View Article

Abstract

Impatiens glandulifera belongs to family Balsaminaceae. It is found in the foothills of the western Himalaya, i.e. India, Pakistan, Nepal and also in European countries. Different parts of the plant has been used to treat various ailments. It is effective in joint pain. Plant seeds are chewed or seed oil is used as tonic and for the treatment of anxiety. The root extract or paste made from roots are applied to cool hands and feet. Roots, leaves and flowers powders and decoctions are used for depression and hypnosis. It is very good antidote for snake bites. Paste of leaves is applied externally to treat burns. The infusion from flowers is used for eye washes. Flowers are used as cathartic, diuretic, and emetic. Impatiens glandulifera has been reported to have anti-oxidant, anti-microbial, anti-proliferative, anti-cancer activity and also effective for some nervous system disorders. The main phytoconstituents found in plant are flavonoids, quinones, terpenes, sterols, coumarins, fatty acids, volatile compounds, essential oils.

Keywords

Flavonoids, Anti-inflammatory, Antidepressant, Impatiens.

Introduction

Pl?nts h?v? s?rv?d ?s found?tion?l ?ill?rs within glob?l tr?dition?l m?di??l systems, driving ?h?rm???uti??l innov?tion th?t ?ontinu?s to sh??? mod?rn th?r???uti?s. N?tur?l ?om?ounds ?nd th?ir d?riv?tiv?s ?urr?ntly ?onstitut? ov?r 50% of th?r???uti? m?di??tions, und?rs?oring th?ir ?nduring r?l?v?n??.[1] Indi?’s ?ion??ring rol? in ?dv?n?ing indig?nous m?di?in?l systems m?rits em?h?sis, with min?r?l ?nd ?l?nt-d?riv?d formul?tions remaining int?gr?l to dis??s? m?n?gem?nt. Not?bly, th? glob?l r?surg?n?? of alt?rn?tiv? m?di?in? r?fl??ts ?volving st?k?hold?r alignm?nt with holisti? ??r? ??r?digms.[2] Impatiens glandulifera is a herb that belongs to family Balsaminaceae. It is having ?r??t stem (5−50 mm di?m?t?r, 1–2.5 m height) f??tur?s hollow ?or? with ??ri?h?r?l lignifi?d v?s?ul?r tissu?, whil? root system ?ombin? ?ylindri??l ?rim?ry roots (2–4 mm) with 146 ± 35 ?dv?ntitious roots (15−20 ?m l?ngth). Flow?rs demonstr?t? ?hrom?ti? v?ri?bility (purple/pink/white), ?om?lem?nt?d by distin?tiv? fiv?-?ngl?d fruit ???sul?s (1.5–5 ?m × 0.4–1.5 ?m) (Fig. 1b). Arr?ng?d in whorls of 2–5, th? l?n??ol?t?-ov?t? l??v?s (5−18 ?m × 2.5−7 ?m) ??hibit 18–50 s?rr?tions ??r m?rgin ?nd ??umin?t? ??i??s (Fig. 1?). Th? extrafloral purple b?s?l n??t?ri?s are ?ot?nti?l r?s?rvoirs of n??hthoquinon?s th?t w?rr?nt furth?r ?hyto?hemi??l ?n?lysis. S??d mor?hology r?v??ls ??l? gr?y-brown to black ov?l-globos? stru?tur?s (3–7 mm × 2–5 mm × 1–2 mm) with rugos? ?o?ts (Fig. 1d).[3,4]

Fig. 1. Impatiens glandulifera’s morphology.

