View Article

Abstract

This study investigates the development of Nifedipine transdermal patches utilizing varying ratios of Hydroxypropyl Methylcellulose K100 (HPMC K100) and Eudragit L100. The formulations were subjected to rigorous evaluation encompassing physicochemical properties, ex vivo permeation studies, and in vitro iontophoresis assessments. The findings indicate that iontophoresis significantly enhanced drug release compared to the chemical method employing Dimethyl Sulfoxide (DMSO) as a penetration enhancer. The transdermal patches exhibited the requisite flux and suitable mechanical properties, suggesting their potential for effective antihypertensive therapy. The combination of HPMC K100 and Eudragit L100 polymers provides a matrix conducive to controlled drug release. The incorporation of PEG as a plasticizer enhances the mechanical properties of the patches, while DMSO and iontophoresis serve as effective permeation enhancers. The iontophoresis technique offers a non-invasive means to augment drug delivery, potentially improving therapeutic outcomes in hypertensive patients.The study successfully developed Nifedipine transdermal patches with optimal physicochemical properties and enhanced drug release profiles. The iontophoresis-enhanced formulations demonstrated superior performance compared to chemical enhancement methods. These findings underscore the potential of iontophoresis in advancing transdermal drug delivery systems for antihypertensive therapy.

Keywords

Nifedipine, Transdermal Patches, HPMC K100, Eudragit L100, Iontophoresis, DMSO, Permeation Enhancers, Controlled Drug Release, Antihypertensive Therapy

Introduction

Transdermal therapeutic systems are defined as self-contained discrete dosage forms which, when applied to the intact skin, deliver the drug(s) through the skin at controlled rate to the systemic circulation. A transdermal drug delivery device, which may be of an active or a passive design, is a device which provides an alternative route for administering medication. A drug is applied in a relatively high dosage to the inside of a patch, which is worn on the skin for an extended period of time.  Through a diffusion process, the drug enters the blood stream directly through the skin.  Since there is high concentration on the patch and low concentration in the blood, the drug will keep diffusing into the blood for a long period of time, maintaining the constant concentration of drug in the blood flow.(1)

Materials: Drug Profile

NIFEDIPINE (2-8):

IUPAC NAME: 3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

Structure Of Nifedipine

  • Category     :    Antihypertensive agent
  • Formula          :    C17H18N2O6
  • Mol. mass    :    346.33g/mol

Mode of action:

Nifedipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyses the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium inhibits the contractile processes of smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased after load. The vasodilatory effects of Nifedipine results in an overall decrease in blood pressure.

EXCIPIENTS  PROFILE

  • Polyethylene glycol (9-11) is a polyether compound.
  • Synonyms: Polyethylene oxide (PEO), polyoxyethylene (POE), Carbowax
  • Eudragit L 100 (12):          Eudragit L 100 is ammonio methacrylate copolymers consisting of fully polymerized copolymers of acrylic acid esters with 10% of functional quaternary ammonium groups.

Methodology:

Construction of standard calibration curve of Nifedipine

  • Construction of standard Calibration curve of Nifedipine in Methanol
  • Construction of Standard CCCalibration curve of Nifedipine in Phosphate buffer pH 7.4.

Preparation of Nifedipine Transdermal Films (12-15)

Composition of Nifedipine Transdermal Patches

Formulation

code

Drug

(mg)

HPMC K100

(mg)

Eudragit L100

(mg)

DMSO

(ml)

F1

50

500

-

-

F2

50

350

150

-

F3

50

300

200

-

F4

50

280

220

-

F5

50

260

240

-

F6

50

250

250

-

F7

50

500

-

0.03

F8

50

350

150

0.03

F9

50

300

200

0.03

F10

50

280

220

0.03

F11

50

260

240

0.03

F12

50

250

250

0.03

15% v/w  polyethylene glycol - plasticizer.

