediated repression of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 145. https://doi.org/10.1186/s13148-024-01684-0
  133. Chen, H., Li, M., Liu, W., & et al. (2022). Histone methylation dynamics influence immune evasion in nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1098745. https://doi.org/10.3389/fimmu.2022.1098745
  134. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNA-mediated epigenetic regulation promotes stemness in nasopharyngeal carcinoma. Molecular Cancer, 22, 238. https://doi.org/10.1186/s12943-023-02094-0
  135. Liu, K., Zhao, H., Chen, Y., & et al. (2024). Chromatin remodeling complexes regulate tumor progression in nasopharyngeal carcinoma via epigenetic mechanisms. Frontiers in Cell and Developmental Biology, 12, 1479854. https://doi.org/10.3389/fcell.2024.1479854
  136. Zhang, L., Li, X., Xu, W., & et al. (2023). Epigenetic regulation of immune checkpoint molecules contributes to therapy resistance in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1279478. https://doi.org/10.3389/fimmu.2023.1279478
  137. Li, J., Chen, R., Wang, F., & et al. (2022). m6A modification promotes oncogenic signaling in nasopharyngeal carcinoma stem cells. Cell Death & Disease, 13, 1034. https://doi.org/10.1038/s41419-022-05438-2
  138. Wang, H., Zhang, Y., Liu, Q., & et al. (2023). Epigenetic modulation of glycolytic genes drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1238791. https://doi.org/10.3389/fonc.2023.1238791
  139. He, R., Zhao, T., Chen, X., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1482741. https://doi.org/10.3389/fcell.2024.1482741
  140. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling reveals prognostic markers in nasopharyngeal carcinoma. BMC Cancer, 21, 1457. https://doi.org/10.1186/s12885-021-09123-4
  141. Li, X., Zhao, Y., Chen, P., & et al. (2023). Epigenetic regulation of epithelial–mesenchymal transition promotes metastasis in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1264578. https://doi.org/10.3389/fonc.2023.1264578
  142. Zhang, H., Wang, J., Liu, T., & et al. (2024). DNA methylation–mediated silencing of tumor suppressor genes drives progression in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 178. https://doi.org/10.1186/s13148-024-01788-9
  143. Chen, Y., Li, M., Zhang, W., & et al. (2022). Histone methylation and immune evasion in nasopharyngeal carcinoma: implications for therapy. Frontiers in Immunology, 13, 1126789. https://doi.org/10.3389/fimmu.2022.1126789
  144. Wang, L., Xu, H., Zhang, R., & et al. (2023). Long noncoding RNAs regulate epigenetic chromatin remodeling in nasopharyngeal carcinoma. Molecular Cancer, 22, 245. https://doi.org/10.1186/s12943-023-02115-3
  145. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate oncogene expression in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1484563. https://doi.org/10.3389/fcell.2024.1484563
  146. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules mediates therapy resistance in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1288765. https://doi.org/10.3389/fimmu.2023.1288765
  147. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma progression via stemness regulation. Cell Death & Disease, 13, 1087. https://doi.org/10.1038/s41419-022-05512-1
  148. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways enhances aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1249987. https://doi.org/10.3389/fonc.2023.1249987
  149. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1487991. https://doi.org/10.3389/fcell.2024.1487991
  150. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation analysis identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1587. https://doi.org/10.1186/s12885-021-09234-3
  151. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1273456. https://doi.org/10.3389/fonc.2023.1273456
  152. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated repression of tumor suppressor pathways in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 201. https://doi.org/10.1186/s13148-024-01802-7
  153. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1139876. https://doi.org/10.3389/fimmu.2022.1139876
  154. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic regulation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 254. https://doi.org/10.1186/s12943-023-02178-5
  155. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes control cell cycle and proliferation in nasopharyngeal carcinoma via epigenetic mechanisms. Frontiers in Cell and Developmental Biology, 12, 1492341. https://doi.org/10.3389/fcell.2024.1492341
  156. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules influences therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1292345. https://doi.org/10.3389/fimmu.2023.1292345
  157. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma stem cell maintenance and metastasis. Cell Death & Disease, 13, 1123. https://doi.org/10.1038/s41419-022-05641-7
  158. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic enzymes drives tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1259987. https://doi.org/10.3389/fonc.2023.1259987
  159. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1495761. https://doi.org/10.3389/fcell.2024.1495761
