

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Scorpion Venom: From Deadly Toxin to Therapeutic Treasure

Revanth Durga Chodipilli*, Maheswari Geddada, Pooja Meka, Lokesh Babu Peddireddy, Sheba Khandavalli, Sunil Boddani

Dr. C.S.N Institute of Pharmacy, Bhimavaram, India

ARTICLE INFO

Published: 25 Oct 2025

Keywords:

Scorpion venom; Bioactive peptides; Ion channel modulators; Anticancer agents; Neurotoxins; Drug discovery.

DOI:

10.5281/zenodo.17441678

ABSTRACT

Scorpion venom, once recognized solely as a lethal toxin, has now emerged as a promising source of bioactive compounds with significant therapeutic potential. The venom is a complex mixture of peptides, enzymes, mucopolysaccharides, and lowmolecular-weight molecules, many of which interact selectively with ion channels and receptors in excitable tissues. Advances in proteomics and molecular biology have revealed that certain venom-derived peptides possess anticancer, antimicrobial, analgesic, and immunomodulatory properties, making them valuable templates for novel drug design. Notably, chlorotoxin from Leiurus quinquestriatus exhibits remarkable tumor-targeting activity, while other peptides demonstrate potent antimicrobial and anti-inflammatory effects. Modern formulation strategies, including nanocarriers and peptide stabilization techniques, further enhance their pharmacological viability. However, therapeutic translation faces challenges such as dose optimization, toxicity reduction, and large-scale peptide synthesis. This review critically explores the taxonomy, biochemical composition, mechanisms of action, pharmacological properties, and biotechnological applications of scorpion venom, highlighting its transition from a natural toxin to a therapeutic treasure. Emerging technologies, including recombinant peptide engineering and venom gland transcriptomics, are discussed as key tools for future venom-based drug discovery. Overall, scorpion venom represents a fascinating example of nature's duality — a substance of deadly origin with the power to heal when harnessed wisely.

INTRODUCTION

Scorpion venom has long been associated with fear and fatality, symbolizing one of nature's most potent weapons. However, with the advancement of molecular pharmacology, this once-deadly secretion has become a valuable reservoir of bioactive molecules with promising therapeutic potential. Scorpions, belonging to the class *Arachnida* and order *Scorpiones*, have evolved a

*Corresponding Author: Revanth Durga Chodipilli

Address: Dr. C.S.N Institute of Pharmacy, Bhimavaram, India

Email : chrevanth816@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

sophisticated venom delivery system primarily for predation and defense. The venom's complex composition—encompassing neurotoxins, enzymes, peptides, and small organic molecules—acts on a range of biological targets, particularly ion channels in excitable cells [1].

Historically, scorpion venom was used in traditional medicine across various civilizations, including Chinese, Egyptian, and Indian systems, where small doses were believed to treat pain and inflammation. Modern research has validated several of these ancient claims through advanced biochemical and pharmacological studies. The discovery of chlorotoxin from Leiurus quinquestriatus, known for its ability to selectively bind to glioma cells, marked a turning point in venom-based drug discovery [2]. This discovery inspired renewed scientific interest in exploring venom-derived compounds as therapeutic agents rather than merely as toxins.

Currently, over 2,000 scorpion species have been identified, but only a fraction of their venom components have been characterized [3]. These peptides exhibit high specificity and potency toward ion channels, making them valuable tools for studying neurophysiology and for developing targeted drugs. In recent years, scorpion venom peptides have shown potential in treating cancer, autoimmune diseases, chronic pain, and infectious disorders [4,5].

The objective of this review is to present a comprehensive overview of scorpion venom, emphasizing its taxonomy, biochemical composition, mechanisms of action, therapeutic applications, and formulation strategies. The review also highlights current challenges and future perspectives in transforming this natural toxin into a clinically viable therapeutic resource.

