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Despite significant advancements in technology and medicine, cancer still claims te ns 

of millions of lives annually [1,2]. Years of research have consistently shown how 

dynamic the disease is, and despite better treatment options, there are still serious side 

effects from strong chemotherapies [3, 4]. Patients suffer when more severe therapy are 

required, particularly when aggressive tumors lie dormant and subsequently reappear 

[5-7]. The omnipresent establishment of resistance mechanisms is one of the biggest 

obstacles to developing an effective cancer treatment. After the primary oncogenic 

pathways are shut down, resistance mechanisms are triggered in parallel signaling 

pathways and reroute, enabling the growth of the tumor [8, 9]. The heterogeneity of 

tumor cells, patient tumors, genetic abnormalities, and epigenetic patterns can all restrict 

the effectiveness of therapeutic interventions and contribute to the development of drug 

resistance [10–13]. Clonal heterogeneity influences the biology of the entire tumor and 

is known to promote cancer growth and metastasis [14]. Although new medications and 

targets can improve cancer treatments, cancer's adaptive nature finds a way to survive.  
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INTRODUCTION 

Finding new treatments for cancer must give way 

to enhancing current treatments and diagnostics in 

creative, efficient, and tenable ways. 66% of 

individuals with advanced stage cancer and 55% 

of cancer patients undergoing therapy report 

feeling pain [15]. Chemotherapies that lack 

specific targeting mechanisms kill both cancerous 

and non-cancerous cells, which worsens systemic 

toxicity and the quality of life of the patient 

 

 

 

[16,17]. The advantages of early detection are also 

obvious. Early cancer detection results in 

significantly improved 5-year survival rates, much 

lower patient financial burdens, and often less 

aggressive treatment regimens (Fig.1) [18–20]. 

Nanotechnology may hold the key to the answer 

by improving the targeting abilities of current 

medicines, boosting localized medication efficacy, 

reducing systemic toxicity, enhancing imaging,  

and improving radiation therapy [21–24]. 

https://www.ijpsjournal.com/
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Fig.1: Urgent Need for Innovative Approaches to 

Improve Cancer Treatment and Diagnostics: 

Addressing Advanced Stage Diagnoses, Patient 

Expenses, Pain Management, and Global Impact. 

Cancer nanomedicine has been clinically 

translated for many years, and the number of nano-

based treatments and parts for imaging, diagnosis, 

and radiation therapy has continuously expanded 

(Table 1) [25, 26]. When used with traditional 

scanning technologies like magnetic resonance 

imaging (MRI), positron emission tomography 

(PET), and computed tomography (CT), nano-

based imaging contrast agents like 

superparamagnetic iron oxide NPs (SPIONs) and 

gadolinium (Gd)-based contrast agents improve 

tumor detection and imaging in vivo [27, 28]. 

 

Table 1: Currently available cancer treatments made of nanotechnology 

Product name Compositions Indications First approval 

ONIVYDE Liposomal irinotecan Advanced pancreatic 

cancer 

US (2015) 

DHP107 Paclitaxel lipid NPs (oral 

administration) 

Gastric cancer South Korea (2016) 

Vyxeos Liposomal daunorubicin and 

cytarabine 

High-risk acute myeloid 

leukemia 

US (2017) 

Apealea Paclitaxel micellar Ovarian, peritoneal, and 

fallopian tube cancer 

Europe (2018) 

Hensify Hafnium oxide NPs Locally-advanced soft 

tissue sarcoma 

Europe (2019) 

 

By using physical modalities to destroy malignant 

cells, improving specificity with triggered release, 

and targeting numerous components with dual-

drug loading, nanoformulations can combat 

resistance mechanisms [29,30]. Due to leaky blood 

arteries and inadequate lymphatic drainage, 

nanoscale carriers can pass through a tumor 

endothelium and passively collect in tumors [31]. 

Additionally, nanomaterials are used in very 

sensitive diagnostic tests because of their 

distinctive physico-chemical properties, which 

enable the early diagnosis of cancer and improve 

patient prognosis [32, 33]. Nanomaterials have 

proven to be particularly useful for biomarker 

identification in point-of-care liquid biopsies, 

which are progressively replacing invasive, time-

consuming procedures in cancer diagnosis [34–

36]. Additionally, certain characteristics allow for 

a significant advancement in imaging methods 

used for tumor surveillance and surgical guidance, 

enabling very precise surgical resection and 

improved treatment monitoring [37]. By acting as 

radiosensitizers, nanomaterials can deliver highly 

targeted radiation doses to tumors while sparing 

healthy tissue [38]. Nanomaterials' adaptability 

and functionality provide up a wide range of 

possibilities for cancer medication therapies, 

diagnostics, imaging, and radiotherapy. The 

systemic toxicities associated with conventional 

approaches can be eliminated, and the prognosis 

and patient quality of life can be enhanced by early 

identification, reduced radiation dosage, and 

increased therapy specificity [39–41]. 