A Whole plant, b. Detail of flower and capsules, c. Leaves, d. Seeds

Plant Taxonomy

Kingdom    :  Plantae

Phyllum      :  Magnoliophyta

Class           :  Magnoliopsida

Order             :           Geraniales

Family            :           Balsaminaceae

Genus             :           Impatiens

Species        :  Impatiens glandulifera 

Geographical Distribution

Im??ti?ns gl?ndulif?r? distribution spans P?kist?n’s north??st, Indi?’s J?mmu ?nd K?shmir, Him??h?l Pr?d?sh, Utt?r?kh?nd r?gions, N???l’s w?st?rn t?rritori?s ?nd s?l??tive Euro???n zon?s at an elevation of 2000-4000 m. The morphology ?n?bl? ?rolif?r?tion ??ross urb?n l?ndfills, for?st ?l??rings,[3,4]

Preliminary Phytocheical Screening

Preliminary phytochemical screening was perfermed on ethanolic extract of Impatiens glandulifera. The secondary metabolites that are present in the plant are enlisted in Table 1.

Table 1: Various secondary metabolites identified in Impatiens glandulifera[5]

 

Sr. No.

Constituents

Test

Result

1

Phenolic acids & Tannins

Ferric Chloride Test

+ve

2

Flavonoids

Lead Acetate Test

+ve

3

Quinones

Borntrager Test

+ve

4

Coumarin

Sodium Hydroxide Test

+ve

5

Steroids & Terpenoids

Libermann-Burchard test

+ve

6

Glycosides

Sulphuric Acid Test

+ve

7

Proteins

Millon’s Test

+ve

8

Carbohydrates

Fehling Test

+ve

9

Amino acids

Ninhydrin test

-ve

Test for tyrosine

-ve

Test for cysteine

-ve

10

Alkaloids

Mayer’s Test

-ve

Phytochemistry

The phytochemical composition of Impatiens glandulifera includes a variety of bioactive compounds found in different parts of the plant, including leaves, flowers, aerial parts, roots, stems, seed oil, their structures are compiled in Table 2. Flavonoids such as kaempferol, astragalin, quercetin, isoquercitrin, hyperoside (Fig. 2-6) and their glycosides are predominantly present in leaves, flowers and aerial parts contributing to antioxidant, anti-inflammatory and potential anticancer properties. Phenolic acids like caffeic acid, cinnamic acid, gallic acid, salicylic acid, and vanillic acid (Fig. 7-11) are widely distributed in flowers, roots and leaves playing crucial roles in plant defense and offering antimicrobial, anti-inflammatory and antioxidant benefits. Naphthoquinones such as 2-methoxy-1,4-naphthoquinone and 2-hydroxy-1,4-naphthoquinone (Fig. 12 & 13) are found in flowers, leaves and stems, known for their antimicrobial activities. Various fatty acids, including palmitic acid, stearic acid, linolenic acid and arachidic acid (Fig. 14-17) are abundant in seed oil and flower stalks, playing essential roles in plant metabolism and exhibiting potential health benefits such as anti-inflammatory and cardioprotective agent. The herb and roots contain significant volatile compounds such as α-terpinyl acetate, linalool, borneol, β-phellandrene, butylphthalide and ligustilide (Fig. 18-23) which are known for their aromatic properties and potential therapeutic effects, including sedative, antispasmodic actions. Additionally, carbohydrates like glucose, galactose, xylose and arabinose (Fig. 24-27) are found in the aerial parts and roots, essential for energy storage and structural functions. Other unique bioactive compounds such as α-spinasterol (Fig. 28), glanduliferins A and B and parinaric acid (Fig. 29) contribute to various pharmacological activities, including anti-inflammatory and antioxidant. The presence of diverse secondary metabolites suggests the plant's significant medicinal potential, supporting its traditional and modern therapeutic applications. [6, 7, 8, 9]

Table 2: Structure of Phycochemicals

 

 

 

 

 

 

 

 

Fig. 2 Kaempferol

Fig. 3 Astragalin

Fig. 4 Quercetin

Fig. 5 Isoquercitrin

  

 

  

 

 

 

  

 

Fig. 6 Hyperoside

Fig. 7 Caffeic acid

Fig. 8 Cinnamic acid

Fig. 9 Gallic acid

 

 

  

 

  

 

  

 

