View Article

Abstract

Monkeypox is an emerging zoonotic disease attributed to the monkeypox virus, which belongs to the Orthopoxvirus genus. Recently, this virus has been designated a global health emergency, prompting serious concerns regarding its transmission, pathogenesis, and clinical management. This review examines the origins, clinical symptoms, diagnostic approaches, and treatment alternatives for monkeypox, with a particular focus on comparisons with other poxviruses. We evaluate the effectiveness of antiviral therapies, smallpox vaccinations, and innovative diagnostic methods such as FDG-PET/CT imaging in elucidating disease progression. Additionally, the review highlights the significant influence of climate change and environmental factors on the transmission of monkeypox, emphasizing the contributions of deforestation, urbanization, and climate variations to the virus's resurgence and dissemination. A comparative analysis with other poxviruses enhances the understanding of the unique features of monkeypox and emphasizes the importance of ongoing surveillance, particularly in regions vulnerable to environmental changes. Ultimately, this review advocates for a comprehensive approach to monkeypox management, taking into account both clinical and ecological aspects to reduce the likelihood of future outbreaks.

Keywords

monkeypox virus, zoonotic disease, climate change impact, antiviral therapies, smallpox vaccine.

Introduction

Monkeypox is a zoonotic disease caused by an enveloped DNA virus that belongs to the Orthopoxvirus genus, which is part of the Poxviridae family and the Chordopoxvirinae subfamily1. The immune response of the host is pivotal in determining the progression of the disease and its clinical features. Infections with the monkeypox virus primarily result in skin lesions, which are a significant concern during the current outbreak, and provoke a robust immune response that can lead to deep tissue abscesses, severe respiratory complications, and damage to various organs2(Tehranchinia et al., 2023a; Zaib et al., 2023)?. Recent concerns have arisen regarding the human-to-human transmission of the monkeypox virus, which can occur through close contact with infected individuals or animals, as well as through contaminated surfaces3(Jezek et al., 1983a)?. The World Health Organization has declared this situation a global health emergency in Africa, emphasizing that transmission can occur from animals to humans and between humans.4  The early clinical signs, including fever, myalgia, headache, and lymphadenopathy, are essential for initial diagnosis. Laboratory diagnostic methods, such as conventional polymerase chain reactions (PCR) and real-time PCR (RT-PCR), are the most common and reliable techniques for identification. Additionally, assessing altered metabolic activity at sites involved in the immune response through Fluorodeoxyglucose and positron emission tomography/computed tomography imaging offers an effective approach to pinpointing critical disease-specific time points and locations relevant to pathogenesis and treatment? (Dyall et al., 2017a)?.5  Antiviral treatments are utilized to address viral infections, with most targeting specific viruses. For monkeypox, antiviral medications such as tecovirimat and brincidofovir are employed. Although there is no specific vaccine for monkeypox, existing smallpox vaccines have shown efficacy in enhancing immunization rates, as evidence indicates that monkeypox infection rates were lower among individuals who had received smallpox vaccinations compared to those who had not6 ?(Liu et al., 2024a; Karagoz et al., 2023) Multiple factors such as decline in cross- protective herd immunity( cessation of smallpox vaccination), deforestation, civil war, refugee displacement, enhanced global association and even changes in climatic conditions may facilitate the unexpected appearance of the disease.1

2. Characteristics of Monkeypox 

2.1 Origin and transmission 

Human-to-human transmission can take place via sexual intercourse, inhalation of respiratory droplets, and direct contact with the skin. After inoculation, the viruses multiply swiftly and spread into the bloodstream, resulting in viremia that affects various organs, including the skin, gastrointestinal tract, genitals, lungs, and liver7 (Niu et al., 2023)?.  The transmission of the virus from rodents to primates occurs through exposure to contaminated bodily fluids, skin lesions, and respiratory droplets. It is crucial to differentiate the Monkeypox virus from other Poxviruses during the diagnostic process, which can be effectively accomplished through DNA analysis of swab samples8 ?(Zaib et al., 2023)?

2.2 Symptoms 

The disease begins with symptoms that are similar to those of influenza, including fever, headaches, muscle and back pain, swollen lymph nodes, chills, and fatigue. The virus is transmitted from rodents to primates via infected bodily fluids, skin lesions, and respiratory droplets. After infection, patients generally exhibit fever, muscle pain, a maculopapular rash, and fluid-filled blisters. A distinctive rash typically appears first on the face before spreading to other parts of the body. This rash progresses through several stages, starting with flat lesions, then developing into raised bumps, followed by fluid-filled blisters, and eventually forming scabs 8?(Zaib et al., 2023)?.

2.3 Diagnosis 

It is essential to differentiate the monkeypox virus from other poxviruses during the diagnostic assessment, a process that can be efficiently achieved through DNA analysis of swab samples ?(Zaib et al., 2023)?. The uptake of fluorodeoxyglucose in lymphoid tissues acts as a prognostic marker in the non-human primate model of monkeypox virus infection. The integration of fluorodeoxyglucose (FDG) with positron emission tomography-computed tomography (PET/CT) enhances the visualization of altered metabolic activity in regions associated with the immune response. This imaging technique is a vital resource for identifying significant disease-specific timeframes and locations, which are crucial for understanding pathogenesis and guiding treatment approaches. Furthermore, FDG-PET/CT imaging offers real-time observations of changes in metabolic activity due to viral infections (Dyall et al., 2017b)5.The assessment of clinical symptoms, alongside laboratory diagnostic tests such as conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR), remains the most prevalent and dependable diagnostic approach.