Fundamentals of Nanotechnology 

It is no longer unique to use nanotechnology to 

enhance therapies; in fact, as the advantages 

become clearer, nanotechnology research has 

increased steadily [24, 26]. The majority of cancer 
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nanomedicines that are currently approved use 

liposomal formulations and drug conjugates 

(protein, polymer, and/or antibody) with the goal 

of enhancing the PK/PD of the free medication and 

utilizing passive targeting. Numerous clinical 

research are presently examining the use of 

nanomaterials in imaging modalities for 

therapeutic and diagnostic purposes [43, 44]. The 

enhanced permeation and retention (EPR) effect, 

where NPs can preferentially concentrate within 

tumor vasculature, provides the foundation for 

passive targeting for malignancies [45]. Numerous 

cancers contain leaky blood arteries with openings 

that allow NPs to enter the tissue and aggregate 

there [46]. The EPR effect is not a panacea, either, 

as passive targeting does not stop drugs from 

acting in healthy tissues or from having negative 

effects from systemic dispersion [47]. significantly 

in the absence of a sick state, there are 

physiological barriers that prevent NPs from 

reaching their target, and these barriers can be 

significantly more challenging to overcome for 

cancer patients [48]. Blood flow rate, coronas, 

phagocytic cells, and protein- and lipid-adsorption 

can all lower stability and delivery capabilities 

[49–52]. Access to a tumor may also be restricted 

by extracellular matrices and interstitial pressure 

[53, 54]. These problems may get more 

complicated due to variations in cancer types, 

necessitating formulation optimization for each 

[55]. Major cancer therapies' pharmacokinetic 

(PK) characteristics, solubility, bioavailability, 

and stability have all been significantly enhanced 

by first-generation nanomedicines [56]. 

Nanomaterials can expand into new areas to 

incorporate highly specialized design and function 

as a result of the increasing accessibility of 

technology and information. This makes it 

possible for the subsequent generation of 

nanomedicine to employ multimodal medicines, 

radiation, gene therapy, targeted medication 

release, combination therapies, and specialized 

targeting. Furthermore, nanotechnology will be a 

crucial tool for enhancing diagnostics and 

bioimaging to stop metastasis as scientific 

breakthroughs clarify cancer genesis and survival 

pathways. 

Optimizing dose coordination for combination 

therapy can be challenging because to the 

significant physiological differences between 

different forms of cancer and between individual 

patients, as well as the fact that drugs might have 

widely disparate biodistributive characteristics 

and relative concentrations [44, 57]. Because 

complementary actions can take place in a 

coordinated manner, co-delivery of synergistic 

medications within a single carrier can 

significantly boost synergistic potential [30]. 

Lipid-based, polymeric, inorganic, carbon-based, 

biomacromolecular, and hydrogel nanomaterials, 

among others, can effectively manufacture a 

variety of treatments with radically varied 

chemical properties [58–61]. Depending on the 

kinetics and method of action, several medications 

may be designed to release either concurrently or 

sequentially, with drug release occurring either by 

degradation of the carrier, drug desorption, 

diffusion through the nanoparticle matrix, or by 

triggered release [62, 63].  

To reduce the risk of systemic toxicity, precise 

targeting employs a nanocarrier or drug 

combination coupled with certain molecules that 

have high affinity for malignant cells and 

decreased affinity for healthy cells [64, 65]. 

Targeted delivery of a nanocarrier may integrate a 

greater dosage of medicine and typically have 

more diversity for targeting modes employing 

dynamic nanomaterials than antibody drug 

conjugates, which now improve targeting [66, 67]. 

For instance, immunoliposomes loaded with 

doxorubicin (DOX) and embellished with 

epidermal growth factor (EGF) to target EGFR are 

currently undergoing clinical studies 

(ClinicalTrials.gov Identifier: NCT03603379). 
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For example, somatostatin receptors that are 

overexpressed in neuroendocrine tumors and only 

active in the tumor microenvironment (TME) can 

be targeted specifically using probes for tumor 

imaging [68]. 

In order to effectively deliver to the target cells, 

nanocarriers must be able to prevent the cargo 

from degrading, accomplish prolonged 

circulation, avoid reticuloendothelial system 

absorption, and achieve prolonged circulation [69-

71]. As a result, correct ligand selection, carrier 

material selection, and ligand density selection are 

necessary for designing the nanoformulation. The 

specific mode of action also plays a crucial role in 

optimizing nanoformulation because certain 

medicines require intracellular delivery while 

others use cellular membrane diffusion. Targeting 

TME components alone may be sufficient in some 

situations to improve therapeutic effectiveness and 

specificity [72, 73]. 

Nanotechnology can enhance treatment specificity 

by stimuli-responsive activation in addition to 

precise targeting. To prevent off-target effects, 

medicines are only released under specific 

chemical, biological, or physical conditions seen 

in tumor environments or cancer cells [24, 26]. 

When exposed to external stimuli such radiation, 

electric and magnetic fields, and hyperthermia, 

nanocarriers may be programmed to release 

medications under specified pH, glucose, enzyme, 

oxidative/reductive, and ion concentration 

conditions [32, 74–77]. The use of magnetic 

particles for MRI tumor imaging or theranostic 

applications is only one example of how these 

similar modalities might be used for imaging and 

diagnostic reasons [78, 79]. Recent developments 

in pH-responsive peptide-based nanoparticles 

(NPs) that morph into fibrils inside the TME and 

exhibit potent fluorescence signals and improved 

photodynamic treatment are described in [80]. 