Fig. 10 Salicylic acid

Fig. 11 Vanillic acid

Fig. 12 2-Methoxy-1,4-naphthoquinone

Fig. 13 2-Hydroxy-1,4-naphthoquinone

 

 

 

 

 

 

 

 

Fig. 14 Palmitic acid

Fig. 15 Stearic acid

Fig. 16 Linolenic acid

Fig. 17 Arachidic acid

 

 

 

 

 

 

 

 

Fig. 18 α-Terpinyl acetate

Fig. 19 Linalool

Fig. 20 Borneol

Fig. 21 β-Phellandrene

 

 

 

 

 

 

 

 

Fig. 22 Butylphthalide

Fig. 23 (Z)-Ligustilide

Fig. 24 Glucose

Fig. 25 Galactose

 

 

 

 

 

 

 

 

Fig. 26 Xylose

Fig. 27 Arabinose

Fig. 28 α-Spinasterol

Fig. 29 Parinaric acid

Ethnopharmacological Activities

I. gl?ndulif?r? demonstr?t?s th?r???uti? ?ffi???y in joint ??in m?n?gem?nt. As both ? g?n?r?l toni? ?nd t?rg?t?d tr??tm?nt, s??ds ?r? ?h?w?d to ?ddr?ss ?n?i?ty ?nd joint dis?omfort. Through st?nd?rdiz?d ?r???r?tion m?thods, ?owd?red roots/l??v?s/flow?r d??o?tions fun?tion ?s ?sy?hotro?i? ?djuv?nts ?nd v?nom ?ount?rm??sur?s. E?t?rn?l ???li??tion of l??v?s show good results in burn rem?di?tion. O?hth?lmi? solutions d?riv?d from flor?l infusions demonstr?t? s?nitizing ?ro??rti?s. Th? s???i?s' blossoms ?r? furth?r em?loy?d in ?rthr?lgi? mitig?tion ?longsid? ?urg?tiv?, em?ti? and diur?ti? int?rv?ntions. Flow?rs are also incorporated into sn?k?bit? ?ntidot?s. L??f-b?s?d ?r???r?tions ?rovid? lo??liz?d ?ooling through ??id?rm?l ???li??tion. Nutrition?l utiliz?tion ??tt?rns ?onfirm th? ?l?nt's fruits, s??ds, foli?g? and stems ?s vi?bl? di?t?ry ?om?on?nts.[10]