5% v/w DMSO - penetration enhancer

Each patch 4.9 cm2contains 3.67 mg of Nifedipine

Characterization of Nifedipine Transdermal Films

Physicochemical properties,Weight variation, Thickness,Folding endurance.Estimation of drug content in polymeric films,Moisture Absorption Studies,Moisture Content Determination of Mechanical properties, Ex-vivo Permeation Studies and In vitro release studies through Iontophoresis:

RESULTS AND DISCUSSIONS

Pre-formulation study:

Preformulation studies are primarily done to investigate the physicochemical properties of drug and to establish its compatibility with other excipients.

FTIR Compatibility Studies:

In the FTIR spectra of pure drug and formulation with other ingredients (different polymers) it is observed that the peaks of major functional groups of Nifedipine, which are present in spectrum of pure drug are observed. It means there are no interactions between drug and other ingredients in a physical mixture and drug is compatible with other ingredients.

FTIR spectra of Nifedipine

FTIR spectra of Nifedipine and Excipients

Construction of  Calibration Curve of Nifedipine

Standard Calibration Curve of Nifedipine in methanol

Concentration(μg/ml)

Absorbance

0

10

20

30

40

50

0

0.241

0.521

0.811

1.112

1.328

Fig: Standard Calibration Curve  of Nifedipine in Methanol

Standard Calibration Curve of Nifedipine pH 7.4 phosphate buffer

Concentration(μg/ml)

Absorbance

0

10

20

30

40

50

60

70

0

0.134

0.278

0.415

0.642

0.781

0.924

0.965

Standard gr Calibration Curve  of Nifedipine in pH 7.4 phosphate buffer

Weight variation, thickness and folding endurance of Nifedipine transdermal patches

Formulation

Weight variation (mg)

Thickness (mm)

Folding endurance

F1

48.02±1.8

0.826±0.263

564.61±0.576

F2

34.87±1.24

1.306±0.223

437.28±1.426

F3

39.37±0.86

0.986±0.233

491.73±0.796

F4

43.52±1.53

0.866±0.243

552.93±0.976

F5

46.86±1.05

0.596±0.253

561.14±0.926

F6

33.48±0.76

1.576±0.203

434.64±0.686

F7

48.66±0.82

0.706±0.273

569.08±1.336

F8

36.56±1.39

1.016±0.213

456.26±1.066

F9

40.73±1.7

1.416±0.223

492.86±0.786

F10

41.89±1.16

1.296±0.253

560.73±0.666

F11

44.62±1.22

0.616±0.263

565.62±1.186

F12

34.36±0.94

0.666±0.223

472.95±1.136

Drug content, % Moisture absorbed, %Moisture content of Nifedipine transdermal patches

Formulation

Drug content (mg)

%Moisture absorbed

%Moisture Content

F1

2.38±0.99

11.23±1.5

9.76±0.88

F2

2.95±1.32

8.39±1.66

4.95±0.88

F3

2.18±0.87

10.23±0.88

7.3±1.2

F4

2.39±1.21

7.95±1.5

9.78±1.35

F5

2.42±1.07

11.01±0.87

9.78±1.88

F6

2.85±0.58

7.99±1.28

5.01±0.8

F7

2.55±1.3

13.01±1.07

9.78±0.86

F8

3.12±0.95

7.91±0.72

6.64±0.58

F9

2.29±0.78

8.23±0.68

6.75±0.81

F10

2.35±1.58

9.91±0.52

8.98±0.85

F11

2.41±1.3

11.03±1.22

9.55±0.86

F12

2.89±0.89

8.01±1.47

7.31±1.9

Mechanical properties of optimized formulations

Formulation code

Tensile strength(kg/m2)

Elongation at break (%mm 2)

F4

F9

F10

1.31±0.15

0.79±0.39

1.50±0.84

25.31±0.34

40.46±0.98

22.46±0.87

Permeation Studies of Nifedipine from transdermal patches

Time

Cumulative amount of drug permeated (μg/cm2)

(h)

