View Article

Abstract

Through particular structural designs and unique preparation techniques, nanogels can encapsulate drugs within three-dimensional crosslinked polymeric networks. This allows for the controlled and sustained delivery of loaded drugs, improving patient compliance and therapeutic efficacy. Furthermore, compared to other nanocarriers, nanogels offer a better drug loading capacity and biocompatibility. The science of therapeutic biology has undergone a revolution with the use of nanoparticles in drug delivery. Drug nanocarriers are being used to extend the drug's circulation time, regulate its release and stability, and shield it from cell clearance or premature breakdown in order to increase medicinal efficacy. For more secure and reliable delivery to the intended locations, the hydrogel nanoparticle dispersions are crosslinked using a crosslinked polymeric framework. The last two decades have seen the development of nanogels as promising biomaterials with a broad range of uses. Drug accumulation in disease areas can be improved and active targeting can be accomplished with the modification of nanogels. They can be made to respond to both internal and external stimuli, including pH, temperature, light, and redox, allowing the loaded medicine to release gradually. On the other hand, there has been new research on the use of nanogels for purposes unrelated to biomedicine. Since nanogels can be used for a wide range of purposes, we have thoroughly examined the state of the art for all practical uses and production techniques of nanogels. The purpose of this note is to understand why and how nanogels are regarded as such a novel approach to drugs delivery.

