

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

The Evolving Landscape of Antivirals for Human Respiratory Viruses

Rushikesh Bhosle*, Shreyas Kurhe, Darshil Ingale, Swaraj Dhande, Sachin Amrutkar

Modern college of pharmacy.

ARTICLE INFO

Published: 10 Oct 2025

Keywords:

Human respiratory viruses, Antiviral drugs, Drug resistance, Host targeted therapies, AI in drug discovery, CRISPER, Nanomedicines, PROTACs

10.5281/zenodo.17309733

ABSTRACT

Despite their high infectivity and capacity to cause seasonal epidemic or pandemic transmission of respiratory viruses—such as influenza, coronaviruses, RSV, and others—continue as a leading worldwide health threat. drugs that exert their effects through inhibition of viral replication and mitigation of the severity of the disease are crucial to therapy. Despite the variety of viral families, production of broad-spectrum drugs is complex and rapid mutation of viruses results frequently in resistance. An overview of existing antiviral methods, mechanisms of resistance and novel solutions are provided herein. Novel technologies such as host-targeting drugs, AI-based drug discoveries, CRISPR antiviral therapy, PROTACs, and nanomedicine represent promising avenues towards longer-duration and more effective drugs. Nevertheless, opportunities abound as do challenges such as high cost of manufacture and regulation and worldwide discrepancies of accessibility.

INTRODUCTION

Introduction to Human Respiratory Viruses

Human respiratory viruses are a diverse group of pathogens that primarily target the respiratory system, including the nose, throat, and lungs. They are responsible for a wide range of illnesses, from the common cold to severe, life-threatening conditions like pneumonia. These viruses are a significant global health concern due to their high transmissibility and the substantial burden they

place on healthcare systems, particularly during seasonal outbreaks [1, 2].

The transmission of respiratory viruses typically occurs through several mechanisms: Inhalation of respiratory droplets: When an infected person coughs, sneezes, or talks, they release tiny droplets containing the virus into the air. Aerosols: Some viruses can remain suspended in the air in smaller particles for longer periods, increasing the risk of transmission in enclosed spaces. Contact with contaminated surfaces: Touching surfaces or

*Corresponding Author: Rushikesh Bhosle Address: Modern college of pharmacy.

Email : rushikeshkb04@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

objects that have been contaminated with the virus and then touching one's own eyes, nose, or mouth [1, 3].

Common respiratory viruses include:

- Influenza viruses: Known for causing seasonal flu epidemics and, periodically, pandemics [4].
- Coronaviruses: A large family of viruses that includes those responsible for the common cold, as well as more severe diseases like SARS, MERS, and COVID-19 [1, 2].
- Respiratory Syncytial Virus (RSV): A leading cause of lower respiratory tract infections, particularly in infants and young children [5, 6].
- Rhinoviruses: The most frequent cause of the common cold [1, 2].

- Adenoviruses: Can cause a variety of illnesses, including respiratory infections, conjunctivitis, and gastrointestinal issues [1].
- Human metapneumovirus (HMPV) and Parainfluenza viruses (HPIV): Common causes of respiratory illness, especially in young children and older adults [1, 6].

The severity of a respiratory viral infection varies widely depending on the specific virus, the age of the patient, and their underlying health status. Vulnerable populations, such as infants, older adults, pregnant women, and people with compromised immune systems or chronic medical conditions, are at a higher risk of developing severe illness and complications [3, 7].

Table 1: Common Human Respiratory Viruses and Associated Illnesses

Virus Family/Genus	Common Viruses	Primary Illnesses Caused
Orthomyxoviridae	Influenza A and B viruses	Seasonal flu, pandemics
Coronaviridae	SARS-CoV-2, MERS-CoV, SARS-CoV,	COVID-19, MERS, SARS,
	Human coronaviruses (e.g., OC43)	common cold
Paramyxoviridae	Respiratory Syncytial Virus (RSV), Human	Bronchiolitis, pneumonia, croup,
	Parainfluenza Viruses (HPIV), Human	common cold
	Metapneumovirus (HMPV)	
Picornaviridae	Rhinoviruses	Common cold
Adenoviridae	Human adenoviruses	Respiratory infections,
		conjunctivitis, gastroenteritis

Recent Outbreaks and Potential Threats

The landscape of respiratory viruses is dynamic, with ongoing seasonal outbreaks and the continuous threat of new or re-emerging pathogens. The COVID-19 pandemic, caused by the novel SARS-CoV-2, highlighted the global vulnerability to emerging respiratory viruses and spurred a new focus on preparedness and surveillance [8].