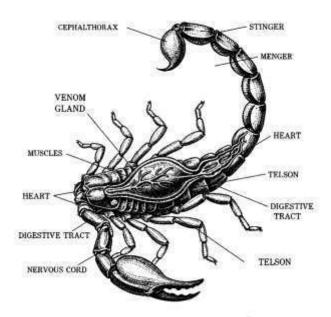


Figure 1: Schematic diagram showing the scorpion's anatomy and venom apparatus.

2. TAXONOMY AND DIVERSITY OF SCORPIONS

Scorpions are among the oldest terrestrial arthropods, with fossil evidence dating back over

430 million years. They belong to the phylum *Arthropoda*, class *Arachnida*, and order *Scorpiones*. More than 2,400 species have been identified worldwide, classified into approximately 20 families, of which *Buthidae*,

Scorpionidae, Hemiscorpiidae, and Caraboctonidae are of primary medical and pharmacological importance [6]. Members of the Buthidae family, such as Leiurus quinquestriatus, Androctonus australis, and Tityus serrulatus, are responsible for most severe envenomation cases in humans and are the main focus of biochemical and therapeutic studies [7].

The distribution of scorpions is remarkably diverse, ranging from tropical forests and deserts to high-altitude and arid regions. This ecological adaptability has contributed to significant variation in venom composition, influenced by factors such as species, habitat, diet, and environmental stress [8]. For instance, tropical species often produce venom with a stronger neurotoxic profile, while desert species show a broader mix of cytotoxins and enzymes adapted for prey immobilization and defense.

Taxonomic studies play a critical role in venom research, as accurate species identification ensures biochemical consistency in profiling and pharmacological testing. Traditional morphological classification, based on pectine count, pedipalp morphology, and metasomal segment structure, has now been complemented by phylogenetic molecular analyses using mitochondrial DNA and venom peptide gene sequencing [9]. Such integrative taxonomy allows for better correlation between genetic diversity and toxin functionality, which is crucial for drug discovery efforts.

Overall, understanding the taxonomy and diversity of scorpions provides an essential framework for exploring their venom's pharmacological potential. Precise classification not only aids in identifying medically relevant species but also facilitates sustainable venom collection and standardization of venom-derived therapeutics.

3. COMPOSITION AND BIOCHEMISTRY OF SCORPION VENOM

Scorpion venom is a complex biochemical cocktail designed for both predation and defense. It comprises a wide spectrum of molecules including peptides, proteins, enzymes, mucopolysaccharides, lipids, nucleotides, and various low-molecular-weight compounds. The composition varies significantly across species, geographical regions, and even within individuals of the same species, depending on age, sex, and environmental factors [10]. Despite this diversity, most scorpion venoms share a conserved functional architecture centered around neurotoxic peptides that modulate ion channel activity in excitable tissues [11].

3.1 Peptide and Protein Components

Peptides constitute approximately 70–80% of the dry weight of venom and represent the most biologically active fraction. These include α - and β -toxins (targeting sodium channels), κ - and λ -toxins (affecting potassium channels), and calcins (modulating calcium release channels) [12]. Some peptides exhibit dual actions, serving as both neurotoxins and antimicrobial agents. Notably, chlorotoxin, a 36-amino-acid peptide isolated from *Leiurus quinquestriatus*, has attracted attention for its tumor-targeting ability, particularly against glioma cells [13].

3.2 Enzymatic Components

Venom enzymes such as hyaluronidases, phospholipases, proteases, and metalloproteinases facilitate venom diffusion and tissue penetration [14]. Hyaluronidase, often termed the "spreading factor," degrades connective tissue hyaluronic acid, promoting rapid venom dispersion. Proteases and phospholipases contribute to inflammation and cytolysis, while metalloproteinases participate

in extracellular matrix degradation, indirectly influencing venom toxicity and pharmacokinetics.

3.3 Non-protein Components

In addition to peptides and enzymes, venom contains biogenic amines (e.g., serotonin, histamine), nucleosides, free amino acids, and inorganic ions like Na⁺, K⁺, and Ca²⁺ [15]. These components play supporting roles in maintaining venom pH, ionic balance, and pain-inducing activity.