2.4 Treatment 

The evidence suggests that smallpox vaccination considerably reduces the likelihood of experiencing severe Monkeypox. Third-generation vaccines have shown greater effectiveness in comparison to their first-generation counterparts. The smallpox vaccination is effective in stimulating the production of neutralizing antibodies against the Monkeypox virus6. Additionally, vaccination with the vaccinia virus for the prevention of smallpox is also beneficial against Monkeypox, due to a significant degree of sequence conservation?9 (Keasey et al., 2010)?. The JYNNEOS vaccine, which is approved for use against the Monkeypox virus, presents fewer adverse effects than previous smallpox vaccines and has demonstrated immunogenicity against Monkeypox in animal research8. Infections caused by the Monkeypox virus elicit strong B-cell and T-cell responses, whereas immunization with JYNNEOS results in more robust T-cell responses10 ?(Cohn et al., 2023)?.

3. Pathophysiology of Monkey Pox  

Monkeypox is mainly spread through two primary routes: from animals to humans and from person to person. The transmission from animals to humans can occur when handling or consuming infected meat, through direct contact with the blood and bodily fluids of infected animals, or as a result of bites from these animals11. Human-to-human transmission takes place via skin lesions, contaminated surfaces, and respiratory droplets. Once the virus enters the host's body, it begins to replicate and subsequently disseminates through the bloodstream to the lymph nodes and other lymphoid tissues. This process is followed by an initial phase of viremia, which is then succeeded by a secondary phase. As the infection progresses, individuals may exhibit symptoms such as skin rashes, fever, back pain, headaches, and swollen lymph nodes12 ?(Karagoz et al., 2023)?.

4. Comparative analysis with other poxviruses 

Infections caused by the monkeypox virus elicit pronounced B-cell and T-cell responses when contrasted with other poxviruses. Research indicates that the monkeypox virus exhibits a greater virulence compared to its related counterparts, with lymphadenopathy being a prominent characteristic of monkeypox infections, a symptom typically absent in other poxvirus infections. Furthermore, the emergence of skin lesions in monkeypox occurs at a markedly slower pace ?(Jezek et al., 1988; MacNeil et al., 2009). Unlike other poxviruses, the transmission of monkeypox necessitates an animal reservoir. While a vaccine for smallpox exists, there is presently no vaccine available for monkeypox. Additionally, a notable increase in leukocyte migration has been observed in monkeypox infections relative to other poxviruses ?(Liu et al., 2024b; Song et al., 2013; McFadden, 2005; Depero & Bontempi, 2023)


Sr.no

Features

Monkey-pox

Other Poxviruses

1.

Response of B-cell and T-cell

vigorous

Lower than monkey pox13 (37475115)

2.

Lymphadenopathy

Present

Absent 14(2907258)

3.

virulence

More virulent15

Less Noxious 19346366

4.

Appearance of skin lesion

slower

Faster as compared to monkey pox16 2907258

5.

Animal reservoir

present

Absent17 33167496

6.

Vaccination

Not available

For smallpox-available18 . 36403582

7.

Leukocyte migration and activation (induction of genes)

Yes

No(exception-cowpox)1924147080

8.

Cellular tropism

broader

Narrower 2015738948


5. Variation in monkey pox due to climate changes 

Monkeypox is a viral zoonotic disease that is re-emerging and is primarily found in the intentionally forested areas of West and Central Africa21. The disease was first recognized in Zaire in 1970 and, while it shares some clinical characteristics with smallpox, it demonstrates considerable differences in its epidemiological behavior22. Over the past fifty years, monkeypox has been reported in various regions across Africa 23(Reynolds et al., 2019a)?. Climate change is recognized as a significant factor affecting the environment, economy, and society, as well as influencing the variability in the transmission of infectious diseases?24 (Jezek et al., 1983b)?. Elements such as globalization, urban expansion, alterations in ecosystems, deforestation, and changes in agricultural and livestock management practices contribute to the dynamics of disease dissemination25 ?(Delfraissy, 2023)?.  Several elements may account for the unexpected resurgence of monkeypox, including the reduction in cross-protective immunity following the cessation of smallpox vaccinations, deforestation, civil unrest, population displacement, and climate variations26. It is noteworthy that monkeypox cases are more commonly reported during the dry season, with children under the age of ten constituting 84 percent of the documented cases27  Significant environmental elements affecting the disease encompass yearly precipitation, diverse temperature indicators, primary productivity, water evaporation, soil moisture levels, and other associated factors28. Deforestation and climate play pivotal roles in the proliferation of the monkeypox virus, with forecasts indicating a heightened potential for the virus in the eastern part of the Democratic Republic of Congo29. Several variables influence the identification of MPVX in waste water, such as the routes and duration of viral shedding by those infected, the prevalence of infections within the community, environmental circumstances, and the efficacy and sensitivity of the analytical techniques employed30

6. Future Direction  

The recent emergence of the monkeypox virus has intensified worries about the urgent need for effective vaccines and therapeutic options. It is crucial to create dependable diagnostic tests for accurately identifying the monkeypox virus, especially in comparison to other poxviruses. To mitigate the risk of transmission through human contact, individuals are advised to avoid close interactions with infected persons. Existing treatment guidelines, combined with the innovation of new antiviral drugs, could play a significant role in controlling its dissemination. 

7. CONCLUSION 

The monkeypox virus is classified within the same taxonomic family as other poxviruses; however, it exhibits notable differences in terms of epidemiology, transmission patterns, and clinical manifestations. This review emphasizes the unique characteristics of monkeypox, particularly its zoonotic origins, transmission methods, and the wide range of symptoms it can cause, which set it apart from other poxviruses such as smallpox. Furthermore, the ongoing shifts in global climate and environmental conditions are exacerbating the spread of the virus. Factors like deforestation, which disrupts wildlife habitats and increases human-animal interactions, along with civil unrest and the forced migration of populations, have created an environment that facilitates the virus's spread. The global interconnectedness through travel and trade further amplifies the risk of outbreaks in new areas. The impact of climate change is not merely an ancillary issue; it is central to the resurgence and increased transmission of monkeypox, as warmer climates and altered ecosystems enable vectors to thrive and expand. This scenario, combined with socio-political instability, has led to more frequent and widespread outbreaks. Given these complexities, it is imperative to prioritize the development and distribution of vaccines and antiviral treatments specifically targeting monkeypox. Current preventive measures and therapies are inadequate, and without a focused public health response, monkeypox could become a persistent global health challenge. Proactive strategies, including the establishment of global surveillance systems, improvement of diagnostic capabilities, and ensuring equitable access to medical resources, are vital to mitigate the impact of future outbreaks. Effective international cooperation in addressing these issues will not only reduce the burden of monkeypox but also safeguard against the emergence and re-emergence of similar zoonotic threats.