Certain nanomaterials' intrinsic features make 

them perfect for bioimaging, multimodal 

treatments, and molecular detection for diagnostic 

purposes [81, 82]. Having excellent stability and 

less photobleaching than conventional dyes, 

fluorescent NPs have proven to be successful 

substitutes [36]. Due to their paramagnetic 

characteristic and high X-ray attenuation 

coefficient, Gd-based NPs have demonstrated 

tremendous utility as MRI and CT contrast agents 

and as radiosensitizers [83]. Optical and electrical 

detection, surface plasmon resonance, and 

fluorescence resonance energy transfer are all 

possible with gold nanoparticles, making them the 

perfect material for developing highly selective, 

adaptable, and sensitive biosensors [84, 85]. Using 

magnetic NPs functionalized with 

polyethyleneimine/protein corona or tannic acid in 

a different study, it was demonstrated that 

nanomaterials can enable the early identification 

of circulating tumor cells (CTCs) from peripheral 

blood [86, 87]. This review gives an overview of 

the present clinical applications and upcoming 

technologies (Fig.2), which can significantly 

improve cancer medicines and diagnostics thanks 

to the wide variety of uses of nanotechnology. 

 
Fig.2: Nanotechnology provides many advantages 

over conventional treatment. 
Utilizing Nanotechnology for Cancer 

Treatment 
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Fig.3: Schematic illustration of nanotechnology 

applications in cancer diagnosis. 

By providing novel methods for the diagnosis, 

treatment, and monitoring of cancer, 

nanotechnology has demonstrated enormous 

potential for changing cancer therapy (Fig.3). Here 

is a quick rundown of some important 

applications: 

Targeted Drug Delivery: Chemotherapy 

medications can be delivered specifically to tumor 

locations using nanoparticles, limiting damage to 

healthy cells and adverse effects. The therapeutic 

impact can be improved by engineering these 

nanoparticles to release the medicine under 

regulated conditions. 

Photothermal Therapy: When exposed to laser 

light, nanoparticles can specifically kill cancer 

cells by absorbing light energy and converting it to 

heat. This method, referred to as photothermal 

therapy, provides localized treatment with little 

harm to neighboring tissues. 

Hyperthermia: By heating cancer cells to a point 

where they die, while sparing healthy cells, 

nanoparticles can treat cancer. The use of 

hyperthermia improves the efficiency of 

conventional therapies like chemotherapy and 

radiation. 

Diagnostic Imaging: Magnetic resonance 

imaging (MRI), computed tomography (CT), and 

positron emission tomography (PET) all allow the 

use of nanoparticles as contrast agents. These 

substances aid in enhancing the perception of 

tumors and their features. 

Early Detection: Nanotechnology makes it 

possible to create highly sensitive and focused 

diagnostic tools for the early identification of 

cancer biomarkers, which may result in earlier 

intervention and better patient outcomes. 

Individualized Medicine: By customizing 

nanoparticles to each patient based on their 

particular genetic and molecular profiles, 

nanotechnology enables the development of 

individualized treatment strategies. This may 

result in medications that are more effective and 

have fewer negative effects. 

Theranostics: Therapeutic and diagnostic 

properties are combined in theranostic 

nanoparticles. They are capable of simultaneously 

administering therapeutic chemicals to tumors and 

giving instantaneous imaging feedback on the 

treatment's effectiveness. 

Gene Delivery: By modifying nanoparticles, it is 

possible to send genetic material, such as siRNA 

or tools for gene editing, to cancer cells. Targeting 

particular genes linked to the development of 

cancer may be possible using this strategy. 

Enhancing Immunotherapy: By improving the 

transport of immunotherapeutic drugs directly to 

the tumor microenvironment, such as checkpoint 

inhibitors or cancer vaccines, nanoparticles can 

improve the immune system's response to cancer 

cells. 

Biosensors: Nanotechnology-based biosensors 

can identify chemicals linked to cancer at 

extremely low concentrations, assisting in early 

illness identification and disease progression 

tracking. 

Nanoparticle-Mediated Radiotherapy: By 

preferentially accumulating in tumor cells and 

raising their radiation sensitivity, nanoparticles 

can improve the effects of radiation therapy. 

Drug Resistance Mitigation: Using numerous 

therapeutic chemicals that simultaneously target 
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various pathways within cancer cells, 

nanotechnology techniques can assist overcome 

drug resistance. 

However, it's vital to keep in mind that many 

cancer medicines based on nanotechnology are 

still in the experimental or early clinical stages. To 

fully grasp their clinical impact, more 

investigation, experimentation, and improvement 

are required. 

1. Traditional Cancer Treatments 

The majority of tumors are still treated first with 

chemotherapy, and medication development is 

continually changing and shifting toward cancer-

specific targets [88]. Antimetabolites, mitotic 

inhibitors, topoisomerase inhibitors, alkylating 

agents, and antibiotics are examples of common 

chemotherapeutic medications that cause DNA 

damage and interfere with cellular reproduction, 

respectively [89]. Traditional chemotherapies are 

highly effective, yet patients still experience side 

effects due to their non-specificity. Traditional 

chemotherapies cause severe side effects for 

patients and are highly toxic to healthy cells while 

having little effect on malignant cells [90, 91]. 

Numerous inhibitors are presently available and in 

development to target the enzymes involved in the 

distinct signaling networks known to support and 

sustain cancer [92, 93]. The bulk of small 

molecules utilized in targeted therapy now are 

different inhibitors of tyrosine kinases, cyclin-

dependent kinases, poly ADP-ribose polymerases, 

and proteasomes [94]. The TME contains elements 

that promote tumor growth and proliferation, 

including immunological and inflammatory cells, 

blood and lymphatic endothelial cells, cancer 

associated fibroblasts (CAFs), and mesenchymal 

stem cells generated from bone marrow [95–99]. 