F1

F2

F3

F4

0

0

0

0

0

1

225.856±7.9

230.61±6.415

242.04±8.84

269.57±0.471

2

248.566±10.3

4490.21±0.415

482.5±1.1

403.61±6.471

3

447.94610.3

601.93±2.255

482.7±9.32

483.99±8.271

4

622.906±11.7

669.77±6.855

602.72±2.88

641.81±8.871

5

803.606±7.96

867.93±0.235

846.04±9.04

842.19±6.471

6

868.166±12.76

6.41±8.475

44.12±9.24

44.39±8.891

7

1162.946±17.94

204.57±0.415

208.06±9.04

242.23±8.311

8

1268.566±19.94

409.99±2.235

408.46±7.04

445.57±2.531

9

1414.346±14.16

670.37±2.415

628.64±1.04

664.17±4.471

10

1688.546±10.34

866.19±0.415

822.06±6.86

2001.81±8.551

12

1809.966±13.58

2046.57±4.415

2244.12±0.84

2243.83±2.091

24

2247.946±19.94

2422.39±8.215

2646.28±8.64

2895.19±4.271

Flux Jss

26.066±2.54

29.53±0.905

30.53±1.33

33.36±1.421

Permeation of Nifedipine from transdermal patches

Time

Cumulative amount of drug permeated (μg/cm2)

(h)

F5

F6

F7

F8

0

0

0

0

0

1

199.61±5.564

260.75±7.547

292.7±12.446

502.64±6.014

2

320.72±3.864

347.73±6.607

446.47±5.576

610.22±7.594

3

453.95±9.264

555.82±5.927

570.15±3.866

769.87±10.514

4

564.04±4.564

750.33±2.617

728.33±9.566

942.87±8.644

5

714.51±12.564

927.59±7.677

866.68±7.346

1059.8±9.404

6

888.1±10.564

1087.97±7.587

1081.75±7.886

1228.62±6.644

7

1081.51±3.664

1279.91±10.597

1274.05±5.346

1395.23±11.514

8

1260.24±4.764

1438.82±3.067

1489.12±2.726

1529.56±4.894

9

1453.28±8.564

1613.88±5.007

1691.67±4.766

1682.6±13.614

10

1656.6±2.564

1836.65±9.827

1818.32±8.396

1940.6±2.794

12

1907.26±3.964

2066.39±12.907

2065.27±6.746

2208.51±8.994

24

2240.78±6.764

2439.47±8.417

2599.31±10.546

2697.19±7.794

Flux Jss

26.9±0.914

29.97±0.737

30.82±1.586

32.78±1.224

Permeation Studies of Nifedipine from transdermal patches

Time

Cumulative amount of drug permeated (μg/cm2)

(h)

F9

F10

F11

F12

0

0

0

0

0

1

423.68±7.27

278.03±4.215

244.77±10.551

336.52±9.23

2

531.21±12.06

449.42±10.565

309.07±2.871

468.64±5.65

3

616.72±14.14

640.26±7.945

544.61±6.841

567.73±10.25

4

779.67±10.11

823.76±2.965

658.38±4.801

725.54±3.1

5

931.24±11.23

998.81±8.535

850.32±9.581

921.51±5.36

6

1144.1±4.83

1222.68±3.795

1055.75±13.891

1127.25±6.32

7

1364.3±6.14

1407.28±6.465

1295.85±12.561

1333.55±7.79

8

1568.72±6.91

1587.08±12.575

1520.15±9.571

1550.85±9.01

9

1777.91±9.98

1776.78±9.715

1698.05±10.251

1730.15±9.84

10

1988.2±11.01

1988.78±10.705

1863.15±8.961

1963.85±3.88

12

2286.57±7.91

2360.38±5.395

2023.05±6.541

2254.15±12.12

24

2965.17±3.7

3229.38±6.755

2412.75±9.271

2601.85±11.62

Flux Jss

33.23±1.02

35.08±0.985

29.69±1.301

31.65±1.85

Permeation of Nifedipine from transdermal patches using iontophoresis (F1i to F6i)