Recent Outbreaks COVID-19: While the pandemic phase has passed, SARS-CoV-2 continues to circulate, with new variants constantly emerging. These variants can have different levels of transmissibility, virulence, and immune evasion, making ongoing surveillance and vaccination efforts crucial [4]. Seasonal Influenza: The flu continues to be a major annual public health concern, with varying dominant strains and associated morbidity and mortality each year [4,

9]. Global surveillance systems are in place to monitor influenza activity and inform vaccine composition [9]. Respiratory Syncytial Virus (RSV): In some regions, there have been unusual surges in RSV cases, particularly among children. The COVID-19 pandemic disrupted typical RSV seasonal patterns, leading to unexpected and sometimes severe outbreaks [5, 6]. Human Metapneumovirus (HMPV) and other viruses: Alongside the major players like flu and COVID-19, other viruses such as HMPV and parainfluenza viruses continue to cause seasonal increases in acute respiratory infections, sometimes adding to the burden on healthcare systems [10].

Potential Threats and Global Health Security

The emergence of novel respiratory viruses with pandemic potential remains a significant threat to global health security. History has shown that such pathogens can emerge from animal reservoirs and quickly spread globally [8, 11]. Several factors contribute to this risk:

- Zoonotic spillover: A large percentage of emerging infectious diseases are zoonotic, meaning they originate in animals and jump to humans. The close proximity of humans and animals, driven by factors like population growth and environmental changes, increases this risk [8, 11].
- Antigenic shift and drift: Viruses like influenza have a high mutation rate. Antigenic drift (small, continuous mutations) can lead to seasonal epidemics, while antigenic shift (a major genetic change) can result in a new subtype that can cause a pandemic [8].
- Global travel and trade: The rapid movement of people and goods around the world facilitates the swift, international spread of infectious agents [11].

To counter these threats, global health organizations and governments are focusing on:

- Enhanced surveillance: Strengthening national, regional, and international surveillance systems to rapidly detect and identify new pathogens [8].
- Early warning systems: Implementing systems that provide early alerts for potential epidemics [8].
- Laboratory capacity: Improving laboratory capabilities for quick and accurate diagnosis of emerging diseases [8].
- Vaccine and treatment development:
 Accelerating the research and development of new vaccines and antiviral therapies that can be deployed quickly in the face of an outbreak [4, 11].

The lessons learned from recent outbreaks underscore the need for a comprehensive and coordinated global approach to respiratory virus surveillance, preparedness, and response [4, 11].

Overview of Antiviral Drugs

Antiviral drugs are a class of medications specifically designed to treat viral infections. Unlike antibiotics, which target bacteria, antivirals work by interfering with the life cycle of a virus, thereby hindering its ability to replicate inside host cells [12, 13]. The goal of antiviral therapy is to reduce the viral load, alleviate symptoms, shorten the duration of illness, and prevent severe complications [12, 14].

Most antivirals are "direct-acting antivirals" (DAAs), meaning they target specific viral proteins or enzymes that are crucial for the virus's replication process. These targets can include [12, 4]:

- Viral attachment and entry: Blocking the virus from binding to and entering a host cell.
- Uncoating: Preventing the viral capsule from breaking open and releasing its genetic material.
- Replication: Inhibiting key viral enzymes, such as polymerases or reverse transcriptase, that are necessary for the synthesis of new viral components.

 Assembly and release: Stopping the virus from assembling into new viral particles or from exiting the host cell to infect other cells.

Examples of successful antivirals include those used to treat HIV, hepatitis B and C, influenza, and herpes viruses [11, 12, 13]. For instance, drugs for HIV target enzymes like reverse transcriptase, protease, and integrase, which are essential for the virus's life cycle [12]. Similarly, influenza antivirals like oseltamivir and zanamivir inhibit neuraminidase, an enzyme that allows new viral particles to be released from infected cells [10, 12].