In the PI3K/Akt/mTOR pathways, protein 

synthesis, glucose metabolism, and another crucial 

aspect of cell survival are frequently 

hyperactivated, frequently rerouting signals in 

response to early therapy [100]. 

Multiple mutations are frequently discovered here 

across a wide range of cancer types since the 

RAS/RAF/MEK/ERK pathway initiates cell 

proliferation, differentiation, and development 

[101, 102]. Sotorasib is the first KRAS-targeting 

medication to get FDA approval, and mutations in 

RAS proteins are one of the most often detected in 

human cancers [103, 104]. There are about 14 

EGFR-tyrosine kinase inhibitors (TKIs) available 

on the market and/or in clinical studies, and EGFR 

mutations also have a role in oncogenesis [105, 

106]. Targeting these pathways and variables that 

contribute to cancer progression has become a 

priority in the development of new therapeutic 

therapies, however creating new drugs is 

expensive and takes more than ten years from 

conception to FDA clearance [107, 108]. 

Drug resistance can be selected for by cytotoxic 

and targeted therapy, making full eradication 

practically unattainable [109]. Drug resistance can 

arise as a result of altered drug metabolism, 

adjustments to efflux/influx, hyperactivated repair 

mechanisms, rerouting of signal transduction, and 

altered drug targets [110, 111]. Multiple therapies, 

combined chemoradiotherapy, and tailored 

medicine are strategies for overcoming drug 

resistance [112]. Co-administration of medications 

with various biological targets can slow the 

progression of cancer adaptability and assist 

control cancer cell mutations [113]. New 

combinatorial treatments are constantly being 

researched in clinical trials. Effective 

combinations have been discovered where a 

medicine can increase or re-introduce sensitivity 

of the cancer cells to an existing therapy. 

However, there are some restrictions for 

combination therapies because to the 

complementing medications' fragmented 

absorption and various PK/PD characteristics, 

which lowers their efficacy and synergistic impact. 

These problems can be solved and the therapeutic 

index raised by co-delivering anti-cancer 
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treatments within a single nanocarrier [56, 114]. 

VYXEOS, a liposomal formulation of cytarabine 

and daunorubicin at a fixed 5:1 molar ratio, was 

approved by the U.S. Food and Drug 

Administration (FDA) in 2017 for the treatment of 

people with newly diagnosed acute myeloid 

leukemia (AML) with myelodysplastic alterations 

and therapy-related AML [115]. In vitro and in 

mouse models, it has been demonstrated that the 

synergistic molar ratio of daunorubicin with 

cytarabine increases the killing of leukemia cells 

[116]. 

2. Currently Used Nanoformulated Medicines 

are Being Tested in Clinical Trials 

Through a variety of methods, nanotechnology 

offers a special set of tools for overcoming both 

intrinsic and acquired drug resistance, enabling the 

application of innovative immunotherapies such 

mRNA vaccines and targeted therapy [117, 118]. 

Induced mutagenesis or differential sensitivity are 

associated with tumor genetic diversity, and both 

can lead to treatment resistance and protracted 

disease [119]. Liposomes, polymer microspheres, 

protein conjugates, and polymer conjugates are 

only a few of the nanoformulations for cancer 

therapies currently being used in clinical settings. 

Novel nanomaterials are also being studied for 

better medication efficacy and targeting [118]. The 

best cancer treatment, as said, is targeted delivery 

because it considerably reduces the side effects of 

non-specific activity.   

2.1 Formulations for Improved PK and 

Targeted Recruitment 

Because of their simplicity in production and drug 

loading, ability to modify their surface, and 

utilization of biocompatible components, 

liposomes are a particularly desirable class of 

nanomaterial for drug delivery applications [44, 

120, 121]. Vesicles called liposomes have an 

aqueous interior and a lipid bilayer that is 

predominantly made of amphipathic 

phospholipids. The phospholipid polar headgroup, 

the length and hydrophobicity of the fatty acid 

tails, other components in the membrane or on the 

surface, and the type of synthetic or natural lipid 

can all be used to tailor the liposome's properties 

[122]. Liposomes are among the most actively 

researched nanomedicines for the treatment of 

numerous ailments because of their adaptability 

and relative simplicity in manufacture. 

The FDA initially granted approval to Doxil, a 

liposomal version of the dangerous drug DOX, in 

1995. Another liposomal daunorubicin 

formulation, DaunoXome®, was authorized a year 

later to treat advanced HIV-associated Kaposi 

sarcoma [44]. Vincristine sulfate liposomal 

sphingomyelin/cholesterol formulation 

Marqibo®, FDA-approved in 2012, showed 

improved PK/PD features over vincristine as well 

as improved concentration in solid tumors. In 

addition to Depocyt® (Cytarabine/Ara-C), 

Myocet® (DOX), Mepact® (Mifamurtide), and 

Onivyde® (Irinotecan) liposomal medicines, there 

are only seven now available on the market that 

have received clinical approval for the treatment of 

cancer. However, it should be mentioned that 

Depocyt was used on a microscale and has since 

stopped being used. 