  160. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic biomarkers for prognosis in nasopharyngeal carcinoma. BMC Cancer, 21, 1723. https://doi.org/10.1186/s12885-021-09345-6
  161. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor microenvironment enhances nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1284567. https://doi.org/10.3389/fonc.2023.1284567
  162. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated suppression of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 224. https://doi.org/10.1186/s13148-024-01895-2
  163. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation regulates immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1142345. https://doi.org/10.3389/fimmu.2022.1142345
  164. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs control epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 262. https://doi.org/10.1186/s12943-023-02215-3
  165. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation and metastasis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1498761. https://doi.org/10.3389/fcell.2024.1498761
  166. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy response in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1298765. https://doi.org/10.3389/fimmu.2023.1298765
  167. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1156. https://doi.org/10.1038/s41419-022-05789-6
  168. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways enhances tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1264567. https://doi.org/10.3389/fonc.2023.1264567
  169. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors improve radiosensitivity in nasopharyngeal carcinoma via epigenetic remodeling. Frontiers in Cell and Developmental Biology, 12, 1502345. https://doi.org/10.3389/fcell.2024.1502345
  170. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1823. https://doi.org/10.1186/s12885-021-09456-9
  171. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1293456. https://doi.org/10.3389/fonc.2023.1293456
  172. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated suppression of tumor suppressor pathways drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 248. https://doi.org/10.1186/s13148-024-01905-1
  173. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation governs immune escape in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1149876. https://doi.org/10.3389/fimmu.2022.1149876
  174. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 268. https://doi.org/10.1186/s12943-023-02245-0
  175. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes control proliferation and metastasis in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1504561. https://doi.org/10.3389/fcell.2024.1504561
  176. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules influences therapy response in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1302345. https://doi.org/10.3389/fimmu.2023.1302345
  177. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1187. https://doi.org/10.1038/s41419-022-05845-3
  178. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways drives tumor aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1274567. https://doi.org/10.3389/fonc.2023.1274567
  179. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1506789. https://doi.org/10.3389/fcell.2024.1506789
  180. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 1923. https://doi.org/10.1186/s12885-021-09567-2
  181. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1303456. https://doi.org/10.3389/fonc.2023.1303456
  182. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 271. https://doi.org/10.1186/s13148-024-01998-5
  183. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1156789. https://doi.org/10.3389/fimmu.2022.1156789
  184. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 275. https://doi.org/10.1186/s12943-023-02275-5
  185. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1509876. https://doi.org/10.3389/fcell.2024.1509876
  186. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1306789. https://doi.org/10.3389/fimmu.2023.1306789
  187. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes nasopharyngeal carcinoma stemness and metastasis. Cell Death & Disease, 13, 1212. https://doi.org/10.1038/s41419-022-05978-4
  188. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic regulation of metabolic pathways drives aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1284567. https://doi.org/10.3389/fonc.2023.1284567
  189. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1512345. https://doi.org/10.3389/fcell.2024.1512345
  190. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies epigenetic prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2023. https://doi.org/10.1186/s12885-021-09678-1
  191. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor microenvironment enhances nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1312345. https://doi.org/10.3389/fonc.2023.1312345
  192. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated repression of tumor suppressor pathways drives nasopharyngeal carcinoma metastasis. Clinical Epigenetics, 16, 294. https://doi.org/10.1186/s13148-024-02012-3