Table 2: Mechanisms of Ac	tion for Maior	Antiviral Drug	Classes
---------------------------	----------------	----------------	---------

Mechanism of Action	Drug Class Examples	Target Virus(es)
Neuraminidase Inhibition	Oseltamivir, Zanamivir	Influenza A and B
Viral Polymerase Inhibition	Acyclovir, Remdesivir, Sofosbuvir	Herpesviruses, Coronaviruses, Hepatitis C
Protease Inhibition	Lopinavir/Ritonavir, Paxlovid (Nirmatrelvir)	HIV, SARS-CoV-2
Reverse Transcriptase Inhibition	Zidovudine (AZT), Tenofovir	HIV, Hepatitis B
Viral Entry/Fusion Inhibition	Enfuvirtide, Maraviroc	HIV

Clinical Resistance to Antivirals: Mechanisms and Solutions

A major challenge in antiviral therapy is the development of clinical resistance, where a virus mutates in a way that makes a drug less effective or completely ineffective [15]. This is a significant concern, especially for chronic viral infections that require long-term treatment, such as HIV, hepatitis, and herpes [15, 16].

Mechanisms of Resistance Viral resistance primarily arises from the high mutation rates of viruses, particularly those with RNA genomes [15]. These mutations can lead to several mechanisms of resistance, including:

- Mutation of the drug target: This is the most common mechanism. The virus's genetic material mutates, leading to a change in the structure of the viral protein or enzyme that the drug targets. This alteration prevents the drug from binding effectively, allowing the virus to continue replicating [15, 17]. For example, mutations in the neuraminidase enzyme of influenza can render oseltamivir ineffective, while mutations in the reverse transcriptase of HIV can block the action of certain antiretrovirals [15].
- Overproduction of the target protein: The virus may increase the production of the protein that the drug targets, overwhelming the drug's ability to inhibit it [17].

• Drug efflux: In some cases, a virus may develop mechanisms to pump the drug out of the infected cell before it can take effect [17].

Resistance is often more likely to develop in immunocompromised patients, where prolonged viral replication and drug exposure create an ideal environment for the selection of resistant strains [16]. Poor patient adherence to the prescribed drug regimen is another major factor, as missed doses can allow the virus to multiply and mutate [15].

Solutions to Combat Resistance To address the growing problem of antiviral resistance, several strategies have been implemented:

- Combination therapy: This involves using multiple drugs that target different stages of the viral life cycle simultaneously. This "cocktail" approach, famously used in highly active antiretroviral therapy (HAART) for HIV, makes it much more difficult for the virus to develop resistance to all drugs at once [15, 18].
- Development of new drugs with novel mechanisms: Researchers are continuously working to discover and develop new drugs that target different viral proteins or have different mechanisms of action, offering alternative treatment options when resistance to older drugs emerges [15, 16].
- Host-targeted therapies (HTTs): Instead of targeting viral proteins, HTTs aim to inhibit host cell factors that a virus needs for its replication. This approach can potentially have broad-spectrum activity and a lower risk of resistance, as the virus is less likely to mutate a host protein [11, 18].
- Resistance testing: For certain chronic infections like HIV, resistance testing is

- routinely performed to identify specific mutations and guide the selection of an appropriate and effective drug regimen for the patient [15].
- Patient education and adherence: Educating patients on the importance of taking their medication exactly as prescribed is a simple yet crucial measure to prevent the development of resistance [15].

Innovations and Technological Advances in the Development of Antivirals

The field of antiviral drug discovery has been revolutionized by a number of technological advances and innovative approaches.

Structural Biology and Rational Drug Design:

Technologies like cryo-electron microscopy have provided high-resolution images of viral proteins, allowing researchers to understand their structure and function in unprecedented detail. This has enabled "rational drug design," where candidate drugs are designed at a molecular level to fit precisely into the active site of a viral enzyme and block its action [18, 19].

High-Throughput Screening (HTS): HTS techniques, often coupled with robotics, allow for the rapid testing of thousands of compounds against a specific viral or host target. This has significantly accelerated the process of identifying potential antiviral candidates [19].

Nanomedicine: Nanoparticles and other nanomaterials are being explored for their potential in antiviral therapy. They can be used as drug delivery systems to improve the stability and efficacy of existing drugs, or as direct antiviral agents themselves [20]. For example, some nanoparticles have been shown to disrupt the viral life cycle [20].

