View Article

Abstract

Reverse transcription polymerase chain reaction (RT-PCR) has emerged as the cornerstone of diagnostic efforts in the detection of corona viruses, particularly the formidable SARS-CoV-2 responsible for the COVID-19 pandemic. This review article provides a comprehensive overview of the diverse applications of RT-PCR in corona virus detection. The sensitivity and specificity of RT-PCR render it indispensable in early-stage diagnosis, enabling prompt isolation and treatment of infected individuals. Moreover, RT-PCR's ability to quantitatively analyze viral load allows for dynamic tracking of infection progression and the evaluation of therapeutic interventions. In addition to its clinical utility, RT-PCR plays a pivotal role in population-wide screening and surveillance programs, offering crucial insights for public health interventions. The adaptability of RT-PCR to detect specific genetic markers associated with viral variants is paramount in monitoring viral evolution and understanding its spread. Furthermore, this review highlights the pivotal role of RT-PCR in the development and evaluation of vaccines and antiviral drugs, providing invaluable data for vaccine efficacy studies and immune response assessments.

Keywords

Corona Virus, RT-PCR technique, Covid-19, Vaccines, Antibodies

Reference

  1. World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19. 2020 Mar 11 [internet]. Geneva: [cited 2020 Oct 30]. Available from:https://www.who.int/director-general/speeches/detail/who-director-general-s-opening- remarks-at-the-media-briefing-on-covid-19---11-march-2020
  2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-733. doi: https://doi.org/10.1056/NEJMoa2001017
  3. Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y et al. Community transmission of severe acute respiratory syndrome coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020 Jun;26(6):1320-1323. doi: https://doi.org/10.3201/eid2606.20023.
  4. Zhang R, Li Y, Zhang AL, Wang Y and Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. PNAS. 2020 June 30;117(26)14857-14863.doi: https://doi.org/10.1073/pnas.2009637117
  5. Doremalen NV, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020:382:1564-1567. doi: https://doi.org/10.1056/NEJMc2004973
  6. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen HL, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet. 2020;1:E10. doi: https://doi.org/10.1016/S2666-5247(20)30003-3.
  7. Ong SW, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface. environmental and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARSCOV-2) from a symptomatic patient. JAMA. 2020 Apr 28;323(16):1610-1612. doi: https://doi.org/10.1001/jama.2020.3227
  8. Nicas M and Best D. A study quantifying the hand-to-face contact rate and its potential application to predicting respiratory tract infection. J Occup Environ Hygiene. 2008;5:347-352.doi: https://doi.org/10.1080/15459620802003896
  9. Macias AE, Torre A, Moreno-Espinosa S, Leal PE, Bourlon MT and Ruiz-Palacios GM. Controlling the novel A (H1N1) influenza virus: don't touch your face! Journal of Hospital Infection. 2009 Nov 1:73(3):280-281.doi: https://doi.org/10.1016/j.jhin.2009.06.017
  10. Kwok YLA, Gralton J and McLaws M. Face touching: A frequent habit that has implications for hand hygiene. Am J of Infection Control. 2015 Feb 01:43(2):112-114.doi: https://doi.org/10.1016/j.ajic.2014.10.015
  11. COVID-19: Government issues advisory asking people to wear 'homemade face covers. The New Indian Express. 2020 April 04 [internet]. New Delhi: [cited 2020 Oct 30]. Available from: https://www.newindianexpress.com/nation/2020/apr/04/covid-19-government-issues-advisory-asking-people-to-wear-homemade-face-covers-2125687.amp
  12. Centers for Disease Control and Prevention (CDC). How to Protect Yourself and Others. Updated 2020 Nov 4. [internet]. Atlanta: [cited 2020 Nov 30]. Available from https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
  13. Chen Y, Qin G, Chen J. Xu J. Feng D, Wu X, et al. Comparison of Face-Touching Behaviors Before and During the Coronavirus Disease 2019 Pandemic. JAMA Netw Open. 2020;3(7):e2016924. doi: https://doi.org/10.1001/jamanetworkopen.2020.16924
  14. Sun CB, Wang YY, Liu G and Liu Z. Role of the Eye in Transmitting Human Coronavirus: What We Know and What We Do Not Know. Front Public Health 2020 Apr 24:8:155. doi: https://doi.org/10.3389/fpubh.2020.00155
  15. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020 Jul 13;24:422. doi: https://doi.org/10.1186/s13054-020-03120-0
  16. Temin HM. 1976. Howard M. Temin-biographical. In Le Prix Nobel en 1975, ed. W Odelberg Stockholm: Nobel Found. http://www.nobelprize.org/nobel prizes/medicine/laureates/1975/ temin-bio.html
  17. Stent G. 2007. Phage and the Origins of Molecular Biology. Cold Spring Harbor, NY: Cold Spring Harbor  Lah. Press
  18. Dulbecco R, Vogt M. 1954. Plaque formation and isolation of pure lines with poliomyelitis viruses.     J. Exp. Med. 99:167-82
  19. Dulbecco R. 1964. Transformation of cells in vitro by DNA-containing viruses. JAMA 190:721-26
  20. Baltimore D, Eggers HJ, Franklin RM, Tamm 1. 1963. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. PNAS 49:843-49