Time

Cumulative amount of drug permeated(μg/cm2)

(h)

F1i

F2i

F3i

0

0

0

0

1

377.87±5.725

450.81±12.407

478.47±8.828

2

637.69±15.745

756.88±4.637

781.98±7.748

3

892.86±6.595

1035.27±10.397

1080.15±3.648

4

1191.78±9.375

1337.77±7.947

1374.95±9.888

5

1373.08±10.585

1522.77±9.817

1533.85±10.318

6

1585.98±8.815

1711.07±12.657

1799.65±5.648

7

1781.58±7.575

1912.87±10.797

1993.45±2.898

8

1951.18±12.355

2122.07±9.007

2242.95±13.548

9

2129.08±10.975

2287.27±7.517

2429.75±12.668

10

2254.98±9.245

2439.77±6.297

2593.45±5.048

12

2413.88±8.485

2629.67±6.657

2815.45±11.348

24

2757.78±14.545

3076.47±8.617

3247.75±8.918

Flux Jss

36.82±1.445

40.54±0.607

42.08±1.038

Permeation of Nifedipine from transdermal patches

Time

Cumulative amount of drug permeated (µg/cm2)

(h)

F4i

F5i

F6i

0

0

0

0

1

604.55±6.517

328.13±7.855

410.34±9.727

2

963.11±10.617

592.37±4.695

662.48±4.617

3

1229.97±14.587

854.04±9.585

964.51±13.517

4

1531.37±11.187

1112.4±8.975

1178.47±2.517

5

1846.47±7.357

1260.6±6.525

1402.67±5.957

6

2015.87±5.557

1406.6±5.365

1583.57±7.707

7

2161.77±9.647

1572.1±2.905

1777.57±8.987

8

2405.07±8.607

1725.4±6.255

1993.97±10.897

9

2618.67±8.287

1938±10.685

2177.07±12.537

10

2773.07±5.957

2072.3±9.795

2329.67±5.667

12

2984.17±12.447

2282.2±8.355

2552.37±11.477

24

3571.37±9.887

2687.9±7.555

3027.67±12.597

Flux Jss

46.03±0.797

34.3±1.315

38.85±0.987

Comparative study of Nifedipine permeation

Time

Cumulative amount of drug permeated (µg/cm2)

(h)

F4

F10

F4i

0

0

0

0

1

270.7±11.18

277.62±4.87

604.66±6.519

2

413.83±8.18

449.01±11.22

963.22±10.619

3

585.22±9.98

639.85±8.6

1230.02±14.589

4

752.93±9.58

823.35±3.62

1531.48±11.189

5

942.31±8.18

998.4±9.19

1846.58±7.359

6

1144.99±10.6

1222.37±4.45

2015.98±5.559

7

1353.29±10.03

1406.37±7.12

2161.88±9.649

8

1547.39±14.24

1586.67±13.23

2405.48±8.609

9

1774.79±15.18

1776.97±10.37

2618.78±8.289

10

2003.19±10.26

1988.67±11.36

2773.18±5.959

12

2254.39±12.8

2359.97±6.05

2984.28±12.449

24

3063.99±14.88

3229.07±7.41

3571.08±9.889

Flux Jss

34.51±2.04

34.67±1.64

46.14±0.799

Time

Cumulative amount of drug permeated (µg/cm2)

(h)