Repurposing of Existing Drugs: Advanced bioinformatics tools and computational modeling can be used to screen existing FDA-approved drugs for potential antiviral activity against new pathogens. This "drug repurposing" can significantly shorten the time required to develop and deploy an effective therapeutic [18].

Genomics and Bioinformatics: Understanding the genetic makeup of viruses and their mutation patterns has been crucial in designing drugs that are less prone to resistance. The rapid sharing of genetic sequence data for new viruses, as seen during the COVID-19 pandemic, has enabled a swift global response [18, 19].

CRISPR Technology: Gene-editing tools like CRISPR-Cas9 are being investigated for their potential to directly target and destroy viral genomes within infected cells. While still in the early stages of development, this technology offers a promising, targeted approach to combating viral infections [19, 21].

These innovations, along with increased international collaboration and funding for research, are crucial for enhancing our capacity to respond to future viral threats and for staying ahead in the continuous battle against antiviral resistance [18, 19].

Development of Active Antiviral Therapeutics: Novel Approaches to Discovery

The rapid evolution of viruses and the emergence of drug-resistant strains necessitate the continuous development of new and innovative antiviral therapeutics. Traditional drug discovery, which often relies on a trial-and-error approach, is time-consuming and expensive [18]. Recent technological and conceptual advances are transforming this process, enabling more targeted

and efficient development of new antivirals [22, 23].

- 1. Host-Targeted Therapies (HTTs) Instead of targeting a viral protein, which can easily mutate and lead to drug resistance, HTTs focus on inhibiting host cell factors that are essential for viral replication [24]. Viruses rely on the host's cellular machinery to replicate and spread. By blocking these host-cell processes, HTTs offer several advantages:
- **Broad-spectrum activity:** A single host-targeted drug can potentially be effective against multiple viruses that use the same host pathway, even if the viruses are from different families [24, 25].
- Reduced resistance: Since the drug targets a host protein, the virus is much less likely to develop resistance. The host's protein is not under the same evolutionary pressure to mutate as a viral protein [24, 25]. Examples: Researchers are exploring drugs that target host kinases, enzymes, or other cellular components that are co-opted by viruses like influenza and coronaviruses [25].
- 2. Artificial Intelligence (AI) and Machine Learning (ML) AI is a game-changer in antiviral drug discovery, dramatically accelerating the process from compound identification to clinical development [23, 26].
- **High-throughput data analysis:** AI can analyze vast amounts of data from genomics, proteomics, and chemical libraries to identify potential drug candidates that might have been missed by human analysis alone [23, 26].
- Drug repurposing: AI algorithms can screen existing, FDA-approved drugs for potential antiviral activity against new or emerging

viruses. This can significantly shorten the development timeline, as these drugs have already been proven safe for human use [23, 26].

- Predicting drug-target interactions: AI and ML models can predict how a compound will interact with a viral or host protein, allowing researchers to design more effective and specific molecules [26].
- **3. Proteolysis-Targeting Chimeras (PROTACs)** PROTACs represent a novel therapeutic strategy that goes beyond simple inhibition [27, 28]. Instead of blocking a protein's function, PROTACs are small molecules designed to recruit a cell's own protein degradation machinery to "tag" a specific viral or host protein for destruction [27].
- **Mechanism:** A PROTAC molecule has two parts: one that binds to the target protein and another that binds to an E3 ubiquitin ligase, a cellular enzyme. By bringing the two together, the PROTAC forces the E3 ligase to "ubiquitinate" the target protein, marking it for degradation by the proteasome [27, 28].
- Advantages: PROTACs can work at very low concentrations, have prolonged effects, and can be used to target "undruggable" proteins that are difficult to inhibit with traditional small-molecule drugs [28].
- **4. CRISPR Technology** Originally discovered as a bacterial immune system, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) offers a powerful and precise tool for antiviral therapy [29, 30].
- Directly targeting viral genomes: CRISPR-Cas systems can be engineered to specifically recognize and cleave viral DNA or RNA,