  21. Baltimore D. 1964. In vitro synthesis of viral RNA by the poliovirus RNA polymerase. PNAS 51:450-56
  22. Vandenberg, O: Martiny, D; Rochas. O van Belkum, A; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol.2020, 14, 1-13.
  23. Gerbalenya, A E.; Baker, SC.; Baric, R.S., de Groot, R.J. Drosten, C.; Gulyaeva, A.A.; Haagman, BL; Lauber, C.;Lentowich, A.M.; Neuman, B.W., et al. The species Severe acute respiratory syndrome- related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5.
  24. Yan, Y. Chang, L., Wang, L. Laboratory testing of SARS-CoV. MERS-CoV, and SARS-CoV-2 (2019-CoV): Current status challenges, and countermeasures. Rev. Mod. Viral 2020, 30, e2106.
  25. Padoan, A., Bonfante, F: Pagliari, M.; Bortolami, A.; Negrini, D.; Zuin, S.; Bozzato, D: Cosma, C., Sciacovelli, L.; Plebani, M. Analytical and clinical performances of five immunoassays for the detection of SARS-CoV-2 antibodies in comparison with neutralization activity. ElioMedicine 2020, 62, 103101.
  26. Sheridan, C. Coronavirus and the race to distribute reliable diagnostics. Nat. Esotecional, 2020. 38, 382-384.
  27. Oran D.P., Topol E.J. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann. Intern. Med. 2020;173:362–367. doi: 10.7326/M20-3012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  28. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., The Northwell COVID-19 Research Consortium. Barnaby D.P., Becker L.B., Chelico J.D., et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052–2059. doi: 10.1001/jama.2020.6775. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 
  29. Lippi, G.; Simundic, A.M.; Plebani, M. Potential preanalytical and                  analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin. Chem. Lab. Med. 2020, 58, 1070–1076.
  30. Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens for COVID-19.
  31. Irving, S.A.; Vandermause, M.F.; Shay, D.K.; Belongia, E.A. Comparison of nasal and nasopharyngeal swabs for influenza detection in adults. Clin. Med. Res. 2012, 10, 215–218.
  32. Kim, J.Y.; Ko, J.H.; Kim, Y.; Kim, Y.J.; Kim, J.M.; Chung, Y.S.; Kim, H.M.; Han, M.G.; Kim, S.Y.; Chin, B.S. Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea. J. Korean Med. Sci. 2020, 35, e86.
  33. Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251.
  34. Kucirka, L.M.; Lauer, S.A.; Laeyendecker, O.; Boon, D.; Lessler, J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Intern. Med. 2020, 173, 262–267.
  35. Poon, L.L.; Chan, K.H.; Wong, O.K.; Yam, W.C.; Yuen, K.Y.; Guan, Y.; Lo, Y.M.; Peiris, J.S. Early diagnosis of SARS coronavirus infection by real time RT-PCR. J. Clin. Virol. 2003, 28, 233–238.
  36. de Sousa, R.; Reusken, C.; Koopmans, M. MERS coronavirus: Data gaps for laboratory preparedness. J. Clin. Virol. 2014, 59, 4–11.
  37. Kobayashi, T.; Jung, S.M.; Linton, N.M.; Kinoshita, R.; Hayashi, K.; Miyama, T.; Anzai, A.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Communicating the Risk of Death from Novel Coronavirus Disease (COVID-19). J. Clin. Med. 2020, 9, 580.
  38. Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections-The state of the art. Emerg Microbes Infect. 2020, 9, 747-756.
  39. MacKay, M.J., Hooker, AC Afshinnekoa, E., Salit, M., Kelly, J.; Feldstein, J.V., Haft, N., Schenkel, D. Nambi, S., Cai, Y., et al. The  COVID-19 XPRIZE and the need for scalable, fast, and widespread testing. Nat. Biotechnol. 2020, 38, 1021-1024.
  40. Amaout, R. Lee, R.A., Lee, G.R., Callahan, C. Yen, C.F. Senith, K.P, Arora, R., Kirby, JE. SARS-CoV2 Testing: The Limit of Detection Matters. bioRxiv 2020.
  41. Nalla, A.K., Caste, A.M.; Huang, M.W.; Perchetti, G.A.; Sampoleo, R., Shrestha, L.; Wei, Y.; Zhu, H.; Jerome, K.R.; Greninger, A.L Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit. J. Clin. Microbial. 2020, 58, 00557-20.
  42. Lee, S.H. Testing for SARS-CoV-2 in cellular components by routine nested RT-PCR followed by DNA sequencing, Int. J. Geriatr. Rehabil. 2020, 2, 69-96.
  43. Drosten, C., S. Günther, W. Presier, S. Werf, H. Brodt, S. Becker, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:1967-1976. [PubMed] [Google Scholar]
  44. Poon, L., O. Wong, W. Luk, K. Yuen, J. Peiris, and Y. Guan. 2003. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin. Chem. 49:953-955. [PMC free article] [PubMed] [Google Scholar]
  45. Dutta G., Kim S., Park S., Yang H. Washing-free heterogeneous immunosensor using proximity-dependent electron mediation between an enzyme label and an electrode. Anal. Chem. 2014;86:4589. doi: 10.1021/ac5006487. [PubMed] [CrossRef] [Google Scholar]
  46. Dutta G., Park S., Singh A., Seo J., Kim S., Yang H. Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label. Anal. Chem. 2015;87:3574. doi: 10.1021/ac504485a. [PubMed] [CrossRef] [Google Scholar]
  47. Li Z., Yi Y., Luo X., Xiong N., Liu Y., Li S., Chen L., Ye F. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020;92:1518–1524. doi: 10.1002/jmv.25727. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Photo
Sahil Agrawal
Corresponding author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy Ambap-416112, India.