Due to its effectiveness against a variety of cancer 

types, cisplatin is one of the most commonly used 

chemotherapies. However, it has serious side 

effects, highlighting the urgent need for specificity 

and re-formulation [123]. The phospholipase A2-

IIA isoenzyme, which is highly expressed in a 

variety of human solid tumors including prostatic, 

pancreatic, colorectal, gastric, and breast cancers, 

selectively hydrolyzes the liposomes in LiPlaCis, 

the first liposomal formulation with a triggered 

release mechanism to go through clinical 

development in oncology [124, 125]. With 

improved PK characteristics, increased potency, 

and a higher maximum tolerated dose than 

cisplatin, LiPlaCis provides a wider therapeutic 

window (ClinicalTrials.gov Identifier: 
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NCT01861496). Clinical trial outcomes are much 

more likely when Drug Response Prediction 

(DRP®) is used. 

2.2 Nanocarriers for Gene Therapy 

With the delivery of nucleic acids to express pro-

apoptotic proteins, replace mutant genes, down-

regulate or silence oncogenic pathways, create 

anti-cancer cytokines, and/or engage the immune 

system against cancer, gene therapy is a significant 

role in the fight against cancer [126]. The efficient 

delivery of nucleic acids to the target site while 

preventing degradation is one of the main 

difficulties in gene delivery. Patisiran 

(ONPATTRO®), which delivers siRNA against 

the gene that controls the expression of the 

transthyretin protein and can lead to hereditary 

transthyretin amyloidosis, was the first siRNA-

delivery liposome to receive FDA approval in 

2019. The clinical translation of gene therapy 

continues to be hampered by the lack of effective 

and secure delivery mechanisms. 

Recombinant viral vectors are preferable than 

nonviral vectors for delivering genes, but they also 

have drawbacks such immune response, mass 

production, gene size restriction, restricted cell 

tropisms, and lack of surface modifiability without 

compromising vector integrity [127]. Non-viral 

vectors can be less effective in transfecting cells 

than viral vectors despite being less immunogenic, 

less complex to produce on a wide scale, and 

synthetically dynamic. While two SARS-CoV-2 

vaccines using adenovirus vectors have recently 

been linked to several cases of thrombotic 

thrombocytopenia but remain under scientific 

investigation, it's interesting to note that the 

Moderna and Pfizer/BioNTech vaccines using 

lipid-based carriers show higher efficacy and have 

no association with thrombotic complications 

[128, 129]. 

It is still important to continue to create effective 

and innocuous nanocarriers for nucleic acid-based 

cancer therapeutics, and several are now being 

investigated in clinical studies. Numerous human 

malignancies overexpress the protein polo-like 

kinase 1 (PLK1), and siRNA can be used to silence 

PLK1 by causing mitotic arrest and death when 

PLK1 is inhibited. A high transition temperature 

phospholipid, a PEGylated lipid, and an ionizable 

cationic phospholipid make up stable nucleic acid 

lipid particles (SNALPs) [130]. High 

encapsulation efficiency is the end product, and 

nucleic acid encapsulation neutralizes the net 

surface charge to produce more stable vesicles 

than traditional cationic liposomes. Patients with 

primary or secondary liver cancer 

(ClinicalTrials.gov Identifier: NCT01437007) are 

currently being examined for using the SNALP 

formulation TKM-080301, which contains siRNA 

against the PLK1 gene. 

TKM-080301 has already undergone clinical 

trials, where patients with solid tumors usually 

tolerated it well and it showed some preliminary 

anticancer activity (ClinicalTrials.gov Identifier: 

NCT02191878). Eph receptor A2 (EphA2) is 

overexpressed in a variety of cancer types and is a 

member of the receptor tyrosine kinase family that 

regulates cell differentiation, survival, and 

proliferation [131]. Patients with advanced and/or 

recurring solid tumors are being treated with 1,2-

Dioleoyl-sn-glycero-3-phosphocholine (DOPC)- 

liposomes carrying EphA2 siRNA in a Phase 1 

experiment (Clinical- Trials.gov Identifier: 

NCT01591356). The transforming growth factor- 

(TGF-) family of structurally related proteins 

regulates a wide range of cellular processes, 

including migration, epithelial-mesenchymal 

transition (EMT), differentiation, and apoptosis 

[132]. 

It has been linked to effects that promote tumor 

growth, especially in advanced stages of numerous 

cancer types. A unique polypeptide nanoparticle 

known as STP705 delivers siRNA against TGF-1 

and cyclooxygenase-2 (COX-2) [133]. 

Additionally, COX-2 is overexpressed in a variety 
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of malignancies, aiding in carcinogenesis and 

causing resistance to radiation and chemotherapy. 

Basal cell carcinoma, hepatocellular carcinoma, 

and cutaneous squamous cell carcinoma are all 

now being treated using STP705 as a form of gene 

therapy (ClinicalTrials.gov Identifier: 

NCT04844983, NCT04676633, NCT04669808). 

For several cancer indications in the US, Rexin-G 

was the first targeted gene therapy vector to 

receive orphan drug priorities and fast track 

classification. Rexin-G is a replication-

incompetent retroviral vector that targets aberrant 

Signature (SIG) proteins in tumors by attaching to 

a secret collagen-binding motif on its envelope 

(ClinicalTrials. gov Identifier: NCT00504998) 

[134]. 

Exosomes have a lipid bilayer membrane that is 

30-100 nm in diameter and contains proteins, other 

biological components, DNA, miRNA, mRNA, 

and lncRNA [135]. Through membrane fusion, 

exosomes can enter recipient cells and affect 

transcriptional and translational processes [136, 

137]. They have a lot of potential for cancer 

therapy since they are extremely biocompatible, 

stable, and display tumor homing [138]. Exosomes 

produced from healthy fibroblast-like 

mesenchymal cells were modified to contain 

siRNA or shRNA targeted at the oncogenic 

KRASG12D mutation, which is a frequent 

occurrence in pancreatic cancer 

(ClinicalTrials.gov Identifier: NCT03608631). 