- effectively destroying the viral genome and preventing replication. This approach has shown promise against a range of viruses, including HIV and SARS-CoV-2 [29, 30].
- Targeting host factors: CRISPR can also be used to edit host genes that are essential for viral replication, making the host cells resistant to infection [29].
- Multi-target approach: CRISPR can be designed to target multiple viral sequences simultaneously, making it much harder for the virus to develop resistance [29, 30].
- **5.** Nanomedicine Nanotechnology is being leveraged to improve the delivery and effectiveness of antiviral drugs [31, 32].
- Enhanced delivery: Nanoparticles can be used to encapsulate antiviral drugs, protecting them from degradation and improving their stability and solubility. This allows for more targeted delivery to infected cells or tissues, reducing side effects and increasing drug concentration at the site of infection [31, 32].
- Direct antiviral action: Some nanomaterials, such as silver or gold nanoparticles, have shown direct virucidal properties, meaning they can inactivate viruses by disrupting their structure or preventing them from binding to host cells [31].
- Controlled release: Nanocarriers can be engineered to release their drug payload in a controlled manner, providing a sustained therapeutic effect over time [32].

These novel approaches, combined with a deeper understanding of viral biology, are paving the way for the next generation of antiviral therapeutics that are more potent, have broader-spectrum

activity, and are better at overcoming drug resistance.

Table 3: Novel Approaches in Antiviral Drug Discovery

Approach	Mechanism	Key Advantages
Host-Targeted Therapies	Inhibits host cell factors essential	Broad-spectrum activity; lower
(HTTs)	for viral replication.	risk of viral resistance.
Artificial Intelligence (AI) &	Analyzes vast datasets to identify	Accelerates discovery; reduces
Machine Learning (ML)	drug candidates, repurpose	costs; identifies novel targets.
	existing drugs, and predict drug-	
	target interactions.	
Proteolysis-Targeting Chimeras	Recruits the cell's machinery to	Works at low concentrations; can
(PROTACs)	"tag" a specific viral or host	target previously "undruggable"
	protein for destruction.	proteins.
CRISPR Technology	Uses gene-editing systems to	Highly specific and precise;
	recognize and cleave viral DNA or	potential to target multiple sites to
	RNA, destroying the viral genome.	prevent resistance.
Nanomedicine	Uses nanoparticles to enhance	Improved efficacy; reduced side
	drug delivery, stability, and	effects; controlled drug release.
	targeting, or for direct virucidal	
	action.	

Challenges in Antiviral Drug Development

The development of new antiviral therapeutics is a complex and challenging endeavor, fraught with hurdles that span scientific, regulatory, economic, and ethical domains. These challenges often lead to a high attrition rate in the drug development pipeline and can delay the availability of lifesaving treatments.

Scientific and Technical Challenges

- Viral Diversity and Specificity: Viruses are an incredibly diverse group, with different genetic materials (DNA or RNA), replication strategies, and life cycles. This diversity makes it difficult to develop broad-spectrum antivirals, as a drug effective against one virus may be completely useless against another [33, 34].
- Targeting the Virus without Harming the Host: Viruses are obligate intracellular parasites,

- meaning they use the host's cellular machinery to replicate. This makes it challenging to design a drug that can inhibit the virus's life cycle without also causing significant toxicity to healthy host cells [33, 35].
- Viral Resistance: Viruses, especially RNA viruses, have a high mutation rate. These rapid mutations can lead to the emergence of drugresistant strains, rendering a once-effective drug useless. This necessitates the continuous development of new drugs and often requires the use of combination therapies to reduce the risk of resistance [15, 33].
- Drug Delivery and Pharmacokinetics: For a drug to be effective, it must be able to reach the site of infection in a sufficient concentration and remain there long enough to exert its effect. Developing a formulation that can achieve this without being degraded or causing toxicity is a significant technical challenge [33].

• Viral Latency: Some viruses, such as herpesviruses and HIV, can establish a state of latency, where they remain dormant within the host's cells, effectively hiding from both the immune system and most antiviral drugs. Eradicating these latent viral reservoirs is a major challenge in achieving a complete cure for these infections [36].

Regulatory Challenges

- Stringent Approval Process: The regulatory approval process for new drugs is rigorous, requiring extensive preclinical and clinical trials to demonstrate safety and efficacy. This process is time-consuming and can take several years, delaying the availability of new medications to patients [33, 37].
- Emergency Use and Data Gaps: While emergency use authorization (EUA) can fast-track the approval of a drug during a public health crisis, this process can still face scrutiny and data gaps. Balancing the need for rapid deployment with the need for robust safety and efficacy data is a major regulatory challenge [37].
- Harmonization of Global Standards:
 Differences in regulatory requirements
 between countries can complicate the international distribution of a new antiviral.
 Harmonizing these frameworks is crucial for a coordinated global response to pandemics [37].