Biological Activity

Antioxidant activity

Thr?? ??tr??tion mod?liti?s—So?hl?t, ultr?sound-?ssist?d, ?nd ????l?r?t?d solv?nt w?r? system?ti??lly ?om??red for ?h?noli? ??id r??ov?ry from I. gl?ndulif?r? flor?l and v?g?t?tiv? tissu?s. O??r?tion?l ??r?m?t?rs (80-120°C, 100 b?r) ?rodu??d TPAC v?lu?s of 188.07-281.82 µg/mL, with So?hl?t-d?riv?d flow?r ??tr??ts ??hibiting ???k DPPH n?utr?liz?tion (IC50 0.06 mg/mL). HPLC-ESI–MS/MS ?rofiling id?ntifi?d ?roto??t??hui? ??id ?s th? domin?nt ?onstitu?nt, ???om??ni?d by gentilic acid, trans-caffeic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, p-coumaric acid, salicylic acid, cis-ferulic acid, cis-caffeic acid, gallic acid and 3-hydroxy cinnamic acid as ?n?ill?ry ?h?noli? ??ids showing tissu?-s???ifi? distribution ??tt?rns.[7] M?th?nol ??tr??tion of ??ri?l ??rts yi?ld?d 2-methoxy-1,4-naphthoquinone, aempferol 3-O-glucoside (astragalin), quercetin 3-O-glucoside (isoquercetin), kaempferol 3-O-rutinoside (nicotiflorin), kaempferol 3-O-rhamnosyldiglucoside, p-hydroxybenzoic acid, protocatechuic acid, kaempferol 3-O-galactoside (trifolin), hyperoside, eriodictyol, and eriodictyol 7-O-β-D-glucoside ?h?noli? ?om?ounds, th?ir ?ntio?id?nt ?ot?nti?l qu?ntifi?d through du?l r?di??l ?ss?ys. Isoqu?r??tin em?rg?d ?s th? most ?ot?nt ?g?nt, demonstr?ting IC50 v?lu?s of 0.11 mg/mL (DPPH) ?nd 0.01 mg/mL (ATBS). This ?om?ound ?lust?r in?luding hy??rosid? ?nd ?riodi?tyol d?riv?tiv?s highlights th? s???i?s' div?rs? ?hyto?hemi??l r???rtoir?.[8] Ess?nti?l oil hydrodistill?tion from ??ri?l stru?tur?s ?rodu??d sup?rior ?ntio?id?nt out?om?s v?rsus root-d?riv?d ?quiv?l?nts, ?vid?n??d by DPPH IC50 3.96 µg/mL ?nd linol?i? ??id inhibition ?t 102.08 µg/mL. GC-MS ?n?lysis of th? 0.22% w/yi?ld oil id?ntifi?d β-?h?ll?ndr?n? (7.4%) ?nd α-t?r?inyl ???t?t? (16.6%) ?s m?jor ?onstitu?nts, with ?rom?ti? vol?til?s ?om?rising 23% of th? tot?l ?hyto?om?l??.[9] An?lysis r?v??l?d ?ronoun??d ?ntio?id?nt ??tivity in ?st?rifi?d fr??tions from I. gl?ndulif?r? s??d, l??f ?nd root ??tr??ts. Not?bly, DPPH r?di??l s??v?nging ?ffi???y w?s most ?ronoun??d in th? l??f-d?riv?d f?tty ??id fr??tion (IC50 11.69 µg/mL), with m?t?l ?h?l?tion ?????ity ???king ?t IC50 5.49 µg/mL. GC-MS/FID qu?ntifi??tion id?ntifi?d α-linol?ni? ??id domin?n?? (40.5%) within this bio??tiv? ?rofil?.[11] Polys???h?rid? ??tr??tion m?thodologi?s w?r? o?timiz?d through hydro?l?oholi? m???r?tion ?nd ultr?sound-?ssist?d t??hniqu?s. GC-FID ?h?r??t?riz?tion demonstr?t?d g?l??turoni? ??id ?s th? ?rim?ry monos???h?rid? ??ross Im??ti?ns s???i?s, with I. gl?ndulif?r? yi?lding m??im?l ?on??ntr?tions. Subs?qu?nt in-vitro ?v?lu?tion ?onfirm?d sup?rior ?ntio?id?nt ??rform?n?? in th?s? ?olys???h?rid? m?tri??s.[12]

Anti-inflammatory and analgesic activities

R?s??r?h?rs isol?t?d ?olys???h?rid?s from ??ri?l ??rts ?nd roots of I. gl?ndulif?r?, demonstr?ting ? 32.7% redu?tion in IL-8 ???r?ssion within LPS-stimul?t?d hum?n n?utro?hils ?t 50 µg/mL ?on??ntr?tions during in vitro t?sting. Cytoto?i?ity ?ss?ssm?nts r?v??l?d no ?dv?rs? ?ff??ts on ??ll vi?bility ?t this dos?g?, ?onfirming bio?om??tibility.[12] Th? findings sugg?st o?timiz?d th?r???uti? ?ot?nti?l through t?rg?t?d infl?mm?tory ??thw?y modul?tion.