3.4 Proteomic and Transcriptomic Insights

Recent advances in proteomics and transcriptomics revolutionized have the understanding of venom composition. Highthroughput techniques such liquid chromatography-mass (LCspectrometry MS/MS) and RNA sequencing enable precise identification of peptide sequences and gene expression profiles in venom glands [16]. Comparative studies have revealed that scorpion venoms contain hundreds of unique peptides, many of which are species-specific and exhibit previously unknown pharmacological activities [17]. Such molecular insights form the foundation for rational drug design and synthetic peptide engineering.

Table 1: Major Biochemical Components of Scorpion Venom and Their Functions

Component	Examples	Primary Target/	Pharmacological Relevance
Type		Action	
Peptides	α-, β-, κ-, λ-toxins,	Na ⁺ , K ⁺ , Ca ²⁺ channels	Anticancer, analgesic,
(Neurotoxins)	Chlorotoxin		neuropharmacological tools
Enzymes	Hyaluronidase, Phospholipase,	Connective tissue, cell	Tissue diffusion,
	Protease, Metalloproteinase	membranes	inflammation, venom spread
Non-protein	Serotonin, Histamine, Amino	Pain and inflammation	Sensory modulation
molecules	acids	pathways	
Ions	Na ⁺ , K ⁺ , Ca ²⁺	Ionic homeostasis	Facilitates neurotoxic effects

4. MECHANISMS OF ACTION OF SCORPION VENOM COMPONENTS

The biological activity of scorpion venom primarily stems from its peptide components that act on ion channels and cellular signaling pathways. These mechanisms, although initially evolved for prey immobilization and predator defense, have inspired novel pharmacological explorations. Each class of venom component exerts its effect through precise molecular interactions that alter cell excitability, neurotransmission, or intracellular signaling [18].

4.1 Action on Sodium Channels (Na⁺)

 α - and β -toxins are the most studied scorpion peptides targeting voltage-gated sodium channels (Nav). α -toxins bind to receptor site 3 on the α -subunit of the channel, inhibiting inactivation and prolonging depolarization [19]. In contrast, β -toxins interact with receptor site 4, shifting activation to more negative potentials and promoting spontaneous firing. Together, these actions lead to sustained neuronal excitation and autonomic symptoms such as hypertension, sweating, and salivation in envenomed victims [20].

4.2 Action on Potassium Channels (K⁺)

K⁺ channel toxins (κ -, λ -, and scorpion depressant toxins) block the pore region or alter gating mechanisms of voltage-gated and calcium-activated potassium channels [21]. This blockade prolongs action potentials and increases neurotransmitter release. Pharmacologically, such effects have attracted attention for developing immunosuppressive and neuroprotective agents, since potassium channels regulate T-cell activation and neuronal excitability [22].

4.3 Action on Calcium Channels and Ryanodine Receptors

Certain scorpion peptides, such as calcins, interact with intracellular calcium-release channels (ryanodine receptors, RyRs) in muscle and nerve cells [23]. These peptides act as cell-penetrating molecules, modulating calcium homeostasis without causing membrane disruption. Their selective permeability and ability to alter Ca²⁺ signaling make them potential vectors for targeted drug delivery and molecular imaging [24].

4.4 Enzymatic and Inflammatory Effects

Enzymatic components such as phospholipases and metalloproteinases contribute to tissue injury and inflammatory cascades. Phospholipase A₂ hydrolyzes phospholipids, releasing arachidonic acid—a precursor of prostaglandins and leukotrienes—thus promoting pain and edema [25]. Metalloproteinases degrade extracellular matrix proteins, facilitating toxin diffusion. Simultaneously, biogenic amines like histamine and serotonin amplify pain perception and vascular permeability.