When compared to liposomes, iExosomes have an 

improved ability to target oncogenic Kras, which 

depends on CD47 and is made possible by 

micropinocytosis [139]. Treatment with 

iExosomes greatly extended overall survival in 

several mice models of pancreatic cancer while 

suppressing the disease. In this phase I trial, 

individuals with pancreatic cancer with the 

KrasG12D mutation that has progressed to other 

parts of the body are evaluated for the optimal dose 

and side effects of exosomes made from 

mesenchymal stromal cells that contain KrasG12D 

siRNA (iExosomes). 

2.3 Nanotechnology Based 

Immunotherapeutics 

In the field of immunotherapies for cancer, 

groundbreaking developments have been made, 

such as CAR-T cell therapy, immune checkpoint 

inhibitors, and cancer vaccines. Immunotherapy is 

based on the idea that the adaptive immune system 

can recognize tumor-associated antigens (TAAs) 

or tumor-specific antigens (TSAs) [140]. While 

TSAs are present only in tumor cells, TAAs are 

present in all cell types but are frequently 

overexpressed in tumor cells [141]. Antigen-

presenting cells (APCs) take up and break down 

the tumor-associated protein to produce immune 

responses that are directed against the tumor [142]. 

The HLA-peptide complex is identified by the T 

cell receptors (TCR) after binding to patient-

specific human leukocyte antigen (HLA) 

molecules, and upon binding, the T cell promotes 

tumor cell death [143]. 

New York esophageal squamous cell carcinoma 1 

(NY-ESO-1) is a cancer-testis antigen that is 

typically expressed in testicular germ cells and 

trophoblasts of the placenta. Some TAAs can 

result from reactivation of embryonic genes that 

are ordinarily located in differentiated cells [144]. 

Several advanced malignancies, including 

melanoma (46%) and round cell liposarcoma (89-

100%), neuroblastoma (82%), and ovarian cancer 

(43%) all exhibit significant incidences of NY-

ESO-1 expression. Numerous clinical studies 

utilizing the NY-ESO-1 antigen have shown better 

immune responses and successful outcomes in 

some trials, proving the antigen's usefulness in the 

treatment of cancer. 

A subset of immune cells known as invariant 

natural killer T (iNKT) cells are capable of 

recognizing glycolipid antigens delivered via the 

non-polymorphic MHC class I-like protein CD1d 

[145, 146]. In addition, iNKT agonists have strong 



Damini G. Sonawane, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 9, 162-186 | Review 

                 
              INTERNATIONAL JOURNAL IN PHARMACEUTICAL SCIENCES                                                                                    171 | P a g e  

adjuvant effects when given concurrently, even at 

low dosages, since they effectively generate 

cytokines upon activation that excite other 

immune cells and increase cytotoxic T cell 

responses [147, 148]. The FDA and the European 

Medicines Agency (EMA) have given their 

approval for the use of polylacto-coglycolic acid 

(PLGA), a biodegradable polymer with low 

(systemic) toxicity, in numerous drug-carrying 

platforms. In a Phase 1 clinical investigation, 

PLGA-based NPs with the tumor antigen NY-

ESO-1 and the iNKT cell activator IMM60 are 

testing anti-tumor responses in cancer patients 

(ClinicalTrials.gov Identifier: NCT04751786). 

T cell responses can be improved by combining 

adjuvants and antigens within a single polymeric 

nanoparticle [149]. The NY-ESO-1 entire protein 

was encapsulated in adjuvant ISCOMATRIX in 

earlier experiments, and it was discovered that the 

majority of patients experienced specific T cell 

responses [150]. The NY-ESO-1 protein and 

peptides have already been established in prior 

clinical trials to be safe and tolerable in patients 

with advanced cancer. 

3. Potential Nanotechnologies for Improving 

Cancer Treatment 

 
Fig.4: Nanotechnologies for improving cancer 

treatment 

Numerous preclinical investigations are being 

conducted to create triggered drug release and 

multimodal therapies that will be extremely 

selective against malignant cells as developing 

nanotechnologies strive to increase PK/PD, 

effectiveness, and selectivity. Targeted drug 

release has the potential to reduce overall toxicity 

and the minimal effective dose even further, 

enhancing patient quality of life and efficacy 

(Fig.4) [30]. Therapeutics can be created to obtain 

the best efficacy and the least amount of toxicity 

when technology develops to use specialized 

delivery. While some targeted medicines may 

show tumor selectivity, their clinical efficacy may 

be constrained by their PK/PD or biodistribution 

characteristics. Because of its effectiveness against 

malignant cells and its ability to target them 

specifically while sparing healthy cells, tumor 

necrosis factor-related apoptosis-inducing ligand 

(TRAIL) is a perfect anti-cancer agent [151]. A 

short half-life and quick renal elimination of the 

off-targeted TRAIL make it difficult to advance 

through preclinical, but [152]. With 16 times 

longer serum half-life and continued anti-tumor 

activity in vivo in xenograft breast cancer and 

orthotopic pancreatic models, a novel TRAIL-

active trimer ferritin nanocage (TRAIL-ATNC) 

has been developed [64]. Any therapeutic's PK/PD 

parameters might be improved by 

nanoformulation, which would allow for drug 

repurposing [153]. 