Photo
B. Potdar
Co-author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy, Ambap-416112, India.

Photo
J. Shaikh
Co-author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy, Ambap-416112, India.

Photo
K. Pimpale
Co-author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy, Ambap-416112, India.

Photo
L. Kochage
Co-author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy, Ambap-416112, India.

Photo
N. Chougule
Co-author

Department of Microbiology, Ashokrao Mane Institute of Pharmacy, Ambap-416112, India.

S. Agrawal*, B. Potdar, J. Shaikh, K. Pimpale, L. Kochage, N. Chougule, Detection of Corona Virus: A Review on Applications of RT-PCR in Detection of Corona Virus (Covid-19), Int. J. in Pharm. Sci., 2023, Vol 1, Issue 11, 260-271. https://doi.org/10.5281/zenodo.10124285

More related articles
The Evolving Role of Medical Science Liaisons in I...
Dr. Sudhanshu Shukla, Dr. Neeraj Hiremath, Pratiksha Bhandare, ...
Nanofiber In Wound Healing: A Comprehensive Review...
Hashita Moily, Nitesh Kumawat, Aparajita Patil, ...
Lifestyle Intervention: The Quintessential tool to...
J.C Balachandar, Sanjeev Kumar Yadav, Amit Kumar Agrawal, S. Irsh...
A Review on Herpes Zoster...
Dhananjay Mundhe, Shraddha Nimse, Shrikant Kavitake, ...
Pharmaceutical Validation : A Review...
Prajakta K. Ugalmugale, Vinayak M. Gaware , ...
A Review Article On Osteoporosis A Global Perspective On Bone Health...
SANCHIT PRADIP DESHPANDE, Prof. Komal Chavan, Dr.kavita kulkarni , ...
Related Articles
Microsponges: The Drug Delivery System...
Akshata V. Raut, Nakul Kathar , Ganjanan Sanap, ...
Formulation Optimization & Evaluation Of Oro-Dispersible Film Of Tadalafil...
Yogesh Sonawane, M. M. Bari, S. D. Barhate, Reema Jagnit, Abhay Sawant, Amol Chaudhari, ...
The Evolving Role of Medical Science Liaisons in India: Bridging the Gap Between...
Dr. Sudhanshu Shukla, Dr. Neeraj Hiremath, Pratiksha Bhandare, ...
More related articles
The Evolving Role of Medical Science Liaisons in India: Bridging the Gap Between...
Dr. Sudhanshu Shukla, Dr. Neeraj Hiremath, Pratiksha Bhandare, ...
Lifestyle Intervention: The Quintessential tool to prevent and reverse Type 2 Di...
J.C Balachandar, Sanjeev Kumar Yadav, Amit Kumar Agrawal, S. Irshad Ahamed, A. Ayeshamariam, M. Jaya...
The Evolving Role of Medical Science Liaisons in India: Bridging the Gap Between...
Dr. Sudhanshu Shukla, Dr. Neeraj Hiremath, Pratiksha Bhandare, ...
Lifestyle Intervention: The Quintessential tool to prevent and reverse Type 2 Di...
J.C Balachandar, Sanjeev Kumar Yadav, Amit Kumar Agrawal, S. Irshad Ahamed, A. Ayeshamariam, M. Jaya...