REFERENCES

  1. Adetifa, I., Muyembe, J.-J., Bausch, D. G., & Heymann, D. L. (2023). Mpox neglect and the smallpox niche: a problem for Africa, a problem for the world. Lancet (London, England), 401(10390), 1822–1824. https://doi.org/10.1016/S0140-6736(23)00588-3
  2. Delfraissy, J. F. (2023). [French research organization on emerging infectious diseases: From REACTing to ANRS emerging infectious diseases]. Bulletin de l’Academie Nationale de Medecine, 207(3), 287–294. https://doi.org/10.1016/j.banm.2022.11.017
  3. Dyall, J., Johnson, R. F., Chefer, S., Leyson, C., Thomasson, D., Seidel, J., Ragland, D. R., Byrum, R., Jett, C., Cann, J. A., St Claire, M., Jagoda, E., Reba, R. C., Hammoud, D., Blaney, J. E., & Jahrling, P. B. (2017a). [18F]-Fluorodeoxyglucose Uptake in Lymphoid Tissue Serves as a Predictor of Disease Outcome in the Nonhuman Primate Model of Monkeypox Virus Infection. Journal of Virology, 91(21). https://doi.org/10.1128/JVI.00897-17
  4. Jezek, Z., Gromyko, A. I., & Szczeniowski, M. V. (1983a). Human monkeypox. Journal of Hygiene, Epidemiology, Microbiology, and Immunology, 27(1), 13–28.
  5. Jezek, Z., Szczeniowski, M., Paluku, K. M., Mutombo, M., & Grab, B. (1988a). Human monkeypox: confusion with chickenpox. Acta Tropica, 45(4), 297–307.
  6. Karagoz, A., Tombuloglu, H., Alsaeed, M., Tombuloglu, G., AlRubaish, A. A., Mahmoud, A., Smajlovi?, S., ?ordi?, S., Rabaan, A. A., & Alsuhaimi, E. (2023). Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. Journal of Infection and Public Health, 16(4), 531–541. https://doi.org/10.1016/j.jiph.2023.02.003
  7. Keasey, S., Pugh, C., Tikhonov, A., Chen, G., Schweitzer, B., Nalca, A., & Ulrich, R. G. (2010). Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PloS One, 5(12), e15547. https://doi.org/10.1371/journal.pone.0015547
  8. Liu, H., Wang, W., Zhang, Y., Wang, F., Duan, J., Huang, T., Huang, X., & Zhang, T. (2024b). Global perspectives on smallpox vaccine against monkeypox: a comprehensive meta-analysis and systematic review of effectiveness, protection, safety and cross-immunogenicity. Emerging Microbes & Infections, 13(1), 2387442. https://doi.org/10.1080/22221751.2024.2387442
  9. McFadden, G. (2005). Poxvirus tropism. Nature Reviews. Microbiology, 3(3), 201–213. https://doi.org/10.1038/nrmicro1099
  10. Niu, L., Liang, D., Ling, Q., Zhang, J., Li, Z., Zhang, D., Xia, P., Zhu, Z., Lin, J., Shi, A., Ma, J., Yu, P., & Liu, X. (2023). Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Frontiers in Immunology, 14, 1132250. https://doi.org/10.3389/fimmu.2023.1132250
  11. Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A., & Nakazawa, Y. (2019b). Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Review of Anti-Infective Therapy, 17(2), 129–139. https://doi.org/10.1080/14787210.2019.1567330
  12. Tehranchinia, Z., Robati, R. M., Moravvej, H., Memariani, M., & Memariani, H. (2023a). Monkeypox Disease with a Focus on the 2022 Outbreak; a Narrative Review. Archives of Academic Emergency Medicine, 11(1), e19. https://doi.org/10.22037/aaem.v11i1.1856
  13. Thomassen, H. A., Fuller, T., Asefi-Najafabady, S., Shiplacoff, J. A. G., Mulembakani, P. M., Blumberg, S., Johnston, S. C., Kisalu, N. K., Kinkela, T. L., Fair, J. N., Wolfe, N. D., Shongo, R. L., LeBreton, M., Meyer, H., Wright, L. L., Muyembe, J.-J., Buermann, W., Okitolonda, E., Hensley, L. E., … Rimoin, A. W. (2013). Pathogen-host associations and predicted range shifts of human monkeypox in response to climate change in central Africa. PloS One, 8(7), e66071. https://doi.org/10.1371/journal.pone.0066071
  14. Shafaati M, Zandi M. State-of-the-art on monkeypox virus: an emerging zoonotic disease. Infection. 2022 Dec;50(6):1425-1430. doi: 10.1007/s15010-022-01935-3. Epub 2022 Oct 3. PMID: 36192607.
  15. Tehranchinia Z, Robati RM, Moravvej H, Memariani M, Memariani H. Monkeypox Disease with a Focus on the 2022 Outbreak; a Narrative Review. Arch Acad Emerg Med. 2023 Jan 16;11(1):e19. doi: 10.22037/aaem.v11i1.1856. PMID: 36743704; PMCID: PMC9887230.