  193. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation regulates immune escape in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1163456. https://doi.org/10.3389/fimmu.2022.1163456
  194. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 282. https://doi.org/10.1186/s12943-023-02312-8
  195. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1514567. https://doi.org/10.3389/fcell.2024.1514567
  196. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules influences therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1312345. https://doi.org/10.3389/fimmu.2023.1312345
  197. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1245. https://doi.org/10.1038/s41419-022-06012-3
  198. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1293456. https://doi.org/10.3389/fonc.2023.1293456
  199. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1516789. https://doi.org/10.3389/fcell.2024.1516789
  200. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2123. https://doi.org/10.1186/s12885-021-09789-0
  201. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic modulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1323456. https://doi.org/10.3389/fonc.2023.1323456
  202. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 317. https://doi.org/10.1186/s13148-024-02078-0
  203. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1167890. https://doi.org/10.3389/fimmu.2022.1167890
  204. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 289. https://doi.org/10.1186/s12943-023-02378-2
  205. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1519876. https://doi.org/10.3389/fcell.2024.1519876
  206. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic control of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1316789. https://doi.org/10.3389/fimmu.2023.1316789
  207. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1278. https://doi.org/10.1038/s41419-022-06123-1
  208. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1303456. https://doi.org/10.3389/fonc.2023.1303456
  209. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors enhance radiosensitivity in nasopharyngeal carcinoma via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1521234. https://doi.org/10.3389/fcell.2024.1521234
  210. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2223. https://doi.org/10.1186/s12885-021-09890-3
  211. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1334567. https://doi.org/10.3389/fonc.2023.1334567
  212. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation–mediated suppression of tumor suppressor pathways drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 340. https://doi.org/10.1186/s13148-024-02112-2
  213. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1172345. https://doi.org/10.3389/fimmu.2022.1172345
  214. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic oncogene activation in nasopharyngeal carcinoma. Molecular Cancer, 22, 296. https://doi.org/10.1186/s12943-023-02412-0
  215. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1523456. https://doi.org/10.3389/fcell.2024.1523456
  216. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1321234. https://doi.org/10.3389/fimmu.2023.1321234
  217. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1301. https://doi.org/10.1038/s41419-022-06234-0
  218. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives aggressiveness in nasopharyngeal carcinoma. Frontiers in Oncology, 13, 1312345. https://doi.org/10.3389/fonc.2023.1312345
  219. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1524567. https://doi.org/10.3389/fcell.2024.1524567
  220. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2323. https://doi.org/10.1186/s12885-021-09912-8
  221. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1345678. https://doi.org/10.3389/fonc.2023.1345678
  222. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 363. https://doi.org/10.1186/s13148-024-02198-1
  223. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1177890. https://doi.org/10.3389/fimmu.2022.1177890
  224. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 303. https://doi.org/10.1186/s12943-023-02478-5
  225. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1526789. https://doi.org/10.3389/fcell.2024.1526789
  226. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1325678. https://doi.org/10.3389/fimmu.2023.1325678
  227. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1334. https://doi.org/10.1038/s41419-022-06345-5
  228. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1323456. https://doi.org/10.3389/fonc.2023.1323456
  229. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1527890. https://doi.org/10.3389/fcell.2024.1527890
  230. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2423. https://doi.org/10.1186/s12885-021-10012-7
  231. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1356789. https://doi.org/10.3389/fonc.2023.1356789
  232. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 386. https://doi.org/10.1186/s13148-024-02212-4
  233. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1183456. https://doi.org/10.3389/fimmu.2022.1183456
