View Article

  • An Overview Of Nanoparticles A Survey Of Characteristics, Advancements And Challenges
  • 1B. Pharm Scholar, Veerayatan Institute of Pharmacy, Jakhania, Gujarat, India
    2Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Abstract

Nanoparticles (NPs) are pervasive in our daily lives today as a result of the industry's rapid expansion in the previous ten years. Numerous nanomaterials have been created with medicinal applications in mind. One of these goals is pulmonary illness treatment. The use of colloidal drug delivery systems as drug carriers for the administration of various medications via various routes of administration has received substantial research. For a very long time, systems like polymeric nanoparticles, liposome, and solid lipid nanoparticles have been studied for the treatment of various lung ailments. It appears that nanoparticles could have dual impacts. When nanomaterials are used to develop medicines, their toxic consequences should be taken into account. In order to summarise the dual functions of nanoparticles in treating pulmonary disorders as well as the onset of lung diseases and even secondary diseases brought on by lung damage. We'll also talk about how these impacts are caused by factors like the physicochemical characteristics of nanoparticles.

Keywords

Nanoparticles

Reference

  1. Miao J., Miyauchi M., Simmons T.J., Dordick J.S., Linhardt R.J. Electrospinning of nanomaterials and applications in electronic components and devices. J. Nanosci. Nanotechnol. 2010; 10:5507–5519. 
  2. Anik U., Cubukcu M., Yavuz Y. Nanomaterial-based composite biosensor for glucose detection in alcoholic beverages. Artif. Cells Nanomed. Biotechnol. 2013; 41:8–12.
  3. Han S., Liu Y., Nie X., Xu Q., Jiao F., Li W., Zhao Y., Wu Y., Chen C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small. 2012; 8:1596–1606. 
  4. Xu L., Liu Y., Chen Z., Li W., Wang L., Wu X., Ji Y., Zhao Y., Ma L., Shao Y., et al. Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 2012; 12:2003–2012.
  5. Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol. 2010; 3:5–13. 
  6. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113:823–839. 
  7. Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2017. p. 32019.
  8. Machado S, Pacheco JG, Nouws HPA, Albergaria JT, Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ. 2015; 533:76–81.
  9.  Pan K, Zhong Q. Organic nanoparticles in foods: fabrication, characterization, and utilization. Annu Rev Food Sci Technol. 2016; 7:245–66.
  10. Ng KK, Zheng G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev. 2015;115(19):11012–42.
  11. Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu Z-R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm. 2014;11(8):2734–44. 
  12. Long CM, Nascarella MA, Valberg PA. Carbon black vs black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut. 2013;181:271–86.
  13. Dresselhaus MS, Dresselhaus G, Eklund PC. Fullerenes. J Mater Res. 1993;8(8):2054–97.
  14. Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol. 2019;16(1):1–27. 
  15. Lu K-Q, Quan Q, Zhang N, Xu Y-J. Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J Energy Chem. 2016;25(6):927–35. 
  16. Oh W-K, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2010;31(6):1342–8.
  17. Liu M, Zhao F, Zhu D, Duan H, Lv Y, Li L, et al. Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Mater Chem Phys. 2018;211:234–41.
  18. Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale. 2011;3(4):1533–40. 
  19. .Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol. 2008;42(16):5843–59. 
  20. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem. 1998; 22(11):1179–201.
  21. Nascimento MA, Cruz JC, Rodrigues GD, de Oliveira AF, Lopes RP. Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J Clean Prod. 2018; 202:264–72.
  22. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31.
  23. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282. 
  24. Fedlheim DL, Foss CA. Metal nanoparticles: synthesis, characterization, and applications. Boca Raton: CRC Press; 2001. 
  25. .Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79. 
  26. Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71.
  27. Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.
  28. Thurman, J.M.; Serkova, N.J. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Research 2015, 4, 153.
  29. Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.
  30. Yhee, J.Y.; Son, S.; Kim, S.H.; Park, K.; Choi, K.; Kwon, I.C. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J. Control Release 2014, 193, 202–213.
  31. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  32. Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 1–19.
  33. Van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 2014, 44, 765–774.
  34. Carvalho, T.C.; Peters, J.I.; Williams, R.O. Influence of particle size on regional lung deposition—What evidence is there? Int. J. Pharm. 2011, 406, 1–10
  35. Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control Release 2015, 219, 500–518.
  36. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  37. Van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 2014, 44, 765–774.
  38. Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D., Jr.; Mansour, H.M. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 2015, 11, 1189–1199.
  39. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  40. Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control Release 2015, 219, 500–518.
  41. Kaminskas, L.M.; McLeod, V.M.; Ryan, G.M.; Kelly, B.D.; Haynes, J.M.; Williamson, M.; Thienthong, N.; Owen, D.J.; Porter, C.J. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control Release 2014, 183, 18–26.
  42. Ryan, G.M.; Kaminskas, L.M.; Kelly, B.D.; Owen, D.J.; McIntosh, M.P.; Porter, C.J. Pulmonary administration of PEGylated polylysine dendrimers: Absorption from the lung versus retention within the lung is highly size-dependent. Mol. Pharm. 2013, 10, 2986–2995.
  43. Paranjpe, M.; Muller-Goymann, C.C. Nanoparticle-mediated pulmonary drug
  44. Delivery: A review. Int. J. Mol. Sci. 2014, 15, 5852–5873.
  45. Kroegel C. Global Initiative for Asthma (GINA) guidelines: 15 Years of application. ExpertRev. Clin.Immunol. 2009; 5:239–249. 
  46. Dahl R. Systemic side effects of inhaled corticosteroids in patients with asthma. Respiratory Med. 2006; 100:1307–1317.
  47. Organization WHO. Global Tuberculosis Report 2019: World Health Organization, WHO2019.
  48. Dartois V, Barry CE. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. Curr Clin Pharmacol. 2010; 5(2):96–114. https://doi.org/10.2174/157488410791110797
  49. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol.2014;12(3):159–67. https://doi.org/10.1038/nrmicro3200. 
  50. Jemal A., Thun M.J., Ries L.A., Howe H.L., Weir H.K., Center M.M., Ward E., Wu X.C., Eheman C., Anderson R.U.A., et al. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J. Natl. Cancer Inst. 2008;100:1672–1694
  51. Kim S.C., Kim D.W., Shim Y.H., Bang J.S., Oh H.S., Wan Kim S., Seo M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release. 2001;72:191–202.
  52. Hitzman C.J., Wattenberg L.W., Wiedmann T.S. Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J. Pharm. Sci. 2006; 95:1196–1211.
  53. Kamat C.D., Shmueli R.B., Connis N., Rudin C.M., Green J.J., Hann C.L. Poly(beta-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo. Mol. CancerTher. 2013;12:405–415. ]
  54. Chen Y., Zhu X., Zhang X., Liu B., Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010;18:1650–1656.
  55. Da Silva A.L., Santos R.S., Xisto D.G., Alonso Sdel V., Morales M.M., Rocco P.R. Nanoparticle-based therapy for respiratory diseases. An. Acad. Bras. Cienc. 2013; 85:137–146.
  56. Kenyon N.J., Bratt J.M., Lee J., Luo J., Franzi L.M., Zeki A.A., Lam K.S. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One. 2013; 8:e77730.
  57. Pandey R., Sharma A., Zahoor A., Sharma S., Khuller G.K., Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob.Chemother. 2003; 52:981–986.
  58. Roa W.H., Azarmi S., Al-Hallak M.H., Finlay W.H., Magliocco A.M., Lobenberg R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release. 2011; 150:49–55