Recent studies have demonstrated that cationic 

liposomes' lipid tail changes can boost the loading 

capacity of highly hydrophobic PTX, which is 

useful for the development of PTX liposomal 

delivery systems with fewer side effects and lower 

costs. It was discovered that the newly synthesized 

DL in TAP, which contains two linoleoyl tails, has 

a higher loading capacity than lipid tails with one 

oleoyl (DOPC/DOTAP), proving that even little 

changes to nanoformulation can greatly enhance 

drug delivery systems. [122]. Stimuli-responsive 

carriers are intended to release payload in response 

to particular stimuli, such as pH changes, 

temperature changes, the overexpression of 

particular TME enzymes, elevated concentrations 

of intracellular substances like glutathione, and 
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external stimuli like radiation, ultrasound, 

magnetic fields, etc. [56]. 

In this way, medication release within the TME or 

other appropriate targeted locations might provide 

precise delivery. With the mutation occurring in up 

to 44% of TNBC compared to 15% in ER-positive 

breast tumors, TP53 is one of the most frequently 

mutated or deleted genes in breast cancer [154]. 

TNBC is the only subtype of breast cancer without 

any approved targeted therapies, and both the loss 

of TP53 and the absence of targeted therapy are 

significantly associated with poor clinical 

outcomes [155]. When treating TNBC, POLR2A 

in the TP53-neighboring region was shown to be a 

collateral vulnerability target. To increase the 

bioavailability and improve endo/lysomal escape, 

pH-activated NPs were utilized. [156]. Currently, 

cancer immunotherapy depends on two main 

strategies: using monoclonal antibodies (mAbs) to 

regulate effector immune cells and using chimeric 

antigen receptor- T cells or bispecific T cell-

engaging antibodies to enable co-engagement of T 

cells and tumor cells. The future of cancer 

immunotherapy may lie in combining the two 

approaches into a single system, as was recently 

shown in a flexible antibody immobilization 

nanoplatform made by attaching an anti-IgG (Fc 

specific) antibody to the surface of a nanoparticle 

(Fc-NP), which allowed two different types of 

monoclonal antibodies to be immobilized [157]. In 

various mouse tumor models, immunomodulating 

nano-adaptors (imNAs) outperformed a 

combination of mABs in the T cell, natural killer 

cell, and macrophage driven immune response. 

New nanomaterials can improve cancer immune 

therapy further. For instance, Gram-negative 

bacteria secrete outer membrane vesicles (OMVs), 

which are sized 30-250 nm and act as a mediator 

of bacterial communication and homeostasis 

[158]. They have ideal qualities for vaccine 

distribution, including small size and simplicity of 

manufacture scaling up, and they have intrinsic 

immunostimulatory capabilities. It has recently 

been demonstrated that tumor antigens can appear 

as ClyA fusion proteins on OMV surfaces and 

trigger T-cell-mediated, targeted anti-tumor 

response [159]. Additionally, a protein tag can 

spontaneously link to the protein catcher using the 

protein "Plug-and-Display" technique by forming 

an isopeptide bond.  

After amassing in draining lymph nodes, different 

tumor antigens attached to protein tags can be 

swiftly and simultaneously displayed on the OMV 

surface, where they can then be processed and 

presented by DCs [159]. The co-delivery of 

several chemotherapeutic drugs has proven to be a 

very effective usage of nanomaterials. Co-delivery 

inside a single carrier can normalize distribution 

and delivery since drugs have a variety of 

biochemical properties that can be significantly 

different from their synergistic complement [160]. 

In the clinic, anti-PD-1/PD-L1 antibodies are 

currently utilized to disrupt the immunological 

checkpoint, which reverses T cell depletion and 

malfunction and successfully treats cancer [161]. 

Recent research has shown that a liposomal 

formulation of the histone demethylase inhibitor, 

5-carboxy-8-hydroxyquinoline (IOX1), and DOX 

enhances T cell infiltration/activity and greatly 

lowers tumor immunosuppressive factors. [162]. 

A long-term immunological memory effect 

against tumor recurrence was demonstrated in in 

vivo investigations, which also revealed reduced 

growth of a variety of mice cancers (including 

subcutaneous, orthotopic, and lung metastasis). 

The study demonstrated that IOX1 inhibits P-

glycoproteins (P-gp) in cancer cells via the 

JMJD1A/-catenin/P-gp pathway and 

synergistically increases DOX-induced immune-

stimulatory immunogenic cell death. Depending 

on the intended result, nanoformulation can 

optimize drug release by adjusting the release 

kinetics for dual-drug loading [57]. Drug release 

can be activated in a variety of ways; therefore, the 
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release rate can be quite specific to the increases of 

stimuli-responsiveness [71]. Arsenic trioxide 

(ATO) and PTX were recently developed for co-

delivery and dual-pH responsive sequential release 

using mesoporous silica NPs (MSNs) coated with 

polyacrylic acid (PAA) and pH-sensitive lipid 

(PSL) (PL-PMSN-PTX/ ATO) [163]. The 

modification of MSNs with the tumor-targeting 

peptide F56 provided a target-specific transport to 

cancer and endothelial cells during 

neoangiogenesis. The drug-loaded NPs showed a 

sequential drug release profile and dual-pH 

responsiveness (pHe 6.5, pHendo 5.0). While 

ATO was primarily released at pH 5.0 in PSL, 

PTX was released preferentially at pH 6.5. ATO 

and PTX co-delivered NPs demonstrated a 

substantial synergistic effect against MCF-7 cells, 

displaying more cell-cycle arrest in treated cells 

and more activation of apoptosis-related proteins 

than free medicines. Drug-free carriers revealed 

modest cytotoxicity toward MCF-7 cells. 