  16. Shaheen N, Diab RA, Meshref M, Shaheen A, Ramadan A, Shoib S. Is there a need to be worried about the new monkeypox virus outbreak? A brief review on the monkeypox outbreak. Ann Med Surg (Lond). 2022 Aug 19;81:104396. doi: 10.1016/j.amsu.2022.104396. PMID: 36147131; PMCID: PMC9486661.
  17. Mukherjee AG, Wanjari UR, Kannampuzha S, Das S, Murali R, Namachivayam A, Renu K, Ramanathan G, Doss C GP, Vellingiri B, Dey A, Valsala Gopalakrishnan A. The pathophysiological and immunological background of the monkeypox virus infection: An update. J Med Virol. 2023 Jan;95(1):e28206. doi: 10.1002/jmv.28206. Epub 2022 Oct 25. PMID: 36217803.
  18. Dyall J, Johnson RF, Chefer S, Leyson C, Thomasson D, Seidel J, Ragland DR, Byrum R, Jett C, Cann JA, St Claire M, Jagoda E, Reba RC, Hammoud D, Blaney JE, Jahrling PB. [18F]-Fluorodeoxyglucose Uptake in Lymphoid Tissue Serves as a Predictor of Disease Outcome in the Nonhuman Primate Model of Monkeypox Virus Infection. J Virol. 2017 Oct 13;91(21):e00897-17. doi: 10.1128/JVI.00897-17. PMID: 28814515; PMCID: PMC5640857.
  19. Liu H, Wang W, Zhang Y, Wang F, Duan J, Huang T, Huang X, Zhang T. Global perspectives on smallpox vaccine against monkeypox: a comprehensive meta-analysis and systematic review of effectiveness, protection, safety and cross-immunogenicity. Emerg Microbes Infect. 2024 Dec;13(1):2387442. doi: 10.1080/22221751.2024.2387442. Epub 2024 Aug 16. PMID: 39082272; PMCID: PMC11332295.
  20. Niu L, Liang D, Ling Q, Zhang J, Li Z, Zhang D, Xia P, Zhu Z, Lin J, Shi A, Ma J, Yu P, Liu X. Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Front Immunol. 2023 Mar 21;14:1132250. doi: 10.3389/fimmu.2023.1132250. PMID: 37026012; PMCID: PMC10070694.
  21. Zaib S, Rana N, Areeba, Hussain N, Alrbyawi H, Dera AA, Khan I, Khalid M, Khan A, Al-Harrasi A. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect Public Health. 2023 Jan;16(1):107-116. doi: 10.1016/j.jiph.2022.11.033. Epub 2022 Dec 6. PMID: 36508944; PMCID: PMC9724569.
  22. Keasey S, Pugh C, Tikhonov A, Chen G, Schweitzer B, Nalca A, Ulrich RG. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PLoS One. 2010 Dec 30;5(12):e15547. doi: 10.1371/journal.pone.0015547. PMID: 21209900; PMCID: PMC3012712.
  23. Cohn H, Bloom N, Cai GY, Clark JJ, Tarke A, Bermúdez-González MC, Altman DR, Lugo LA, Lobo FP, Marquez S; PVI study group; Chen JQ, Ren W, Qin L, Yates JL, Hunt DT, Lee WT, Crotty S, Krammer F, Grifoni A, Sette A, Simon V, Coelho CH. Mpox vaccine and infection-driven human immune signatures: an immunological analysis of an observational study. Lancet Infect Dis. 2023 Nov;23(11):1302-1312. doi: 10.1016/S1473-3099(23)00352-3. Epub 2023 Jul 17. PMID: 37475115; PMCID: PMC10826035.
  24. Kumar A, Angaria N, Singh G, Kumar R. Outbreak of Monkeypox Virus Disease: An Update on Epidemiology, Pathophysiology and Available Treatment Options. Infect Disord Drug Targets. 2023;23(6):e180423216001. doi: 10.2174/1871526523666230418121045. PMID: 37073653.
  25. Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019 Oct 16;13(10):e0007791. doi: 10.1371/journal.pntd.0007791. PMID: 31618206; PMCID: PMC6816577.
  26. Cohn H, Bloom N, Cai GY, Clark JJ, Tarke A, Bermúdez-González MC, Altman DR, Lugo LA, Lobo FP, Marquez S; PVI study group; Chen JQ, Ren W, Qin L, Yates JL, Hunt DT, Lee WT, Crotty S, Krammer F, Grifoni A, Sette A, Simon V, Coelho CH. Mpox vaccine and infection-driven human immune signatures: an immunological analysis of an observational study. Lancet Infect Dis. 2023 Nov;23(11):1302-1312. doi: 10.1016/S1473-3099(23)00352-3. Epub 2023 Jul 17. PMID: 37475115; PMCID: PMC10826035.
  27. Jezek Z, Szczeniowski M, Paluku KM, Mutombo M, Grab B. Human monkeypox: confusion with chickenpox. Acta Trop. 1988 Dec;45(4):297-307. PMID: 2907258.