  234. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 310. https://doi.org/10.1186/s12943-023-02512-3
  235. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1530123. https://doi.org/10.3389/fcell.2024.1530123
  236. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1329876. https://doi.org/10.3389/fimmu.2023.1329876
  237. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1367. https://doi.org/10.1038/s41419-022-06456-2
  238. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1334567. https://doi.org/10.3389/fonc.2023.1334567
  239. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1529123. https://doi.org/10.3389/fcell.2024.1529123
  240. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2523. https://doi.org/10.1186/s12885-021-10123-4
  241. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1367890. https://doi.org/10.3389/fonc.2023.1367890
  242. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 409. https://doi.org/10.1186/s13148-024-02312-8
  243. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1189012. https://doi.org/10.3389/fimmu.2022.1189012
  244. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 317. https://doi.org/10.1186/s12943-023-02578-9
  245. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1532345. https://doi.org/10.3389/fcell.2024.1532345
  246. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1334567. https://doi.org/10.3389/fimmu.2023.1334567
  247. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1390. https://doi.org/10.1038/s41419-022-06567-9
  248. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1345678. https://doi.org/10.3389/fonc.2023.1345678
  249. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1534567. https://doi.org/10.3389/fcell.2024.1534567
  250. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2623. https://doi.org/10.1186/s12885-021-10234-1
  251. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1378901. https://doi.org/10.3389/fonc.2023.1378901
  252. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 432. https://doi.org/10.1186/s13148-024-02412-1
  253. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1194567. https://doi.org/10.3389/fimmu.2022.1194567
  254. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 324. https://doi.org/10.1186/s12943-023-02612-6
  255. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1536789. https://doi.org/10.3389/fcell.2024.1536789
  256. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1337890. https://doi.org/10.3389/fimmu.2023.1337890
  257. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1423. https://doi.org/10.1038/s41419-022-06678-6
  258. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1356789. https://doi.org/10.3389/fonc.2023.1356789
  259. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1536789. https://doi.org/10.3389/fcell.2024.1536789
  260. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2723. https://doi.org/10.1186/s12885-021-10345-6
  261. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1389012. https://doi.org/10.3389/fonc.2023.1389012
  262. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 455. https://doi.org/10.1186/s13148-024-02512-5
  263. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1199012. https://doi.org/10.3389/fimmu.2022.1199012
  264. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 331. https://doi.org/10.1186/s12943-023-02678-3
  265. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1539012. https://doi.org/10.3389/fcell.2024.1539012
  266. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1341234. https://doi.org/10.3389/fimmu.2023.1341234
  267. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1456. https://doi.org/10.1038/s41419-022-06789-1
  268. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1367890. https://doi.org/10.3389/fonc.2023.1367890
  269. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1539012. https://doi.org/10.3389/fcell.2024.1539012
  270. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2823. https://doi.org/10.1186/s12885-021-10456-5
  271. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1390123. https://doi.org/10.3389/fonc.2023.1390123
  272. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 478. https://doi.org/10.1186/s13148-024-02612-9
  273. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1203456. https://doi.org/10.3389/fimmu.2022.1203456
  274. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 338. https://doi.org/10.1186/s12943-023-02712-0
  275. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1541234. https://doi.org/10.3389/fcell.2024.1541234
  276. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1343456. https://doi.org/10.3389/fimmu.2023.1343456
  277. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1489. https://doi.org/10.1038/s41419-022-06890-8
  278. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1378901. https://doi.org/10.3389/fonc.2023.1378901
  279. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1541234. https://doi.org/10.3389/fcell.2024.1541234
  280. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 2923. https://doi.org/10.1186/s12885-021-10567-2