Economic and Financial Challenges

• High Research and Development (R&D) Costs: The R&D of a new antiviral drug requires a substantial financial investment, often in the hundreds of millions or even billions of dollars [33]. This high cost can be a

- barrier for smaller companies and can make drug development for diseases with small market sizes financially unattractive.
- Limited Market Incentives: For many viral infections, especially those that are episodic or geographically limited (e.g., Ebola), the market for a new antiviral may not be large enough to justify the high R&D costs. This market failure can lead to a lack of investment in developing therapies for critical but rare diseases [38].
- Pricing and Affordability: The high cost of developing new drugs often leads to high prices, which can make them unaffordable for many patients and healthcare systems, particularly in low- and middle-income countries. This poses a significant barrier to equitable access [38, 39].

Infrastructure and Technological Challenges

- Supply Chain Logistics: Scaling up the manufacturing of a new antiviral from the laboratory to an industrial scale is a complex process. Ensuring a reliable supply chain for raw materials and active pharmaceutical ingredients (APIs), particularly during a global health crisis, is crucial but challenging [33].
- Technological Gaps: While recent advances in AI and genomics are accelerating drug discovery, there is still a need for improved technologies, such as advanced drug delivery systems and point-of-care diagnostic tools, to enhance the effectiveness and accessibility of antivirals [34, 40].
- Skilled Workforce: Developing new antiviral medications requires a highly specialized and skilled workforce of researchers, scientists, and technicians. Training and retaining this

talent can be a significant challenge for many countries and organizations [33].

Public Health and Ethical Challenges

- Equitable Access: A major ethical challenge is ensuring that new antivirals are distributed fairly and are accessible to all populations, regardless of their socioeconomic status or geographic location. The COVID-19 pandemic highlighted the vast inequalities in access to vaccines and treatments between high-income and low-income countries [39].
- Prioritization during Outbreaks: During a pandemic, difficult ethical decisions must be made about who receives the limited supply of a new antiviral. Criteria for prioritization can include age, underlying health conditions, and occupation, and these decisions must be made transparently and equitably [39].
- Cultural and Social Factors: Stigma associated with certain viral infections, cultural beliefs, and misinformation can create barriers to treatment-seeking behavior and adherence to drug regimens [39]. Public health strategies must be culturally sensitive and address these social determinants of health to be effective.

Table 4: Summary of Key Challenges in Antiviral Development

Challenge Category	Specific Examples	
Scientific & Technical	High viral diversity and specificity.	
	Potential for host cell toxicity.	
	• Rapid development of viral resistance.	
	• Difficulty in eradicating latent viral reservoirs (e.g., HIV, herpes).	
Regulatory	• Long and stringent approval processes for new drugs.	
	• Balancing rapid deployment (e.g., EUA) with robust safety data.	
	• Lack of harmonization of global regulatory standards.	
Economic & Financial	• Extremely high research and development (R&D) costs.	
	• Limited market incentives for diseases affecting smaller populations.	
	• Issues with drug pricing, affordability, and equitable access.	
Public Health & Ethical	• Ensuring equitable global access to new treatments.	
	• Making difficult prioritization decisions during outbreaks with limited supply.	
	• Overcoming cultural barriers and misinformation that affect treatment	
	adherence.	

CONCLUSION

The development of active antiviral therapeutics is a monumental task, but it is one of the most critical endeavors in modern medicine. The challenges are formidable, encompassing complex scientific hurdles, stringent regulatory environments, immense financial burdens, and profound ethical considerations. However, the lessons learned from recent outbreaks and the rapid advancements in technology—such as AI-driven discovery,

CRISPR-based therapies, and host-targeted approaches—offer promising avenues for the future. Successfully navigating these challenges requires a coordinated and collaborative global effort among governments, academia, industry, and public health organizations. By fostering innovation, addressing economic disparities, and upholding ethical principles of equity and access, the global community can strengthen its arsenal against current and future viral threats. The ultimate goal is not only to develop new drugs but

to ensure that these life-saving medicines are available to everyone who needs them, transforming global health security for generations to come.