There are many innovative nanotechnologies that 

significantly advance cancer treatments, but there 

are still several barriers to their use in clinical 

settings, such as scalability, homogeneity, and 

regulatory requirements. 

4. Clinical Applications of Emerging 

Nanotechnologies For Radiation Therapy 

Since nanomaterials have unique features that are 

favorable to atomic-level interactions with 

radiation and tumoral accumulation, RT can 

benefit from advancements in nanotechnology. It 

has been demonstrated that high atomic number 

NPs improve the Compton and photoelectric 

effects of conventional RT, and that some 

nanomaterials can be used to stimulate medication 

release in response to radiation while others can 

act as radiosensitizers [164,165].   

A chelating agent called DOTA (1,4,7,10-tetra-

azacyclododecane-1-glutaricanhydride-4,7,10-

triacetic acid) is covalently attached to the 

paramagnetic contrast enhancer Gd in a 

nanoparticle called AGuIX [166,167]. The 

enormous magnetic moment and consequent huge 

local magnetic field produced by the placement of 

AGuIX in a magnetic field can increase the pace at 

which adjacent protons relax, boosting the MRI 

signal in tumor tissues where protons have 

gathered. The increased radiation effects of 

AGuIX NPs were subsequently clarified and 

linked to the production of low-energy 

photoelectrons and Auger electron interactions 

[168]. The ultra-small NPs, less than 5 nm in 

diameter, enable for quick renal clearance and 

reduced toxicity. 

DNA damage is brought on by standard X-ray 

radiation through the production of ROS following 

contact with water molecules. Hafnium oxide 

nanoparticles (NBTXR3) were developed to boost 

energy deposit because of high electron density, 

leading to increased oxidative stress in tumor cells 

and ensuing physical ablation [169]. However, 

locally advanced soft tissue sarcomas (high risk 

and typically unresectable) frequently necessitate 

pre-operative radiotherapy, making them ideal 

cancer types for testing NBTXR3 [170]. Soft 

tissue sarcomas of the limbs or trunk allow direct 

injection of NPs into the tumor, where the 

radiotherapy enhancement can be localized to 

cancerous tissue. 

High risk of RILD after stereotactic body radiation 

(SBRT) has been linked to hepatic cirrhosis in 

patients with hepatocellular carcinomas (HCC), 

chemotherapy-induced hepatic atrophy, or 

hepatosteatosis in patients with liver metastases 

[171,172]. However, by switching from nuclear 

medicine to MRI-guided radiation with SPION on 

1.5 Tesla MRLinac, hepatotoxicity can be 

significantly decreased [173]. In order to increase 

the safety of liver stereotactic body radiotherapy in 

patients with pre-existing liver conditions, MRI-

SPION radiotherapy is anticipated to facilitate 

detection and maximize avoidance of residual, 

functionally-active hepatic parenchyma from 



Damini G. Sonawane, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 9, 162-186 | Review 

                 
              INTERNATIONAL JOURNAL IN PHARMACEUTICAL SCIENCES                                                                                    174 | P a g e  

over-the-threshold irradiation (ClinicalTrials. gov 

Identifier: NCT04682847). 

CONCLUSION 

This review article explores the amazing 

developments in cancer treatment made possible 

by the incorporation of nanotechnology. By 

providing creative solutions to the drawbacks of 

conventional medicines, the use of 

nanotechnology in cancer treatment has 

completely altered the field of oncology. 

Nanotechnology has shown the ability to greatly 

increase the efficacy and decrease the negative 

effects of cancer medicines through precise drug 

delivery systems, improved imaging methods, and 

individualized treatment plans. With their 

distinctive features, nanoparticles have made it 

possible to deliver therapeutic drugs specifically to 

tumor locations, reducing harm to healthy tissues 

and raising the overall therapeutic index. 

Additionally, real-time viewing and monitoring of 

treatment responses have been made possible by 

the integration of nanoparticles with imaging 

technologies, allowing doctors to make wise 

judgments during the course of therapy. 

Since therapies can be customized to individual 

patients based on their genetic and molecular 

profiles, personalized nanotechnology-based 

treatments hold promises for more effective 

outcomes. This may help treat patients that were 

previously difficult to treat and overcome drug 

resistance. Although there is no denying the 

potential of nanotechnology in the treatment of 

cancer, a number of issues need to be resolved 

before wide-scale clinical application. These 

include problems with long-term impacts, 

scalability, governmental approval, and safety. To 

realize the full potential of nanotechnology in 

revolutionizing cancer therapy, it will be crucial to 

carry out ongoing interdisciplinary research, team 

up with regulatory authorities, scientists, 

engineers, doctors, and other healthcare 

professionals, as well as conduct thorough clinical 

studies. 

In summary, the use of nanotechnology in cancer 

therapy has created new opportunities for precise 

and efficient therapies, igniting hope for a time 

when nanotechnology will be crucial to the 

eradication of cancer and the enhancement of 

patient quality of life on a global scale. 
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