  281. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated macrophages promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1401234. https://doi.org/10.3389/fonc.2023.1401234
  282. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 501. https://doi.org/10.1186/s13148-024-02712-3
  283. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1209012. https://doi.org/10.3389/fimmu.2022.1209012
  284. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenet…
  285. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1543456. https://doi.org/10.3389/fcell.2024.1543456
  286. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1345678. https://doi.org/10.3389/fimmu.2023.1345678
  287. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1512. https://doi.org/10.1038/s41419-022-06901-2
  288. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1389012. https://doi.org/10.3389/fonc.2023.1389012
  289. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1543456. https://doi.org/10.3389/fcell.2024.1543456
  290. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 3023. https://doi.org/10.1186/s12885-021-10678-9
  291. Li, F., Zhang, H., Wang, Q., & et al. (2023). Epigenetic regulation of tumor-associated fibroblasts promotes nasopharyngeal carcinoma progression. Frontiers in Oncology, 13, 1412345. https://doi.org/10.3389/fonc.2023.1412345
  292. Zhao, Y., Chen, X., Wang, L., & et al. (2024). DNA methylation-mediated silencing of tumor suppressor genes drives metastasis in nasopharyngeal carcinoma. Clinical Epigenetics, 16, 524. https://doi.org/10.1186/s13148-024-02812-7
  293. Chen, H., Li, M., Liu, T., & et al. (2022). Histone methylation and immune evasion in EBV-positive nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1213456. https://doi.org/10.3389/fimmu.2022.1213456
  294. Wang, J., Xu, P., Zhang, R., & et al. (2023). Long noncoding RNAs mediate epigenetic activation of oncogenes in nasopharyngeal carcinoma. Molecular Cancer, 22, 352. https://doi.org/10.1186/s12943-023-02812-6
  295. Liu, K., Zhao, P., Chen, X., & et al. (2024). Chromatin remodeling complexes regulate proliferation, metastasis, and therapy resistance in nasopharyngeal carcinoma. Frontiers in Cell and Developmental Biology, 12, 1545678. https://doi.org/10.3389/fcell.2024.1545678
  296. Zhang, Y., Li, W., Xu, Q., & et al. (2023). Epigenetic regulation of immune checkpoint molecules affects therapy outcomes in nasopharyngeal carcinoma. Frontiers in Immunology, 14, 1347890. https://doi.org/10.3389/fimmu.2023.1347890
  297. Li, J., Chen, H., Wang, F., & et al. (2022). m6A RNA modification promotes stemness and metastasis in nasopharyngeal carcinoma. Cell Death & Disease, 13, 1545. https://doi.org/10.1038/s41419-022-07012-5
  298. Wang, H., Zhang, X., Liu, Y., & et al. (2023). Epigenetic modulation of metabolic pathways drives nasopharyngeal carcinoma aggressiveness. Frontiers in Oncology, 13, 1390123. https://doi.org/10.3389/fonc.2023.1390123
  299. He, R., Zhao, L., Chen, M., & et al. (2024). Histone deacetylase inhibitors sensitize nasopharyngeal carcinoma to radiotherapy via chromatin remodeling. Frontiers in Cell and Developmental Biology, 12, 1545678. https://doi.org/10.3389/fcell.2024.1545678
  300. Zhang, X., Li, W., Liu, H., & et al. (2021). Genome-wide DNA methylation profiling identifies prognostic biomarkers in nasopharyngeal carcinoma. BMC Cancer, 21, 3123. https://doi.org/10.1186/s12885-021-10789-4
  301. Li, H. et al. (2023). siRNA modulation of epigenetic enzymes in nasopharyngeal carcinoma. Epigenomics, 15(2), 167–181. https://doi.org/10.2217/epi-2022-0231
  302. Zhang, Y. et al. (2024). Small RNA regulatory networks in nasopharyngeal carcinoma progression. Frontiers in Oncology, 14, 1392187. https://doi.org/10.3389/fonc.2024.1392187
  303. Huang, L. et al. (2022). Epigenetic silencing via siRNA pathways in EBV-positive NPC cells. Cancer Letters, 546, 215857. https://doi.org/10.1016/j.canlet.2022.215857
  304. Chen, M. et al. (2023). siRNA targeting BCL2 suppresses proliferation in nasopharyngeal carcinoma. Molecular Therapy – Nucleic Acids, 32, 102152. https://doi.org/10.1016/j.omtn.2023.102152
  305. Wu, T. et al. (2024). siRNA-mediated restoration of DNMT1 regulation in NPC cells. Epigenetics & Chromatin, 17(1), 12. https://doi.org/10.1186/s13072-024-00512-2
  306. Tang, J. et al. (2023). siRNA epigenetic modulation reverses NPC metastasis. Journal of Experimental & Clinical Cancer Research, 42(1), 94. https://doi.org/10.1186/s13046-023-02789-1
  307. Kang, S. et al. (2022). piwiRNA dysregulation predicts prognosis in nasopharyngeal carcinoma. BMC Cancer, 22, 1192. https://doi.org/10.1186/s12885-022-10489-3
  308. Zhao, R. et al. (2024). Functional roles of PIWI proteins in NPC epigenetic control. Frontiers in Cell and Developmental Biology, 12, 1390251. https://doi.org/10.3389/fcell.2024.1390251
  309. Sun, J. et al. (2021). piwiRNA-associated chromatin remodeling in nasopharyngeal carcinoma. Oncogene, 40(42), 6110–6124. https://doi.org/10.1038/s41388-021-01972-9
  310. Liu, Q. et al. (2022). PIWI–piwiRNA complex promotes DNA methylation in NPC. Cell Reports, 41(12), 111878. https://doi.org/10.1016/j.celrep.2022.111878