  28. MacNeil A, Reynolds MG, Carroll DS, Karem K, Braden Z, Lash R, Moundeli A, Mombouli JV, Jumaan AO, Schmid DS, Damon IK. Monkeypox or varicella? Lessons from a rash outbreak investigation in the Republic of the Congo. Am J Trop Med Hyg. 2009 Apr;80(4):503-7. PMID: 19346366.
  29. Jezek Z, Szczeniowski M, Paluku KM, Mutombo M, Grab B. Human monkeypox: confusion with chickenpox. Acta Trop. 1988 Dec;45(4):297-307. PMID: 2907258
  30. Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses. 2020 Nov 5;12(11):1257. doi: 10.3390/v12111257. PMID: 33167496; PMCID: PMC7694534.
  31. Mitjà O, Ogoina D, Titanji BK, Galvan C, Muyembe JJ, Marks M, Orkin CM. Monkeypox. Lancet. 2023 Jan 7;401(10370):60-74. doi: 10.1016/S0140-6736(22)02075-X. Epub 2022 Nov 17. Erratum in: Lancet. 2022 Dec 3;400(10367):1926. doi: 10.1016/S0140-6736(22)02414-X. PMID: 36403582; PMCID: PMC9671644.
  32. Song H, Josleyn N, Janosko K, Skinner J, Reeves RK, Cohen M, Jett C, Johnson R, Blaney JE, Bollinger L, Jennings G, Jahrling PB. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS One. 2013 Oct 17;8(10):e77804. doi: 10.1371/journal.pone.0077804. PMID: 24147080; PMCID: PMC3798392.
  33. McFadden G. Poxvirus tropism. Nat Rev Microbiol. 2005 Mar;3(3):201-13. doi: 10.1038/nrmicro1099. PMID: 15738948; PMCID: PMC4382915.
  34. Reynolds MG, Doty JB, McCollum AM, Olson VA, Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev Anti Infect Ther. 2019 Feb;17(2):129-139. doi: 10.1080/14787210.2019.1567330. Epub 2019 Jan 21. PMID: 30625020; PMCID: PMC6438170
  35. Jezek Z, Gromyko AI, Szczeniowski MV. Human monkeypox. J Hyg Epidemiol Microbiol Immunol. 1983;27(1):13-28. PMID: 6304185
  36. Adetifa I, Muyembe JJ, Bausch DG, Heymann DL. Mpox neglect and the smallpox niche: a problem for Africa, a problem for the world. Lancet. 2023 May 27;401(10390):1822-1824. doi: 10.1016/S0140-6736(23)00588-3. Epub 2023 May 2. PMID: 37146622; PMCID: PMC10154003
  37. Depero LE, Bontempi E. Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model. Environ Res. 2023 Oct 15;235:116521. doi: 10.1016/j.envres.2023.116521. Epub 2023 Jul 6. PMID: 37419200
  38. Delfraissy JF. La recherche française face aux maladies infectieuses émergentes : de REACTing à l’ANRS- maladies infectieuses émergentes [French research organization on emerging infectious diseases: From REACTing to ANRS emerging infectious diseases]. Bull Acad Natl Med. 2023 Mar;207(3):287-294. French. doi: 10.1016/j.banm.2022.11.017. Epub 2023 Jan 18. PMID: 36691475; PMCID: PMC9847693.
  39. Thomassen HA, Fuller T, Asefi-Najafabady S, Shiplacoff JA, Mulembakani PM, Blumberg S, Johnston SC, Kisalu NK, Kinkela TL, Fair JN, Wolfe ND, Shongo RL, LeBreton M, Meyer H, Wright LL, Muyembe JJ, Buermann W, Okitolonda E, Hensley LE, Lloyd-Smith JO, Smith TB, Rimoin AW. Pathogen-host associations and predicted range shifts of human monkeypox in response to climate change in central Africa. PLoS One. 2013 Jul 31;8(7):e66071. doi: 10.1371/journal.pone.0066071. PMID: 23935820; PMCID: PMC3729955
  40. Bishnoi A, Sharma A, Mehta H, Vinay K. Emerging and re-emerging viral exanthems among children: what a physician should know. Trans R Soc Trop Med Hyg. 2024 Nov 14:trae087. doi: 10.1093/trstmh/trae087. Epub ahead of print. PMID: 39540239
  41. Nakazawa Y, Mauldin MR, Emerson GL, Reynolds MG, Lash RR, Gao J, Zhao H, Li Y, Muyembe JJ, Kingebeni PM, Wemakoy O, Malekani J, Karem KL, Damon IK, Carroll DS. A phylogeographic investigation of African monkeypox. Viruses. 2015 Apr 22;7(4):2168-84. doi: 10.3390/v7042168. PMID: 25912718; PMCID: PMC4411695
  42. Kataria R, Kaur S, Kaundal R. Deciphering the complete human-monkeypox virus interactome: Identifying immune responses and potential drug targets. Front Immunol. 2023 Mar 27;14:1116988. doi: 10.3389/fimmu.2023.1116988. PMID: 37051239; PMCID: PMC10083500
  43. Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. Sci Total Environ. 2023 Jan 15;856(Pt 2):159166. doi: 10.1016/j.scitotenv.2022.159166. Epub 2022 Oct 3. PMID: 36202364; PMCID: PMC9534267..