Keywords

Nanogel; polymerization; drug release; application; nanocarriers

Reference

  1. Kono K, Takashima M, Yuba E et al. Multifunctional liposomes having target specificity, temperature-triggered release, and near-infrared fluorescence imaging for tumor-specific chemotherapy. J. Control. Release 216, 69–77 (2015).
  2. Catauro M, Bollino F, Papale F. Synthesis of SiO2 system via sol–gel process: biocompatibility tests with a fibroblast strain and release kinetics. J. Biomed. Mater. Res. Part A 102(6), 1677–1680 (2014).
  3. Li, C.; Obireddy, S.R.; Lai, W.F. Preparation and use of nanogels as carriers of drugs. Drug Deliv., 2021, 28(1), 1594-1602. http://dx.doi.org/10.1080/10717544.2021.1955042
  4. Bernhard, S.; Tibbitt, M.W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2021, 171, 240-256. http://dx.doi.org/10.1016/j.addr.2021.02.002
  5. Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U.; Fahad, M. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), 697-717.
  6. Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429. http://dx.doi.org/10.1002/anie.200900441
  7. Khalili ST, Mohsenifar A, Beyki M et al. Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT-Food Sci. Technol. 60(1), 502–508 (2015).
  8. Akram M, Hussain R. Nanohydrogels: history, development, and applications in drug delivery. Nanocell. Nanohydrog. Matrices 297–330 (2017).
  9. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60(15), 1638–1649 (2008).
  10. Jha, A.; Rama, A.; Ladani, B.; Verma, N.; Kannan, S.; Naha, A. Temperature And Ph-responsive nanogels as intelligent drug delivery systems: A comprehensive review. J. Appl. Pharm. Sci., 2021. http://dx.doi.org/10.7324/JAPS.2021.1101201
  11. Farhana, S.; Imran-Ul-Haque, M., Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(1), S95-S105
  12. Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426. http://dx.doi.org/10.1038/s41392-021-00830-x
  13. Wei, Y.S.; Chen, K.S.; Wu, L.T. In situ synthesis of high swell ratio polyacrylic acid/silver nanocomposite hydrogels and their antimicrobial properties. J. Inorg. Biochem., 2016, 164, 17-25. http://dx.doi.org/10.1016/j.jinorgbio.2016.08.007
  14. Keskin, D.; Zu, G.; Forson, A.M.; Tromp, L.; Sjollema, J.; Van Rijn, P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact. Mater., 2021, 6(10), 3634-3657.
  15. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. http://dx.doi.org/10.1038/s41573-020-0090-8 PMID: 33277608
  16. Szilágyi, B.Á.; Némethy, Á.; Magyar, A.; Szabó, I.; B?sze, S.; Gyarmati, B.; Szilágyi, A. Amino acid based polymer hydrogel with enzymatically degradable cross-links. React. Funct. Polym., 2018, 133, 21-28. http://dx.doi.org/10.1016/j.reactfunctpolym.2018.09.015
  17. Peres, L.; Dos Anjos, R.; Tappertzhofen, L.; Feuser, P.; De Araújo, P.; Landfester, K.; Sayer, C.; Muñoz-Espí, R. Phresponsive physically and chemically cross-linked glutamic-acidbased hydrogels and nanogels. Eur. Polym. J., 2018, 101, 341-349. http://dx.doi.org/10.1016/j.eurpolymj.2018.02.039
  18. Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985. http://dx.doi.org/10.1016/j.biomaterials.2014.03.001
  19. Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3), 290. http://dx.doi.org/10.3390/pharmaceutics12030290
  20. Maya S., Bruno S., Amrita N., Rejinold N.S., Shantikumar V.N., Jayakumar R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review. Curr. Pharm. Des. 2013;19:7203–7218. doi: 10.2174/138161281941131219124142. [PubMed] [CrossRef]
  21. Ashrafizadeh M., Tam K.C., Javadi A., Abdollahi M., Sadeghnejad S., Bahramian A. Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J. Colloid Interface Sci. 2019;556:313–323. doi: 10.1016/j.jcis.2019.08.066. [PubMed]
  22. Theune L.E., Buchmann J., Wedepohl S., Molina M., Laufer J., Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. J. Control Release. 2019;311–312:147–161. doi: 10.1016/j.jconrel.2019.08.035. [PubMed]
  23. Kabanov A.V., Vinogradov S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem.Int. Edit. 2009;48:5418–5429. doi: 10.1002/anie.200900441. [PMC free article] [PubMed] [CrossRef]
  24. Szilágyi B.Á., Némethy Á., Magyar A., Szabó I., B?sze S., Gyarmati B., Szilágyi A. Amino acid based polymer hydrogel with enzymatically degradable cross-links. React. Funct. Polym. 2018;133:21–28. doi: 10.1016/j.reactfunctpolym.2018.09.015. [CrossRef]
  25. Wang H., Chen Q., Zhou S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018;47:4198–4232. doi: 10.1039/C7CS00399D.
  26. Buwalda S.J., Vermonden T., Hennink W.E. Hydrogels for therapeutic delivery: Current developments and future directions. Biomacromolecules. 2017;18:316–330. doi: 10.1021/acs.biomac.6b01604.
  27. Chandra, A.; Sharma, U.; Jain, S.; Soni, R. Nanosuspension: An overview. J. Drug Deliv. Ther., 2013, 3(6), 162-167. http://dx.doi.org/10.22270/jddt.v3i6.677
  28. Lim, C.K.; Singh, A.; Heo, J.; Kim, D.; Lee, K.E.; Jeon, H.; Koh, J.; Kwon, I.C.; Kim, S. Gadolinium-coordinated elastic nanogels for in vivo tumor targeting and imaging. Biomaterials, 2013, 34(28), 6846-6852. http://dx.doi.org/10.1016/j.biomaterials.2013.05.069
  29. Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851. http://dx.doi.org/10.1016/j.addr.2012.02.002
  30. Su, S.; Kang, M. P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837. http://dx.doi.org/10.3390/pharmaceutics12090837
  31. Shah, S.; Rangaraj, N.; Laxmikeshav, K.; Sampathi, S. “Nanogels as drug carriers-introduction, chemical aspects, release mechanisms and potential applications”. Int. J. Pharm., 2020, 581, 119268. http://dx.doi.org/10.1016/j.ijpharm.2020.119268
  32. Xing, L.; Fan, Y.T.; Shen, L.J.; Yang, C.X.; Liu, X.Y.; Ma, Y.N.; Qi, L.Y.; Cho, K.H.; Cho, C.S.; Jiang, H.L. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int. J. Biol. Macromol., 2019, 141, 85-97. http://dx.doi.org/10.1016/j.ijbiomac.2019.08.237
  33. Matusiak, M.; Kadlubowski, S.; Rosiak, J. Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiat. Phys. Chem., 2020, 169, 108099. http://dx.doi.org/10.1016/j.radphyschem.2018.12.019
  34. Qureshi, M.; Khatoon, F. Different types of smart nanogel for targeted delivery. J. Sci.: Adv. Mater. Devices, 2019, 4(2), 201-212.
  35. Sultana F, Manirujjaman M, Imran-Ul-Haque MA, Sharmin S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci. 3(8), 95–105 (2013).
  36. Sawada S-i, Sasaki Y, Nomura Y, Akiyoshi K. Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid Polym. Sci. 289(5–6), 685–691 (2011).
  37. Guerrero-Ram´?rez L, Nuno-Donlucas S, Cesteros L, Katime I. Smart copolymeric nanohydrogels: synthesis, characterization and properties. Mater. Chem. Phys. 112(3), 1088–1092 (2008).
  38. Zhou M,Wang T, Hu Q, Luo Y. Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocoll. 57, 20–29 (2016).
  39. Abdel-Rashid RS, Helal DA, Omar MM, Sisi AME. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int. J. Nanomedicine 14, 2973–2983 (2019).
  40. De Backer L, Braeckmans K, Stuart MC, Demeester J, De Smedt SC, Raemdonck K. Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Release 206, 177–186 (2015).
  41. Yuki Y, Nochi T, Kong IG et al. Nanogel-based antigen-delivery system for nasal vaccines. Biotechnol. Genet. Eng. Rev. 29(1), 61–72 (2013).
  42. Tariq et al. Nanogel-based Transdermal Drug Delivery System, Current Topics in Medicinal Chemistry, 2023, Vol. 23, No. 1
  43. Majedul Hoque et al., Advancing healthcare: Exploring recent innovations in drug delivery systems, International Journal of Multidisciplinary Research and Growth Evaluation, 2023, 4(5), 50-55, https://doi.org/10.54660/.IJMRGE.2023.4.5.50-55.