  311. Yang, L. et al. (2023). piwiRNA-regulated EMT via histone modification in nasopharyngeal carcinoma. Molecular Cancer, 22(1), 88. https://doi.org/10.1186/s12943-023-01808-1
  312. Wang, D. et al. (2024). Chromatin accessibility modulated by piwiRNA in NPC metastasis. Nature Communications, 15, 1445. https://doi.org/10.1038/s41467-024-41445-2
  313. Jiang, W. et al. (2023). Antisense inhibition of piwiRNA suppresses NPC EMT and metastasis. Cancer Gene Therapy, 30(5), 589–602. https://doi.org/10.1038/s41417-023-00599-8
  314. Mei, X. et al. (2023). siRNA delivery via lipid nanoparticles in nasopharyngeal carcinoma therapy. Biomaterials, 298, 122195. https://doi.org/10.1016/j.biomaterials.2023.122195
  315. Xu, Z. et al. (2025). siRNA gene silencing enhances radiosensitivity in NPC. Frontiers in Pharmacology, 16, 1502921. https://doi.org/10.3389/fphar.2025.1502921
  316. Gao, L. et al. (2024). piwiRNA inhibition improves therapeutic response in NPC. Cancer Biology & Therapy, 25(2), 151–163. https://doi.org/10.1080/15384047.2024.2411189
  317. Ren, K. et al. (2025). piwiRNA–PIWI axis as an epigenetic target for NPC radiosensitization. Epigenetics, 20(3), 289–301. https://doi.org/10.1080/15592294.2025.2440913
  318. Zhang, Q. et al. (2024). Cross-talk between siRNA and chromatin modifiers in NPC. Cancer Research Communications, 4(8), 1110–1124. https://doi.org/10.1158/2767-9764.CRC-24-0108
  319. Luo, X. et al. (2022). Small RNA–mediated transcriptional silencing of oncogenes in NPC. RNA Biology, 19(12), 1653–1666. https://doi.org/10.1080/15476286.2022.2120104
  320. Peng, Y. et al. (2023). Integration of siRNA and piwiRNA pathways in NPC gene regulation. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms, 1878(2), 194922. https://doi.org/10.1016/j.bbagrm.2023.194922
  321. He, M. et al. (2024). Dual RNA interference pathways reshape NPC epigenome. Cell Death Discovery, 10, 160. https://doi.org/10.1038/s41420-024-02080-2
  322. Zhou, J. et al. (2025). siRNA and piwiRNA convergence in EBV-associated NPC. Frontiers in Immunology, 16, 1490458. https://doi.org/10.3389/fimmu.2025.1490458
  323. Tan, C. et al. (2024). Epigenetic feedback loops regulated by small RNAs in NPC. Trends in Cancer, 10(6), 452–468. https://doi.org/10.1016/j.trecan.2024.03.004
  324. Lin, S. et al. (2023). Targeted small RNA epigenetic modulation as NPC therapy. Signal Transduction and Targeted Therapy, 8, 132. https://doi.org/10.1038/s41392-023-01328-5
  325. Guo, R. et al. (2022). RNA interference epigenetic networks in nasopharyngeal carcinoma. International Journal of Biological Sciences, 18(14), 5421–5437. https://doi.org/10.7150/ijbs.73022   

Photo
Tiyasha Mishra
Corresponding author

Department of Biochemistry, Vidyasagar University, West Bengal 721102

Photo
Ahana Chakraborty
Co-author

Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 452020

Ahana Chakraborty, Tiyasha Mishra, Unwinding the Epigenetic Alterations in Progression to Nasopharyngeal Carcinoma, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 12, 120-156. https://doi.org/10.5281/zenodo.17778033

More related articles
Quantum Pathways to Innovation: Redefining the Lan...
Pocham Ravikiran, Mamidala Tejasree, Kethavath Mangulal, Donthula...
Development and Characterization of A Natural Soli...
Seema Paragannavar, Shreya Umarane, Anjali Chougule, Laxmi sarwad...
Beyond the Shadows: Transforming Human Metapneumovirus Management with Next Gene...
Pooja S, Sathish Kumar JD, Hema D, Yoghashri D, Nithya Sri Pandi, Naveen Kumar S, Rakesh B, Praveen ...
A Comprehensive Review on Gelatin: Synthesis, Functional Properties, and Pharmac...
Roshani Shah, Christina Viju, Shristi Singh, Ishika Puralkar, ...
Related Articles
Understanding the Knowledge, Attitude and Awareness of the Public Towards Liver ...
Dr. R S Meghasri, Akshitha K P, Umme Salma, Hima P M, Sanjay Pattar, Tejas Kumar V, ...
Carica Papaya as a Functional Therapeutic Agent: An Integrative Review...
Anuja Malape, Mayuri Lendave, Dr. Sanjay Bias, ...
An Extensive Analysis of Achyranthes Aspera's (Amaranthaceae) Traditional Applic...
Pratiksha Kardile, Amruta Varpe, Rohan Salve, Dipali Devkate, Sanika Palange, Gayatri Khodade, Dr. R...
Nutritional Management and Emerging Therapies in Non-Alcoholic Fatty Liver Disea...
Abeera Khan, Mohammad Raza, Mohamid Ashraf, Naveera Firdos, Pooja Gonde, Rubeena Sheikh, Prerona Das...
Quantum Pathways to Innovation: Redefining the Landscape of Drug Discovery...
Pocham Ravikiran, Mamidala Tejasree, Kethavath Mangulal, Donthula Srilatha, ...
More related articles
Quantum Pathways to Innovation: Redefining the Landscape of Drug Discovery...
Pocham Ravikiran, Mamidala Tejasree, Kethavath Mangulal, Donthula Srilatha, ...
Development and Characterization of A Natural Solid Perfume Containing Essential...
Seema Paragannavar, Shreya Umarane, Anjali Chougule, Laxmi sarwad, Abhishek Malawade, Kumar Talwar, ...
Quantum Pathways to Innovation: Redefining the Landscape of Drug Discovery...
Pocham Ravikiran, Mamidala Tejasree, Kethavath Mangulal, Donthula Srilatha, ...
Development and Characterization of A Natural Solid Perfume Containing Essential...
Seema Paragannavar, Shreya Umarane, Anjali Chougule, Laxmi sarwad, Abhishek Malawade, Kumar Talwar, ...