Reference

  1. Adetifa, I., Muyembe, J.-J., Bausch, D. G., & Heymann, D. L. (2023). Mpox neglect and the smallpox niche: a problem for Africa, a problem for the world. Lancet (London, England), 401(10390), 1822–1824. https://doi.org/10.1016/S0140-6736(23)00588-3
  2. Delfraissy, J. F. (2023). [French research organization on emerging infectious diseases: From REACTing to ANRS emerging infectious diseases]. Bulletin de l’Academie Nationale de Medecine, 207(3), 287–294. https://doi.org/10.1016/j.banm.2022.11.017
  3. Dyall, J., Johnson, R. F., Chefer, S., Leyson, C., Thomasson, D., Seidel, J., Ragland, D. R., Byrum, R., Jett, C., Cann, J. A., St Claire, M., Jagoda, E., Reba, R. C., Hammoud, D., Blaney, J. E., & Jahrling, P. B. (2017a). [18F]-Fluorodeoxyglucose Uptake in Lymphoid Tissue Serves as a Predictor of Disease Outcome in the Nonhuman Primate Model of Monkeypox Virus Infection. Journal of Virology, 91(21). https://doi.org/10.1128/JVI.00897-17
  4. Jezek, Z., Gromyko, A. I., & Szczeniowski, M. V. (1983a). Human monkeypox. Journal of Hygiene, Epidemiology, Microbiology, and Immunology, 27(1), 13–28.
  5. Jezek, Z., Szczeniowski, M., Paluku, K. M., Mutombo, M., & Grab, B. (1988a). Human monkeypox: confusion with chickenpox. Acta Tropica, 45(4), 297–307.
  6. Karagoz, A., Tombuloglu, H., Alsaeed, M., Tombuloglu, G., AlRubaish, A. A., Mahmoud, A., Smajlovi?, S., ?ordi?, S., Rabaan, A. A., & Alsuhaimi, E. (2023). Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. Journal of Infection and Public Health, 16(4), 531–541. https://doi.org/10.1016/j.jiph.2023.02.003
  7. Keasey, S., Pugh, C., Tikhonov, A., Chen, G., Schweitzer, B., Nalca, A., & Ulrich, R. G. (2010). Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PloS One, 5(12), e15547. https://doi.org/10.1371/journal.pone.0015547
  8. Liu, H., Wang, W., Zhang, Y., Wang, F., Duan, J., Huang, T., Huang, X., & Zhang, T. (2024b). Global perspectives on smallpox vaccine against monkeypox: a comprehensive meta-analysis and systematic review of effectiveness, protection, safety and cross-immunogenicity. Emerging Microbes & Infections, 13(1), 2387442. https://doi.org/10.1080/22221751.2024.2387442
  9. McFadden, G. (2005). Poxvirus tropism. Nature Reviews. Microbiology, 3(3), 201–213. https://doi.org/10.1038/nrmicro1099
  10. Niu, L., Liang, D., Ling, Q., Zhang, J., Li, Z., Zhang, D., Xia, P., Zhu, Z., Lin, J., Shi, A., Ma, J., Yu, P., & Liu, X. (2023). Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Frontiers in Immunology, 14, 1132250. https://doi.org/10.3389/fimmu.2023.1132250
  11. Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A., & Nakazawa, Y. (2019b). Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Review of Anti-Infective Therapy, 17(2), 129–139. https://doi.org/10.1080/14787210.2019.1567330
  12. Tehranchinia, Z., Robati, R. M., Moravvej, H., Memariani, M., & Memariani, H. (2023a). Monkeypox Disease with a Focus on the 2022 Outbreak; a Narrative Review. Archives of Academic Emergency Medicine, 11(1), e19. https://doi.org/10.22037/aaem.v11i1.1856
  13. Thomassen, H. A., Fuller, T., Asefi-Najafabady, S., Shiplacoff, J. A. G., Mulembakani, P. M., Blumberg, S., Johnston, S. C., Kisalu, N. K., Kinkela, T. L., Fair, J. N., Wolfe, N. D., Shongo, R. L., LeBreton, M., Meyer, H., Wright, L. L., Muyembe, J.-J., Buermann, W., Okitolonda, E., Hensley, L. E., … Rimoin, A. W. (2013). Pathogen-host associations and predicted range shifts of human monkeypox in response to climate change in central Africa. PloS One, 8(7), e66071. https://doi.org/10.1371/journal.pone.0066071
  14. Shafaati M, Zandi M. State-of-the-art on monkeypox virus: an emerging zoonotic disease. Infection. 2022 Dec;50(6):1425-1430. doi: 10.1007/s15010-022-01935-3. Epub 2022 Oct 3. PMID: 36192607.
  15. Tehranchinia Z, Robati RM, Moravvej H, Memariani M, Memariani H. Monkeypox Disease with a Focus on the 2022 Outbreak; a Narrative Review. Arch Acad Emerg Med. 2023 Jan 16;11(1):e19. doi: 10.22037/aaem.v11i1.1856. PMID: 36743704; PMCID: PMC9887230.
  16. Shaheen N, Diab RA, Meshref M, Shaheen A, Ramadan A, Shoib S. Is there a need to be worried about the new monkeypox virus outbreak? A brief review on the monkeypox outbreak. Ann Med Surg (Lond). 2022 Aug 19;81:104396. doi: 10.1016/j.amsu.2022.104396. PMID: 36147131; PMCID: PMC9486661.
  17. Mukherjee AG, Wanjari UR, Kannampuzha S, Das S, Murali R, Namachivayam A, Renu K, Ramanathan G, Doss C GP, Vellingiri B, Dey A, Valsala Gopalakrishnan A. The pathophysiological and immunological background of the monkeypox virus infection: An update. J Med Virol. 2023 Jan;95(1):e28206. doi: 10.1002/jmv.28206. Epub 2022 Oct 25. PMID: 36217803.
  18. Dyall J, Johnson RF, Chefer S, Leyson C, Thomasson D, Seidel J, Ragland DR, Byrum R, Jett C, Cann JA, St Claire M, Jagoda E, Reba RC, Hammoud D, Blaney JE, Jahrling PB. [18F]-Fluorodeoxyglucose Uptake in Lymphoid Tissue Serves as a Predictor of Disease Outcome in the Nonhuman Primate Model of Monkeypox Virus Infection. J Virol. 2017 Oct 13;91(21):e00897-17. doi: 10.1128/JVI.00897-17. PMID: 28814515; PMCID: PMC5640857.
  19. Liu H, Wang W, Zhang Y, Wang F, Duan J, Huang T, Huang X, Zhang T. Global perspectives on smallpox vaccine against monkeypox: a comprehensive meta-analysis and systematic review of effectiveness, protection, safety and cross-immunogenicity. Emerg Microbes Infect. 2024 Dec;13(1):2387442. doi: 10.1080/22221751.2024.2387442. Epub 2024 Aug 16. PMID: 39082272; PMCID: PMC11332295.
  20. Niu L, Liang D, Ling Q, Zhang J, Li Z, Zhang D, Xia P, Zhu Z, Lin J, Shi A, Ma J, Yu P, Liu X. Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Front Immunol. 2023 Mar 21;14:1132250. doi: 10.3389/fimmu.2023.1132250. PMID: 37026012; PMCID: PMC10070694.
  21. Zaib S, Rana N, Areeba, Hussain N, Alrbyawi H, Dera AA, Khan I, Khalid M, Khan A, Al-Harrasi A. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect Public Health. 2023 Jan;16(1):107-116. doi: 10.1016/j.jiph.2022.11.033. Epub 2022 Dec 6. PMID: 36508944; PMCID: PMC9724569.