REFERENCES

- 1. Allied Academies. (n.d.). Antiviral drug resistance: Mechanisms and solutions. https://www.alliedacademies.org/articles/antiviral-drug-resistance-mechanisms-and-solutions-31077.html
- 2. Arts, M., & Dragnea, B. (2020). Advances in antiviral material development. Nano Research, 13(9), 2339–2355. https://pmc.ncbi.nlm.nih.gov/articles/PMC74 61489/
- 3. Asmamaw, M., & Zawdie, B. (2024). Advancements in antiviral drug development: Comprehensive insights into design strategies and mechanisms targeting key viral proteins. Infection and Drug Resistance, 17, 1989–2003. https://pmc.ncbi.nlm.nih.gov/articles/PMC11 294656/
- 4. Britannica. (n.d.). Antiviral drug. In Encyclopædia Britannica. Retrieved September 8, 2025, from https://www.britannica.com/science/antiviral-drug
- 5. Centers for Disease Control and Prevention. (n.d.-a). About respiratory illnesses. https://www.cdc.gov/respiratory-viruses/about/index.html
- 6. Centers for Disease Control and Prevention. (n.d.-b). Other respiratory illnesses going around. https://www.cdc.gov/respiratory-viruses/data/illnesses-going-around.html
- 7. Centers for Disease Control and Prevention. (n.d.-c). People at increased risk for severe respiratory illnesses. https://www.cdc.gov/respiratory-viruses/risk-factors/index.html

- 8. Ciron Pharma. (n.d.). Challenges in developing antiviral medications. https://www.cironpharma.com/blog/challenge s-in-developing-antiviral-medications/
- 9. Cleveland Clinic. (n.d.-a). Antiviral (antiviral medication): What it is & how it works. https://my.clevelandclinic.org/health/treatments/antivirals
- 10. Cleveland Clinic. (n.d.-b). Antiviral resistance. https://my.clevelandclinic.org/health/articles/23217-antiviral-resistance
- 11. De Meyer, N., & Vangeel, L. (2022). Newly emerging strategies in antiviral drug discovery. Molecules, 27(3), 1079. https://pmc.ncbi.nlm.nih.gov/articles/PMC88 39652/
- 12. Ekins, S., & Madrid, P. B. (2023). Antivirals for the next pandemic. Science, 381(6664), 1284-1286.
 - https://doi.org/10.1126/science.abq5321
- 13. Fiveable. (n.d.). Challenges and future directions in antiviral therapy. https://library.fiveable.me/virology/unit-15/challenges-future-directions-antiviral-therapy/study-guide/SDg85fusEIZuiNbA
- 14. Frontiers. (2022a). Artificial intelligence for antiviral drug discovery in low resourced settings. https://www.frontiersin.org/journals/drugdiscovery/articles/10.3389/fddsv.2022.10132 85/full
- 15. Frontiers. (2022b). Nano-antivirals: A comprehensive review. https://www.frontiersin.org/journals/nanotech nology/articles/10.3389/fnano.2022.1064615/full
- 16. Gralinski, L. E., & Baric, R. S. (2015). Molecular pathology of emerging zoonotic coronaviruses. Journal of Pathology, 235(2), 189–191. https://doi.org/10.1002/path.4452
- 17. Health Affairs Forefront. (2021). Revising our regulatory approach to oral antivirals for

- COVID-19.
- $https://www.healthaffairs.org/do/10.1377/fore\\front.20211014.401447/$
- 18. Knowable Magazine. (2021). The challenges of antiviral treatments. https://knowablemagazine.org/content/article/health-disease/2021/challenges-antiviral-treatments
- 19. Kulkarni, R. (2025, September 4). Doctors in Pune report unusual surge in RSV cases this monsoon, many kids in ICUs. The Times of India.

 https://timesofindia.indiatimes.com/city/pune/doctors-in-pune-report-unusual-surge-in-rsv-cases-this-monsoon-many-kids-in-
- 20. Longdom Publishing. (2024a). Advances in antiviral therapeutics using CRISPR-Cas systems. https://www.longdom.org/open-access-pdfs/advances-in-antiviral-therapeutics-using-crisprcas-systems.pdf

icus/articleshow/123664319.cms

- 21. Longdom Publishing. (2024b). Innovations in antiviral therapy: Responding to emerging viral threats. https://www.longdom.org/open-access/innovations-in-antiviral-therapy-responding-to-emerging-viral-threats-108657.html
- 22. Longdom Publishing. (n.d.-a). Innovations in antiviral therapy: Responding to emerging viral threats. https://www.longdom.org/open-access/innovations-in-antiviral-therapy-responding-to-emerging-viral-threats-108657.html
- 23. Longdom Publishing. (n.d.-b). The ethical implications of antiviral and antiretroviral accessibility: A global health perspective. https://www.longdom.org/open-access/the-ethical-implications-of-antiviral-and-antiretroviral-accessibility-a-global-health-perspective-102677.html
- 24. MDPI. (2024a). PROTAC-based antivirals for respiratory viruses: A novel approach for