Photo
Majedul Hoque
Corresponding author

Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh

Photo
Shuvo Nath Saha
Co-author

Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh

Photo
Taharat Akram
Co-author

Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh

Majedul Hoque*, Shuvo Nath Saha, Taharat Akram, Nanogels Based Drug Delivery System: A Promising Therapeutic Strategy, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 11, 103-111. https://doi.org/10.5281/zenodo.10070862

More related articles
A Review On Phytochemical Constituents And Medicin...
R Ghana Shyam , Ananda V, D Visagaperumal , Vineeth Chandy , ...
Brand survey-based study of Ciprofloxacin-500 tabl...
Ravi Maurya, Ishu Garg, Harish Kumar, Divyanshu Raj, Devbrath Tri...
Formulation And Development Of Bilayer Tablets Of ...
Naumaan Naeem shaikh, Akshaya Aravamudhan, Sanjana Jadhav, Samiks...
To Study The Preparation Formulation And Evaluation Of Medicated Lollipop...
Khandagale Sandip suresh, Madane Somnath Jotiram, Patil Onkar Ganpat, Dabhade Sakshi kailasrao, Salv...
Ayurvedic Baby Wipes: A Natural Approach to Infant Care ...
M. A. Raut, T. G. Agrawal, U. P. Pote, V. N. Sabale, V. G. Pete, ...
Nanoemulsions: A Promising Technology For The Development Of Innovative Products...
Ronakkumar Rabadiya , Divya Gupta, Chainesh Shah , Umesh Upadhyay , ...
Related Articles
Structural Analysis And Protein-Ligand Docking Approach Of Brain-Associated APOE...
Kainat Ramzan, Ibtsam Bilal, Ali Haider, Saira Ramzan, Maida Saleem, Saira Ramzan, Mehmooda Asif, ...
Niosomes A Novel Drug Delivery System...
Poornima Kala, Vikas Dhawan, ...
A Review On Phytochemical Constituents And Medicinal Values Of Cheilocostus Spec...
R Ghana Shyam , Ananda V, D Visagaperumal , Vineeth Chandy , ...
More related articles
A Review On Phytochemical Constituents And Medicinal Values Of Cheilocostus Spec...
R Ghana Shyam , Ananda V, D Visagaperumal , Vineeth Chandy , ...
Brand survey-based study of Ciprofloxacin-500 tablet marketing for Tuberculosis...
Ravi Maurya, Ishu Garg, Harish Kumar, Divyanshu Raj, Devbrath Tripathi , ...
Formulation And Development Of Bilayer Tablets Of Cimetidine And Ciprofloxacin H...
Naumaan Naeem shaikh, Akshaya Aravamudhan, Sanjana Jadhav, Samiksha Shinde, Pradnya Palekar Shanbhag...
A Review On Phytochemical Constituents And Medicinal Values Of Cheilocostus Spec...
R Ghana Shyam , Ananda V, D Visagaperumal , Vineeth Chandy , ...
Brand survey-based study of Ciprofloxacin-500 tablet marketing for Tuberculosis...
Ravi Maurya, Ishu Garg, Harish Kumar, Divyanshu Raj, Devbrath Tripathi , ...
Formulation And Development Of Bilayer Tablets Of Cimetidine And Ciprofloxacin H...
Naumaan Naeem shaikh, Akshaya Aravamudhan, Sanjana Jadhav, Samiksha Shinde, Pradnya Palekar Shanbhag...