Antimicrobial activity

An?lysis r?v??ls th? ??ri?l ??rts ??tr??t of Im??ti?ns gl?ndulif?r? ??hibit?d no m??sur?bl? im???t on Gr?m-n?g?tiv? b??t?ri?l growth. Antib??t?ri?l ?ffi???y ?g?inst Gr?m-?ositiv? ??thog?ns was demonstr?t?d through ?g?r dilution t?sting, t?rg?ting S. ?ur?us, S. ??id?rmidis, M. lut?us, B. subtilis, B. ??r?us, Str. ?n?umoni??, ?nd Str. ?yog?n?s. Bro?d-s???trum ?ntimi?robi?l ??tivity ?h?r??t?riz?s I. gl?ndulif?r?, with o??r?tion?l thr?sholds r?v??ling str?t?gi? ?ot?nti?l. Minimum inhibitory ?on??ntr?tions r?ng?d from 250 to 1000 µg/ml ??ross r?f?r?n?? str?ins, findings sugg?sting mild to mod?r?t? bio??tivity gr?di?nts.[13]

Antineoplastic activity

Ph?rm??ologi??l ?rofiling of I. gl?ndulif?r? s??d d?riv?tiv?s r?v??l?d trit?r??noid fr??tions from ??trol?um ?th?r ??tr??ts (45-60°C) ??hibit?d height?n?d ?ffi???y ?g?inst HL-60 ?nd HL-60/MX2 l?ukemi? models, dis?l?ying IC50 r?ng?s from 11.69-88.07 µg/mL. Chrom?ti? ?n?lysis ?onfirm?d α-s?in?st?rol ???t?t? ?s th? domin?nt ?om?ound within th?s? bio??tiv? fr??tions, ?onstituting 21.63% of th? isol?t?d m?t?ri?l.[11] Cytoto?i?ity ?v?lu?tions demonstr?t?d ?nh?n??d ??tivity in ?thyl ???t?t? stem ??tr??ts from I. gl?ndulif?r? ??ross A-549, U373, ?nd SMEL-28 ??ll lines, with stem-d?riv?d m?t?ri?l showing sup?rior ?ot?n?y (m?di?n IC50 33 μg/mL). Two k?y ?hyto?onstitu?nts—2-m?tho?y-1,4-n??hthoquinon? ?nd s?in?st?rol w?r? isol?t?d through t?rg?t?d fr??tion?tion of stems, l??v?s, ?nd roots. Also, gl?ndulif?rin A ?nd B w?r? uniqu?ly id?ntifi?d in stem ??tr??ts. Ag?inst SMEL-28 m?l?nom? lines, 2-m?tho?y-1,4-n??hthoquinon? em?rg?d ?s th? ?rim?ry ?ytoto?i? ?g?nt, ??hi?ving IC50 v?lu?s b?tw??n 2-3 µg/mL.[14]

This ?r?s?nts ?n o??ortunity to ???lor? stru?tur?-??tivity r?l?tionshi?s within th? trit?r??noid class for th?r???uti? d?v?lo?m?nt.

Antidepressant and anxiolytic activities

Proto??t??hui? ??id ?nd hy??rosid?, isol?t?d from I. gl?ndulif?r?'s ?th?noli? ??tr??t demonstr?t?d ?ntid??r?ss?nt ?ffi???y in Albino Swiss mi??. Immobility tim? d??r??s?d signifi??ntly ?t 1.875 mg/kg intr???riton??l dos?s during Forced Swim Test ?nd Tail Suspension Test ?v?lu?tions. The hi??o??m??l Brain Derived Neurotrophic Factor l?v?ls in?r??s?d subst?nti?lly ?t ?l?v?t?d dos?s of 3.75 mg/kg ?nd 7.5 mg/kg. This m??h?nism ?????rs ??ntr?l to th? obs?rv?d n?uror?gul?tory ?ff??ts, with BDNF u?r?gul?tion s?rving ?s ? ?rob?bl? m??h?nisti? ??thw?y for mood disord?r rem?di?tion.[15]

CONCLUSION

The plant Impatiens glandulifera consist a variety of phytoconstituents. Since much research work has not been done on plant and very less literature is available. The studies exhibit the different type of compounds like flavonoids, glycosides, phenolics, phytosterols, triterpenoids, peptides and activities that has been reported, antioxidant, cytotoxic, antimicrobial, analgesic, anti-inflammatory, antidepressant and anxiolytic effects are the most frequent. Ethnobotanical information can guide to explore this plant for phytoconstituents and pharmacological screening and to make use of this plant in vivo pharmacological study may be conducted. It is concluded that the plant is of many uses.