- targeted therapy and vaccine development. https://www.mdpi.com/2076-2607/13/7/1557
- 25. MDPI. (2024b). Progress in CRISPR technology for antiviral treatments: Genome editing as a potential cure for chronic viral infections. https://www.mdpi.com/2036-7481/16/5/104
- 26. Medical Journals House. (2024, April 11). Advancements in antiviral drug discovery: A comprehensive review. https://medicaljournalshouse.com/index.php/P harmaceuticalTechnology-Indu/article/download/1098/837/4944
- 27. MSD Manuals. (n.d.). Overview of viral respiratory infections. MSD Manual Professional Version. https://www.msdmanuals.com/professional/in fectious-diseases/respiratory-viruses/overview-of-viral-respiratory-infections
- 28. National Foundation for Infectious Diseases. (n.d.). What is an antiviral?. https://www.nfid.org/resource/what-is-an-antiviral/
- 29. NSW Health. (2023, January 31). Respiratory viruses fact sheet. https://www.health.nsw.gov.au/Infectious/fact sheets/Pages/respiratory-viruses.aspx
- 30. Pan American Health Organization. (2023, June 6). Epidemiological alert Influenza, respiratory syncytial virus and SARS-CoV-2. https://www.paho.org/en/documents/epidemiological-alert-influenza-respiratory-syncytial-virus-and-sars-cov-2-6-june-2023
- 31. Pan American Health Organization. (n.d.). Influenza, SARS-CoV-2, RSV and other respiratory viruses. https://www.paho.org/en/topics/influenza-sars-cov-2-rsv-and-other-respiratory-viruses
- 32. ResearchGate. (2021). Emerging technologies in diagnostic virology and antiviral strategies. https://www.researchgate.net/publication/354

- 150195_Emerging_Technologies_in_Diagnos tic Virology and Antiviral Strategies
- 33. ResearchGate. (2024). (PDF) Antiviral drug discovery: Unique aspects. https://www.researchgate.net/publication/378 775761_Antiviral_Drug_Discovery_Unique_Aspects
- 34. Science Alert. (2024). Revolutionizing antiviral drug discovery: The emerging role of artificial intelligence. International Journal of Pharmacology, 20(5), 536-546. https://scialert.net/fulltext/?doi=ijp.2024.536. 546
- 35. Strasfeld, L., & Chou, S. (2010). Antiviral drug resistance: Mechanisms and clinical implications. Infectious Disease Clinics of North America, 24(2), 413-437. https://doi.org/10.1016/j.idc.2010.01.001
- 36. Tenland, E., et al. (2020). Nanomaterials designed for antiviral drug delivery transport across biological barriers. International Journal of Nanomedicine, 15, 1853–1871. https://pmc.ncbi.nlm.nih.gov/articles/PMC70 76512/

- 37. U.S. Government Accountability Office. (2023). Antiviral drugs: Economic incentives and strategies for pandemic preparedness (GAO-24-106367).
 - https://www.gao.gov/assets/870/862020.pdf
- 38. World Health Organization. (2025, January 7). Trends of acute respiratory infection, including human metapneumovirus, in the Northern Hemisphere.
 - https://www.who.int/emergencies/diseaseoutbreak-news/item/2025-DON550
- 39. World Health Organization. (n.d.). Health security. https://www.who.int/health-topics/health-security/articles/10.3389/fddsv.2022.1013285 /full.

HOW TO CITE: Rushikesh Bhosle*, Shreyas Kurhe, Darshil Ingale, Swaraj Dhande, Sachin Amrutkar, The Evolving Landscape of Antivirals for Human Respiratory Viruses, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 10, 840-852 https://doi.org/10.5281/zenodo.17309733