  22. Keasey S, Pugh C, Tikhonov A, Chen G, Schweitzer B, Nalca A, Ulrich RG. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PLoS One. 2010 Dec 30;5(12):e15547. doi: 10.1371/journal.pone.0015547. PMID: 21209900; PMCID: PMC3012712.
  23. Cohn H, Bloom N, Cai GY, Clark JJ, Tarke A, Bermúdez-González MC, Altman DR, Lugo LA, Lobo FP, Marquez S; PVI study group; Chen JQ, Ren W, Qin L, Yates JL, Hunt DT, Lee WT, Crotty S, Krammer F, Grifoni A, Sette A, Simon V, Coelho CH. Mpox vaccine and infection-driven human immune signatures: an immunological analysis of an observational study. Lancet Infect Dis. 2023 Nov;23(11):1302-1312. doi: 10.1016/S1473-3099(23)00352-3. Epub 2023 Jul 17. PMID: 37475115; PMCID: PMC10826035.
  24. Kumar A, Angaria N, Singh G, Kumar R. Outbreak of Monkeypox Virus Disease: An Update on Epidemiology, Pathophysiology and Available Treatment Options. Infect Disord Drug Targets. 2023;23(6):e180423216001. doi: 10.2174/1871526523666230418121045. PMID: 37073653.
  25. Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019 Oct 16;13(10):e0007791. doi: 10.1371/journal.pntd.0007791. PMID: 31618206; PMCID: PMC6816577.
  26. Cohn H, Bloom N, Cai GY, Clark JJ, Tarke A, Bermúdez-González MC, Altman DR, Lugo LA, Lobo FP, Marquez S; PVI study group; Chen JQ, Ren W, Qin L, Yates JL, Hunt DT, Lee WT, Crotty S, Krammer F, Grifoni A, Sette A, Simon V, Coelho CH. Mpox vaccine and infection-driven human immune signatures: an immunological analysis of an observational study. Lancet Infect Dis. 2023 Nov;23(11):1302-1312. doi: 10.1016/S1473-3099(23)00352-3. Epub 2023 Jul 17. PMID: 37475115; PMCID: PMC10826035.
  27. Jezek Z, Szczeniowski M, Paluku KM, Mutombo M, Grab B. Human monkeypox: confusion with chickenpox. Acta Trop. 1988 Dec;45(4):297-307. PMID: 2907258.
  28. MacNeil A, Reynolds MG, Carroll DS, Karem K, Braden Z, Lash R, Moundeli A, Mombouli JV, Jumaan AO, Schmid DS, Damon IK. Monkeypox or varicella? Lessons from a rash outbreak investigation in the Republic of the Congo. Am J Trop Med Hyg. 2009 Apr;80(4):503-7. PMID: 19346366.
  29. Jezek Z, Szczeniowski M, Paluku KM, Mutombo M, Grab B. Human monkeypox: confusion with chickenpox. Acta Trop. 1988 Dec;45(4):297-307. PMID: 2907258
  30. Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses. 2020 Nov 5;12(11):1257. doi: 10.3390/v12111257. PMID: 33167496; PMCID: PMC7694534.
  31. Mitjà O, Ogoina D, Titanji BK, Galvan C, Muyembe JJ, Marks M, Orkin CM. Monkeypox. Lancet. 2023 Jan 7;401(10370):60-74. doi: 10.1016/S0140-6736(22)02075-X. Epub 2022 Nov 17. Erratum in: Lancet. 2022 Dec 3;400(10367):1926. doi: 10.1016/S0140-6736(22)02414-X. PMID: 36403582; PMCID: PMC9671644.
  32. Song H, Josleyn N, Janosko K, Skinner J, Reeves RK, Cohen M, Jett C, Johnson R, Blaney JE, Bollinger L, Jennings G, Jahrling PB. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS One. 2013 Oct 17;8(10):e77804. doi: 10.1371/journal.pone.0077804. PMID: 24147080; PMCID: PMC3798392.
  33. McFadden G. Poxvirus tropism. Nat Rev Microbiol. 2005 Mar;3(3):201-13. doi: 10.1038/nrmicro1099. PMID: 15738948; PMCID: PMC4382915.
  34. Reynolds MG, Doty JB, McCollum AM, Olson VA, Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev Anti Infect Ther. 2019 Feb;17(2):129-139. doi: 10.1080/14787210.2019.1567330. Epub 2019 Jan 21. PMID: 30625020; PMCID: PMC6438170
  35. Jezek Z, Gromyko AI, Szczeniowski MV. Human monkeypox. J Hyg Epidemiol Microbiol Immunol. 1983;27(1):13-28. PMID: 6304185
  36. Adetifa I, Muyembe JJ, Bausch DG, Heymann DL. Mpox neglect and the smallpox niche: a problem for Africa, a problem for the world. Lancet. 2023 May 27;401(10390):1822-1824. doi: 10.1016/S0140-6736(23)00588-3. Epub 2023 May 2. PMID: 37146622; PMCID: PMC10154003
  37. Depero LE, Bontempi E. Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model. Environ Res. 2023 Oct 15;235:116521. doi: 10.1016/j.envres.2023.116521. Epub 2023 Jul 6. PMID: 37419200
  38. Delfraissy JF. La recherche française face aux maladies infectieuses émergentes : de REACTing à l’ANRS- maladies infectieuses émergentes [French research organization on emerging infectious diseases: From REACTing to ANRS emerging infectious diseases]. Bull Acad Natl Med. 2023 Mar;207(3):287-294. French. doi: 10.1016/j.banm.2022.11.017. Epub 2023 Jan 18. PMID: 36691475; PMCID: PMC9847693.
  39. Thomassen HA, Fuller T, Asefi-Najafabady S, Shiplacoff JA, Mulembakani PM, Blumberg S, Johnston SC, Kisalu NK, Kinkela TL, Fair JN, Wolfe ND, Shongo RL, LeBreton M, Meyer H, Wright LL, Muyembe JJ, Buermann W, Okitolonda E, Hensley LE, Lloyd-Smith JO, Smith TB, Rimoin AW. Pathogen-host associations and predicted range shifts of human monkeypox in response to climate change in central Africa. PLoS One. 2013 Jul 31;8(7):e66071. doi: 10.1371/journal.pone.0066071. PMID: 23935820; PMCID: PMC3729955
  40. Bishnoi A, Sharma A, Mehta H, Vinay K. Emerging and re-emerging viral exanthems among children: what a physician should know. Trans R Soc Trop Med Hyg. 2024 Nov 14:trae087. doi: 10.1093/trstmh/trae087. Epub ahead of print. PMID: 39540239
  41. Nakazawa Y, Mauldin MR, Emerson GL, Reynolds MG, Lash RR, Gao J, Zhao H, Li Y, Muyembe JJ, Kingebeni PM, Wemakoy O, Malekani J, Karem KL, Damon IK, Carroll DS. A phylogeographic investigation of African monkeypox. Viruses. 2015 Apr 22;7(4):2168-84. doi: 10.3390/v7042168. PMID: 25912718; PMCID: PMC4411695
  42. Kataria R, Kaur S, Kaundal R. Deciphering the complete human-monkeypox virus interactome: Identifying immune responses and potential drug targets. Front Immunol. 2023 Mar 27;14:1116988. doi: 10.3389/fimmu.2023.1116988. PMID: 37051239; PMCID: PMC10083500
  43. Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. Sci Total Environ. 2023 Jan 15;856(Pt 2):159166. doi: 10.1016/j.scitotenv.2022.159166. Epub 2022 Oct 3. PMID: 36202364; PMCID: PMC9534267..