Abbreviations

MIC

Minimum Inhibitory Concentration

IC

Inhibitory Concentration

LPS

Lipopolysaccharides

GC-FID

Gas Chromatography with Flame Ionization Detector

GC-MS

Gas Chromatography Mass Spectrometry

ATBS

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

DPPH

2,2-diphenyl-1-picrylhydrazyl

REFERENCES

        1. Dhiman S, Dahiya DP, Sharma S, Phytochemical analysis, Antioxidant and Antimicrobial Screening of Shoot Extracts of Viola odorata linn. from Shikari Devi Wildlife Sanctuary, Himachal Pradesh, India, International Journal of Ayurvedic Medicine, 2024;15(1): 212-8.
        2. Devprakash TR, Gurav S, Kumar GP, Mani TT, An review of phytochemical constituents and pharmacological activity of Plumeria species, International Journal of Current Pharmaceutical Research, 2012;4(1):1-6.
        3. Pires Jr EO, Caleja C, Garcia CC, Ferreira IC, Barros L, Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits, Trends in Food Science & Technology 2021;117:106-24.
        4. Helsen K, Diekmann M, Decocq G et al., Evolution and Systematics, Biological flora of Central Europe: Impatiens glandulifera Royle, Perspectives in Plant Ecology, 2021;50:125609.
        5. Sharma V, Kumar N, Prakash D, Chanchal D K, Pathak V, Phytochemical screening, Chromatographic and In-vitro Antioxidant Studies on The Extracts of Selected Plant, Turkish Journal of Physiotherapy and Rehabilitation, 2023;32(3):15656-15662.
        6. Szewczyk K, Phytochemistry of the genus impatiens (Balsaminaceae): A review, Biochemical Systematics and Ecology, 2018;80:94-121.
        7. Szewczyk K, Olech M, Optimization of extraction method for LC–MS based determination of phenolic acid profiles in different Impatiens species, Phytochemisty Letters, 2017;20:322-330.
        8. Szewczyk K, Sezai Cicek S, Zidorn C, Granica S, Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities, Natural Product Research, 2019;33(19):2851-2855.
        9. Szewczyk K, Kalemba D, Komsta ?, Nowak R, Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities, Molecules, 2016;21(9):1162.
        10. Delgado-Rodríguez FV, Weng-Huang NT, Loría Gutiérrez A, Arias-Nunez D, Rosales-Leiva C, Ethnobotany, Pharmacology and Major Bioactive Metabolites from Impatiens Genus Plants and Their Related Applications, Pharmacy Reviews, 2023;17(34):338-381.
        11. Szewczyka K, Bonikowskib R, Maci?g-Krajewskab A, Abramekc J, Bogucka-Kocka A, Lipophilic components and evaluation of the cytotoxic and antioxidant activities of Impatiens glandulifera Royle and Impatiens noli-tangere L. (Balsaminaceae), Grasas Aceites, 2018;69(3):e270.
        12. Szewczyk K, Heise EM & Piwowarski JP, Preliminary characterization and bioactivities of some Impatiens L. water-soluble polysaccharides, Molecules, 2018;23(3):631.
        13. Szewczyk K, Zidorn C, Biernasiuk A, Komsta L, Granica S, Polyphenols from Impatiens (Balsaminaceae) and their antioxidant and antimicrobial activities, Industrial Crops and Products, 2016;86:262-72.
        14. Cimmino A, Mathieu V, Evidente M, Ferderin M, Moreno Y, Banuls L et al., Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells, Fitoterapia 2016;109:138-45.
        15. Orzelska-Gorka J, Szewczyk K, Gawronska-Grzywacz M, Kedzierska E, G?owacka E, Herbet M et al., Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice, Neurochemistry International, 2019;128:206-14.