4.5 Systemic Physiological Responses

At the systemic level, scorpion venom triggers complex neurotoxic and autonomic effects. These include excessive catecholamine release from sympathetic nerve endings and adrenal medulla, resulting in hypertension, arrhythmia, and myocardial stress [26]. The same pathways, when modulated in controlled environments, can offer valuable insights for designing therapeutic modulators of ion channel–mediated diseases, such as epilepsy, autoimmune disorders, and cancer [27].

Neuron Membrane

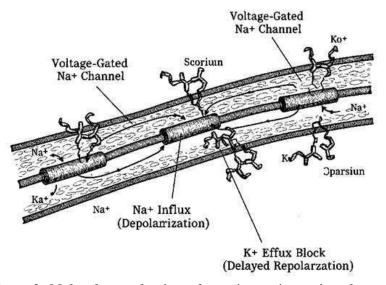


Figure 2: Molecular mechanism of scorpion toxins on ion channels.

Table 2: Mechanisms of Action of Major Scorpion Venom Components

Venom	Primary Target	Mechanism of Action	Physiological/
Component			Pharmacological Effect
α-toxins	Voltage-gated Na+	Inhibit inactivation	Prolonged depolarization,
	channels		muscle spasm
β-toxins	Voltage-gated Na+	Shift activation voltage	Neuronal hyperexcitability
-	channels		
K ⁺ channel toxins	Kv and KCa channels	Block pore/gating	Neuroprotection,
			immunomodulation
Calcins	Ryanodine receptor (RyR)	Modulate Ca ²⁺ release	Potential drug delivery vectors
Phospholipase A ₂	Cell membranes	Hydrolyze phospholipids	Inflammation, pain induction
Metalloproteinases	ECM proteins	Proteolysis, diffusion	Tissue injury, venom spread
	_	enhancement	•

5. THERAPEUTIC APPLICATIONS OF SCORPION VENOM AND ITS COMPONENTS

Scorpion venom, once feared solely as a neurotoxic secretion, has evolved into a valuable source of pharmacologically active compounds. Modern biochemical and molecular studies have identified numerous venom-derived peptides with selective activity on ion channels, enzymes, and receptors — properties that can be therapeutically exploited [28].

5.1 Anticancer Activity

Several scorpion venom peptides exhibit potent anticancer properties by selectively targeting tumor cell ion channels and disrupting cancer cell signaling. *Chlorotoxin (ClTx)*, isolated from *Leiurus quinquestriatus*, binds specifically to chloride channels and matrix metalloproteinase-2 (MMP-2) on glioma cells, inhibiting invasion and migration [29]. Modified analogs of ClTx, such as *TM601*, have entered clinical evaluation for imaging and treatment of gliomas due to their tumor-specific binding [30]. Other peptides like *BmK AGAP* and *OdK2* induce apoptosis in breast and lung carcinoma cells through mitochondrial and caspase-mediated pathways [31].

5.2 Antimicrobial and Antiparasitic Effects

Scorpion venom also exhibits broad-spectrum antimicrobial activity against bacteria, fungi, and protozoa. Cationic antimicrobial peptides (AMPs) such as Scorpine, Hadrurin, and VmCT1 disrupt microbial membranes by forming pores and altering permeability [32]. Some peptides show remarkable selectivity for pathogens mammalian cells, making them promising templates for antibiotic-resistant infections [33]. Additionally, scorpion-derived **AMPs** demonstrate inhibitory effects against Plasmodium falciparum and Leishmania species, indicating potential use in antiparasitic therapies [34].

5.3 Analgesic and Anti-Inflammatory Properties

Specific peptides such as *BmK AGAP* and *Tt28* act on sodium and potassium channels involved in pain transmission, producing analgesic effects comparable to morphine but without opioid-related dependence [35]. These peptides modulate voltage-gated Na_v1.8 and Na_v1.9 channels in sensory neurons, reducing hyperalgesia and inflammatory pain [36]. Their ability to selectively target pain pathways offers a safer alternative for chronic pain management [37].