F4

F10

F4i

0

0

0

0

1

2.646

2.7146

5.9192

2

4.0474

4.4002

9.4374

3

5.733

6.2622

12.054

4

7.3696

8.0654

15.0038

5

9.2316

9.7804

18.0908

6

11.2112

11.9854

19.747

7

13.2594

13.7788

21.1778

8

15.1606

15.5428

23.569

9

17.3852

17.4048

25.6564

10

19.6294

19.4824

27.1754

12

22.0892

23.1182

29.2432

24

30.0174

31.6442

34.9958

Zero order plot-F4, b- first order plot-F4, C-Higuchi plot-F4

Zero order plot-F4

First order plot-F4

Higuchi plot-F4

Zero order plot-F10, b- first order plot-10, C-Higuchi plot-10

Zero order plot-F10

Higuchi plot-F 10

Zero order plot-F4i

Higuchi plot-4i

Development of Nifedipine Transdermal Films

The ex vivo permeation studies conducted on rat abdominal skin using Nifedipine-loaded transdermal patches have provided valuable insights into the factors influencing drug delivery. Formulations containing HPMC K100 and Eudragit L100F4 and F10 exhibited the highest cumulative drug permeation over 24 hours, with values of 3232.38 ± 6.755 µg/cm² and 2895.19 ± 4.271 µg/cm², respectively. These formulations demonstrated a significant increase in drug flux compared to others, indicating the importance of polymer composition in enhancing skin penetration. Increasing the HPMC concentration in these formulations further enhanced drug penetration, suggesting that HPMC plays a crucial role in improving skin permeation. However, despite the increased permeation, the required flux was not achieved with these compositions, highlighting the need for additional strategies to enhance drug delivery. The inclusion of Dimethyl Sulfoxide (DMSO) as a penetration enhancer in formulations F7 to F12 significantly improved the ex vivo skin permeation of Nifedipine. DMSO is known for its ability to disrupt the stratum corneum, facilitating enhanced drug diffusion through the skin barrier. Iontophoresis was conducted for 2 hours at a current of 0.5 mA, followed by 24 hours of passive diffusion.Iontophoresis facilitates drug transport through the skin by applying a low electrical current, which enhances the movement of charged drug molecules via electrorepulsion and electroosmosis. This technique has been shown to significantly increase the transdermal delivery of various drugs, including Nifedipine he successful permeation of Nifedipine through rat abdominal skin suggests that similar formulations may be effective for human skin, considering the similarities between rat and human skin permeability profiles. However, further studies are necessary to confirm the efficacy and safety of these formulations in human subjects. The combination of optimized polymer matrices, penetration enhancers like DMSO, and iontophoresis presents a promising approach to enhance the transdermal delivery of Nifedipine. These strategies not only improve drug permeation but also ensure that the required therapeutic flux is achieved, paving the way for the development of effective transdermal therapeutic systems for Nifedipine.

CONCLUSION:

In the present study, an attempt was made to formulate an anti-hypertensive drug Nifedipine in the form of transdermal patches using different ratios of HPMC K100 and Eudragit L100. These were evaluated for physico-chemical properties, ex vivo permeation and in vitro iontophoresis studies and were found to meet the required flux. From the results obtained, iontophoresis enhanced the drug release from the Nifedipine transdermal patches compared with the chemical method using penetration enhancer DMSO. The transdermal patches of Nifedipine with required flux could be prepared with suitable mechanical properties; further studies are recommended to find their therapeutic utility in humans by pharmacokinetic and pharmacodynamic studies.