Photo
Vaishvi Patel
Corresponding author

B. Pharm Scholar, Veerayatan Institute of Pharmacy, Jakhania, Gujarat, India

Photo
Megha Gandhi
Co-author

Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Photo
Kajal Pradhan
Co-author

Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Vaishvi Patel*, Megha Gandhi, Kajal Pradhan, An Overview Of Nanoparticles A Survey Of Characteristics, Advancements And Challenges, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 9, 184-191. https://doi.org/10.5281/zenodo.8331480

More related articles
Exploring The Multifaceted Mechanisms Of Amphetami...
Arnab Roy, Mahesh Kumar Yadav, Abrarul Haque, Pratik Mondal, Gaut...
The pharmacognostic study, phytochemical screening...
Namrata M. Waghmare , Manisha G. Pate, Jayshree S. Dalal, Prasad ...
Recent Advances And Emergency Trends In Anticoagul...
Bhavani Suba Niranjana, Julliyan Dilleban , Deephiha Elango, Bala...
Alzheimer's Disease: A Review...
Poonam Manikrao Dapke , Ms.Sonali kalam , Dr. Gajanan Sanap, ...
Breathless: A Comprehensive Study Of Pathophysiology, Diagnosis, And Treatment O...
Hema Arya, Shelesh Kumar Bansal, Tanuj Bhardwaj , Kanishk, Shivam, ...
Related Articles
Red Blood Cell Membrane Camouflaged Nano Particles...
Daphne sherine, Dr. Ravichandran, Sukesh kumar B., Abjel A., Gopi S., ...
A Review On Omaveloxolone...
Lalitha A., Nanjundeshwari G., Swetha M., Swetha R., ...
Tinospora Cordifolia – As An Anticancer Agent: Recent And Advance Study...
Arpita R. Pawar, Ashwini T. Chougule, Jaya R. Kamble, Pritam Salokhe, Nilesh B. Chougule, ...
Advancements in Understanding the Neuromuscular Junction: Implications for Muscl...
Arnab Roy, K. Rajeswar Dutt, Mahesh Kumar Yadav, Sudarshan Rawani, Gangadhar Singh, Suraj Kumar, Ami...
Exploring The Multifaceted Mechanisms Of Amphetamines And Their Impact On Neurot...
Arnab Roy, Mahesh Kumar Yadav, Abrarul Haque, Pratik Mondal, Gautam Mahto, Balraj Kumar, Nisha Kumar...
More related articles
Exploring The Multifaceted Mechanisms Of Amphetamines And Their Impact On Neurot...
Arnab Roy, Mahesh Kumar Yadav, Abrarul Haque, Pratik Mondal, Gautam Mahto, Balraj Kumar, Nisha Kumar...
The pharmacognostic study, phytochemical screening, and TLC of Allamanda Cathart...
Namrata M. Waghmare , Manisha G. Pate, Jayshree S. Dalal, Prasad P. Jumde , ...
Recent Advances And Emergency Trends In Anticoagulant Therapy...
Bhavani Suba Niranjana, Julliyan Dilleban , Deephiha Elango, Balakrishnan karuppiah, ...
Exploring The Multifaceted Mechanisms Of Amphetamines And Their Impact On Neurot...
Arnab Roy, Mahesh Kumar Yadav, Abrarul Haque, Pratik Mondal, Gautam Mahto, Balraj Kumar, Nisha Kumar...
The pharmacognostic study, phytochemical screening, and TLC of Allamanda Cathart...
Namrata M. Waghmare , Manisha G. Pate, Jayshree S. Dalal, Prasad P. Jumde , ...
Recent Advances And Emergency Trends In Anticoagulant Therapy...
Bhavani Suba Niranjana, Julliyan Dilleban , Deephiha Elango, Balakrishnan karuppiah, ...