Photo
Yamin Ansari
Corresponding author

Nagpur College of Pharmacy, Hingna Road, Wanadongri, Nagpur 4401110

Photo
Ashwini Pawar
Co-author

Nagpur College of Pharmacy, Hingna Road, Wanadongri, Nagpur 4401110

Photo
Krutika Channe
Co-author

Nagpur College of Pharmacy, Hingna Road, Wanadongri, Nagpur 4401110

Photo
Vinod Thakare
Co-author

Nagpur College of Pharmacy, Hingna Road, Wanadongri, Nagpur 4401110

Yamin Ansari*, Ashwini Pawar, Krutika Channe, Vinod Thakare, Understanding Monkey pox: A Comparative Analysis with Other Poxviruses and Environmental Influences, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 1, 371-379. https://doi.org/10.5281/zenodo.14607580

More related articles
Formulation Development And Analytical Development...
Kapil Soni, Priyanka Nagar, Hitesh Jain, Ankit Sahu, Rakesh Patel...
Niosomes: An Innovative Tailored Cancer Medication...
Shivani S. C. Gupta, Punam K. Satav, Kalyani K. Malthane, Vaibhav...
Pharmacological Action On Polyherbal Gel For Wound Healing ...
Rasika. A.Waykar , S.R.Ghodake , H. V. Kamble , ...
Therapeutic Effect of Rosemary and Its Active Constituent on Nervous System Diso...
Vaidehi Bhaladhare, Sayali Ganjiwale, Sachin Dighade, ...
Formulation Development and Evaluation of Clotrimazole Buccal Tablets ...
Mohammad Azmath Hussain, Dr. Sreenivas Rao Mande, Dr. G. Kumara Swamy, Dr. D Praveen Kumar, Dr. J Ku...
Related Articles
Formulation And Evaluation Of Sustained Release Anastrozole Tablet For Treatment...
Vitthal S. Shinde, Vijay M. Kanade, Ajit B. Tuwar, Megha T. Salve, ...
Review On Micro-Gas Chromatography System For Analysis Of Multiple Low-Concentra...
Mrunal Shashikant Pagare, Varun Sunil Dev, Rajashree Gulshan Jagtap, Shraddha Prakashdas Vaishnav, ...
A Review On Recent Developments In Ultraviolet Spectroscopy...
Lalit R. Gaikwad , Rupesh D. Gaikwad , Jagruti V. Gavit , Vaibhavi S. Kadam , Lina H. Thakare, ...
Formulation Development And Analytical Development Of Glimepiride Polymeric Blen...
Kapil Soni, Priyanka Nagar, Hitesh Jain, Ankit Sahu, Rakesh Patel, ...
More related articles
Formulation Development And Analytical Development Of Glimepiride Polymeric Blen...
Kapil Soni, Priyanka Nagar, Hitesh Jain, Ankit Sahu, Rakesh Patel, ...
Niosomes: An Innovative Tailored Cancer Medication Delivery Mechanism...
Shivani S. C. Gupta, Punam K. Satav, Kalyani K. Malthane, Vaibhav S. Adhao, Jaya P. Ambhore, Jaya P....
Formulation Development And Analytical Development Of Glimepiride Polymeric Blen...
Kapil Soni, Priyanka Nagar, Hitesh Jain, Ankit Sahu, Rakesh Patel, ...
Niosomes: An Innovative Tailored Cancer Medication Delivery Mechanism...
Shivani S. C. Gupta, Punam K. Satav, Kalyani K. Malthane, Vaibhav S. Adhao, Jaya P. Ambhore, Jaya P....