Reference

  1. Dhiman S, Dahiya DP, Sharma S, Phytochemical analysis, Antioxidant and Antimicrobial Screening of Shoot Extracts of Viola odorata linn. from Shikari Devi Wildlife Sanctuary, Himachal Pradesh, India, International Journal of Ayurvedic Medicine, 2024;15(1): 212-8.
  2. Devprakash TR, Gurav S, Kumar GP, Mani TT, An review of phytochemical constituents and pharmacological activity of Plumeria species, International Journal of Current Pharmaceutical Research, 2012;4(1):1-6.
  3. Pires Jr EO, Caleja C, Garcia CC, Ferreira IC, Barros L, Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits, Trends in Food Science & Technology 2021;117:106-24.
  4. Helsen K, Diekmann M, Decocq G et al., Evolution and Systematics, Biological flora of Central Europe: Impatiens glandulifera Royle, Perspectives in Plant Ecology, 2021;50:125609.
  5. Sharma V, Kumar N, Prakash D, Chanchal D K, Pathak V, Phytochemical screening, Chromatographic and In-vitro Antioxidant Studies on The Extracts of Selected Plant, Turkish Journal of Physiotherapy and Rehabilitation, 2023;32(3):15656-15662.
  6. Szewczyk K, Phytochemistry of the genus impatiens (Balsaminaceae): A review, Biochemical Systematics and Ecology, 2018;80:94-121.
  7. Szewczyk K, Olech M, Optimization of extraction method for LC–MS based determination of phenolic acid profiles in different Impatiens species, Phytochemisty Letters, 2017;20:322-330.
  8. Szewczyk K, Sezai Cicek S, Zidorn C, Granica S, Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities, Natural Product Research, 2019;33(19):2851-2855.
  9. Szewczyk K, Kalemba D, Komsta ?, Nowak R, Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities, Molecules, 2016;21(9):1162.
  10. Delgado-Rodríguez FV, Weng-Huang NT, Loría Gutiérrez A, Arias-Nunez D, Rosales-Leiva C, Ethnobotany, Pharmacology and Major Bioactive Metabolites from Impatiens Genus Plants and Their Related Applications, Pharmacy Reviews, 2023;17(34):338-381.
  11. Szewczyka K, Bonikowskib R, Maci?g-Krajewskab A, Abramekc J, Bogucka-Kocka A, Lipophilic components and evaluation of the cytotoxic and antioxidant activities of Impatiens glandulifera Royle and Impatiens noli-tangere L. (Balsaminaceae), Grasas Aceites, 2018;69(3):e270.
  12. Szewczyk K, Heise EM & Piwowarski JP, Preliminary characterization and bioactivities of some Impatiens L. water-soluble polysaccharides, Molecules, 2018;23(3):631.
  13. Szewczyk K, Zidorn C, Biernasiuk A, Komsta L, Granica S, Polyphenols from Impatiens (Balsaminaceae) and their antioxidant and antimicrobial activities, Industrial Crops and Products, 2016;86:262-72.
  14. Cimmino A, Mathieu V, Evidente M, Ferderin M, Moreno Y, Banuls L et al., Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells, Fitoterapia 2016;109:138-45.
  15. Orzelska-Gorka J, Szewczyk K, Gawronska-Grzywacz M, Kedzierska E, G?owacka E, Herbet M et al., Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice, Neurochemistry International, 2019;128:206-14.

Photo
Bhavneshwari Devi
Corresponding author

School of Pharmacy, Abhilashi University, Chail-Chowk, Himachal Pradesh, India 175028.

Photo
Dev Prakash Dahiya
Co-author

School of Pharmacy, Abhilashi University, Chailchowk, Mandi (H.P) India 175028.

Photo
Shivani
Co-author

School of Pharmacy, Abhilashi University, Chailchowk, Mandi (H.P) India 175028.