REFERENCES

  1. Transdermal delivery from pharmaceutical dosage forms pp 2223.
  2. Khan KM, Patel J, Schaefer TJ: Comparative Study Of Antihypertensive Drug Between Nifedipine, Carvedilol And Methyldopa In Emergency Condition
  3. Otto J, Lesko LJ: Protein binding of nifedipine. J Pharm Pharmacol. 1986 May;38(5):399-400.
  4. Chung M, Reitberg DP, Gaffney M, Singleton W: Clinical pharmacokinetics of nifedipine gastrointestinal therapeutic system. A controlled-release formulation of nifedipine. Am J Med. 1987 Dec 21;83(6B):10-4.
  5. Herrington DM, Insley BM, Weinmann GG: Nifedipine overdose. Am J Med. 1986 Aug;81(2):344-6.
  6. Whitebloom D, Fitzharris J: Nifedipine overdose. Clin Cardiol. 1988 Jul;11(7):505-6.
  7. Raemsch KD, Sommer J: Pharmacokinetics and metabolism of nifedipine. Hypertension. 1983 Jul-Aug;5 (4 Pt 2):II18-24.
  8. Waller DG, Renwick AG, Gruchy BS, George CF: The first pass metabolism of nifedipine in man. Br J Clin Pharmacol. 1984 Dec;18 (6):951-4. doi: 10.1111/j.1365-2125.1984.tb02569.
  9. Hammer HF, Hammer J, Gasche C: [Polyethylene glycol (Macrogol)--an overview of its use in diagnosis and therapy of gastrointestinal diseases]. Wien Klin Wochenschr. 2000 Jan 28;112(2):53-60.
  10. Minguez M, Lopez Higueras A, Judez J: Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016 Dec;108(12):790-806. doi: 10.17235/reed.2016.4571/2016.
  11. Fordtran JS, Hofmann AF: Seventy Years of Polyethylene Glycols in Gastroenterology: The Journey of PEG 4000 and 3350 From Nonabsorbable Marker to Colonoscopy Preparation to Osmotic Laxative. Gastroenterology. 2017 Mar;152(4):675-680. doi: 10.1053/j.gastro.2017.01.027. Epub 2017 Jan 29.
  12. Nirmala, D., P.A. Chakradhar, and M. Sudhakar, Preparation and characterization of Pitavastatin solid dispersions. Research Journal of Pharmacy and Technology, 2016. 9(5): p. 555.
  13.    Tiwari, R., et al., Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. International Journal of PharmTech Research, 2009. 1(4): p. 1338-1349.
  14. Ke, P., et al., Solid dispersion—a pragmatic method to improve the bioavailability of poorly soluble drugs. Computational Pharmaceutics, John Wiley & Sons, West Sussex, 2015: p. 81-97.
  15. Punitha, S., et al., Solid Dispersions: A Review. Research Journal of Pharmacy and Technology, 2011. 4(3): p. 331-334.

Reference

  1. Transdermal delivery from pharmaceutical dosage forms pp 2223.
  2. Khan KM, Patel J, Schaefer TJ: Comparative Study Of Antihypertensive Drug Between Nifedipine, Carvedilol And Methyldopa In Emergency Condition
  3. Otto J, Lesko LJ: Protein binding of nifedipine. J Pharm Pharmacol. 1986 May;38(5):399-400.
  4. Chung M, Reitberg DP, Gaffney M, Singleton W: Clinical pharmacokinetics of nifedipine gastrointestinal therapeutic system. A controlled-release formulation of nifedipine. Am J Med. 1987 Dec 21;83(6B):10-4.
  5. Herrington DM, Insley BM, Weinmann GG: Nifedipine overdose. Am J Med. 1986 Aug;81(2):344-6.
  6. Whitebloom D, Fitzharris J: Nifedipine overdose. Clin Cardiol. 1988 Jul;11(7):505-6.
  7. Raemsch KD, Sommer J: Pharmacokinetics and metabolism of nifedipine. Hypertension. 1983 Jul-Aug;5 (4 Pt 2):II18-24.
  8. Waller DG, Renwick AG, Gruchy BS, George CF: The first pass metabolism of nifedipine in man. Br J Clin Pharmacol. 1984 Dec;18 (6):951-4. doi: 10.1111/j.1365-2125.1984.tb02569.
  9. Hammer HF, Hammer J, Gasche C: [Polyethylene glycol (Macrogol)--an overview of its use in diagnosis and therapy of gastrointestinal diseases]. Wien Klin Wochenschr. 2000 Jan 28;112(2):53-60.
  10. Minguez M, Lopez Higueras A, Judez J: Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016 Dec;108(12):790-806. doi: 10.17235/reed.2016.4571/2016.
  11. Fordtran JS, Hofmann AF: Seventy Years of Polyethylene Glycols in Gastroenterology: The Journey of PEG 4000 and 3350 From Nonabsorbable Marker to Colonoscopy Preparation to Osmotic Laxative. Gastroenterology. 2017 Mar;152(4):675-680. doi: 10.1053/j.gastro.2017.01.027. Epub 2017 Jan 29.
  12. Nirmala, D., P.A. Chakradhar, and M. Sudhakar, Preparation and characterization of Pitavastatin solid dispersions. Research Journal of Pharmacy and Technology, 2016. 9(5): p. 555.
  13.    Tiwari, R., et al., Solid dispersions: an overview to modify bioavailability of poorly water soluble drugs. International Journal of PharmTech Research, 2009. 1(4): p. 1338-1349.
  14. Ke, P., et al., Solid dispersion—a pragmatic method to improve the bioavailability of poorly soluble drugs. Computational Pharmaceutics, John Wiley & Sons, West Sussex, 2015: p. 81-97.
  15. Punitha, S., et al., Solid Dispersions: A Review. Research Journal of Pharmacy and Technology, 2011. 4(3): p. 331-334.