Photo
Anchal Sankhyan
Co-author

School of Pharmacy, Abhilashi University, Chailchowk, Mandi (H.P) India 175028.

Photo
Nishant Verma
Co-author

School of Pharmacy, Vidya University, Meerut (U.P) India 250002.

Dev Prakash Dahiya, Bhavneshwari Devi*, Shivani, Anchal Sankhyan, Nishant Verma, A Review on Himalayan Balsam (Impatiens Glandulifera), Int. J. of Pharm. Sci., 2025, Vol 3, Issue 4, 273-280 https://doi.org/10.5281/zenodo.15126683

More related articles
Development and Evaluation of Topical Polyherbal S...
Rashmi Mishra, Osheen Gurung, Deepak Shrivastava, Ankit Sharma, R...
Canthium Angustifolium Roxb. (Rubiaceae): A Compre...
Elizabeth M Abraham, Abhirami V. R., Devika Gopan, Lakshmi Nandan...
Unlocking The Biological Potential of Quinolines: ...
Laksmi Gopal R, Sreeja S, Ayshu S, Devika P S, Amina T, Devapriya...
Dioscore Bulbifera As Natural Remedy: An Investigation into It Therapeutic Revie...
Sanjana Dupare, Shivshankar Mhaske, Vikas Gawande, Radha Gaykwad, Tejas Sharma, ...
Dioscore Bulbifera As Natural Remedy: An Investigation into It Therapeutic Revie...
Sanjana Dupare, Shivshankar Mhaske, Vikas Gawande, Radha Gaykwad, Tejas Sharma, ...
Related Articles
Canthium Angustifolium Roxb. (Rubiaceae): A Comprehensive Review...
Elizabeth M Abraham, Abhirami V. R., Devika Gopan, Lakshmi Nandana M R, Parvathy S. S., Samna Salim ...
Chalcone Derivatives As Potential Biological Activities ...
A.Sri Priya, K. Govinda Rao, A. Sri Laya, P. Devika, K. Renuka, D. Pravallika, N. Hasini, G. Venu, A...
A Review On Multipurpose Therapeutic Use Of Herbal Gel...
Chintale Ashwini, Shinde Smruti, Shinde Soham, Shinde Vaishnavi, Shirfule Pragati, Shrungare Aishwar...
Development and Evaluation of Topical Polyherbal Suspension for Treatment of Inf...
Rashmi Mishra, Osheen Gurung, Deepak Shrivastava, Ankit Sharma, Rajat Pawar, Shivam Soni, ...
More related articles
Development and Evaluation of Topical Polyherbal Suspension for Treatment of Inf...
Rashmi Mishra, Osheen Gurung, Deepak Shrivastava, Ankit Sharma, Rajat Pawar, Shivam Soni, ...
Canthium Angustifolium Roxb. (Rubiaceae): A Comprehensive Review...
Elizabeth M Abraham, Abhirami V. R., Devika Gopan, Lakshmi Nandana M R, Parvathy S. S., Samna Salim ...
Unlocking The Biological Potential of Quinolines: A Review ...
Laksmi Gopal R, Sreeja S, Ayshu S, Devika P S, Amina T, Devapriya S, Thrishala Kennady, ...
Development and Evaluation of Topical Polyherbal Suspension for Treatment of Inf...
Rashmi Mishra, Osheen Gurung, Deepak Shrivastava, Ankit Sharma, Rajat Pawar, Shivam Soni, ...
Canthium Angustifolium Roxb. (Rubiaceae): A Comprehensive Review...
Elizabeth M Abraham, Abhirami V. R., Devika Gopan, Lakshmi Nandana M R, Parvathy S. S., Samna Salim ...
Unlocking The Biological Potential of Quinolines: A Review ...
Laksmi Gopal R, Sreeja S, Ayshu S, Devika P S, Amina T, Devapriya S, Thrishala Kennady, ...