Photo
Dr. B. Nagamani
Corresponding author

Viswanadha Institute of Pharmaceutical Sciences, Mindivanipalem, Visakhapatnam, Andhra Pradesh.

Photo
Kolluru Lavanya
Co-author

Viswanadha Institute of Pharmaceutical Sciences, Mindivanipalem, Visakhapatnam, Andhra Pradesh.

Photo
B. Renuka
Co-author

Viswanadha Institute of Pharmaceutical Sciences, Mindivanipalem, Visakhapatnam, Andhra Pradesh.

Photo
Dr. P. Umadevi
Co-author

Viswanadha Institute of Pharmaceutical Sciences, Mindivanipalem, Visakhapatnam, Andhra Pradesh.

Kolluru Lavanya, Dr. B. Nagamani, B. Renuka, Dr. P. Umadevi, Formulation and Evaluation of Nifedipine Transdermal Drug Delivery Systems, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 6, 5158-5168. https://doi.org/10.5281/zenodo.15753454

More related articles
Formulation And Evaluation Of Floating Drug Delive...
Ranjani.G, A. Vasanthan, K.L Senthil kumar, ...
A Review on Nutritional Benefits, Pharmaceutical P...
Vishnupriya R. , Nivethitha K.K., Reni, ...
Skin-Deep Insights: Exploring Transdermal Drug Del...
Rudrajit Saha, S. K. Riazul, Rounak Bhattacharya, Somenath Mondal...
Formulation and Evaluation of Herbal Mouth Gel...
Sachin Bhale, Priya Jaware, Prachi Murkute, Ashwini Pundkar, Santosh Payghan, ...
The Factors, Identification and Management of Nail Disorders...
Sanika Ladhaikar, Sharvari Pande, Gagan Shendre, Dhammadip Nandgaye, ...
The Role Of Stereochemistry And Formulation In Pharmacology Of The Drug...
Mohd Sharique Katchhi, Abrar Ahmed, Disha Kumareshi, Harshitha M. V., Chakure Aditya, ...
Related Articles
A Prospective Study On Drug Utilization Review Of Prescriptions Among Hypertensi...
Trupthi D. Shetty, Ramakrishna Shabaraya A., Suchetha Kumari, ...
Breast cancer their diagnosis treatment and therapies used...
M.B.GUNJAL, M. G. Shaikh, M.S. Adhikar, S. R. Agrawal, ...
Advances in Mucoadhesive Oral Drug Delivery: Mechanisms, Polymers, and Therapeut...
Anand Bhoyar, Amol Harsulkar, Akshay Jadhav, Aniket Kadam, ...
More related articles
Skin-Deep Insights: Exploring Transdermal Drug Delivery Systems in a Brief Revie...
Rudrajit Saha, S. K. Riazul, Rounak Bhattacharya, Somenath Mondal, Titin Debnath, ...