5.4 Immunomodulatory and Autoimmune Regulation

Venom-derived K⁺ channel blockers such as *Margatoxin* and *Charybdotoxin* inhibit Kv1.3 channels in effector memory T cells, thus suppressing autoimmune responses in disorders like multiple sclerosis and rheumatoid arthritis [38]. The targeted modulation of immune cell signaling presents a novel therapeutic pathway distinct from conventional immunosuppressants [39].

5.5 Cardiovascular and Neurological Applications

Some scorpion toxins influence cardiac ion channels and neurotransmitter release, enabling their use in neuroprotective and anti-arrhythmic research. Peptides like *Ts3* and *BmK IT2* modulate voltage-gated sodium and potassium currents in cardiac tissues, showing promise in controlling arrhythmogenic excitability [40]. Moreover, controlled toxin derivatives are being investigated for treating stroke-induced neuronal damage and epilepsy [41].

Table 3: Therapeutic Potentials of Scorpion Venom Components

Therapeutic Area	Key Peptides /	Mechanism of Action	Potential Application
	Components		
Anticancer	Chlorotoxin (ClTx),	Inhibit MMP-2, induce	Glioma imaging,
	BmK AGAP	apoptosis	tumor therapy
Antimicrobial	Scorpine, Hadrurin,	Disrupt microbial	Antibiotic resistance
	VmCT1	membranes	control
Analgesic	BmK AGAP, Tt28	Block Nav1.8/1.9	Chronic and
		channels	inflammatory pain
Immunomodulatory	Margatoxin,	Block Kv1.3 in T cells	Autoimmune disease
	Charybdotoxin		therapy
Neurological/	Ts3, BmK IT2	Modulate ion channel	Neuroprotection,
Cardiac		currents	antiarrhythmics

6. CHALLENGES, SAFETY, AND FUTURE PROSPECTS OF SCORPION VENOM RESEARCH

Despite remarkable progress in isolating and characterizing scorpion venom components, translating them into approved therapeutic products remains complex. The journey from toxin to drug is constrained by safety, scalability, cost, and regulatory challenges [42].

6.1 Safety and Toxicological Concerns

Scorpion venoms are inherently neurotoxic, and several peptides retain partial toxicity even after modification. Their narrow therapeutic index poses a significant hurdle for clinical use [43].

Preclinical studies often reveal dose-dependent cardiovascular and neuromuscular effects, limiting systemic applications. Recombinant production can minimize these risks, but structural stability and immunogenicity must be rigorously evaluated before human use [44].

6.2 Challenges in Production and Standardization

Venom yield from scorpions is extremely low—typically less than 1 mg per extraction—making mass production difficult [45]. Synthetic and recombinant expression systems are being developed, yet they face challenges such as post-translational modification accuracy and high production cost [46]. Furthermore, variations in

venom composition due to species, geography, and diet hinder standardization and reproducibility, complicating pharmaceutical validation [47].

6.3 Regulatory and Ethical Issues

Scorpion venom-derived therapeutics fall under biological and toxin-based product regulations, which require comprehensive preclinical toxicology, Good Manufacturing Practice (GMP) compliance, and strict ethical control of animal handling [48]. Regulatory agencies such as the U.S. FDA and India's CDSCO emphasize full characterization of peptide structure, purity, and safety data before clinical authorization [49].

6.4 Future Prospects and Emerging Technologies

Recent advances in peptide engineering, molecular docking, and nanocarrier delivery are redefining the way venom components are used in therapy. Peptidomimetics and nanoparticle conjugates have improved bioavailability, stability, and tumortargeting efficiency [50]. Genomic and proteomic studies are uncovering novel peptide families with unique ion channel selectivity, fueling new therapeutic opportunities in oncology, neurology, and immunology [51].

Synthetic biology platforms now enable venom peptide libraries that can be screened for pharmacological leads, bypassing the need for live scorpions. Combined with artificial intelligence—assisted drug discovery, these approaches could soon turn venom peptides into mainstream biotherapeutics [52].

Table 4: Key Challenges and Opportunities in Scorpion Venom-Based Drug Development

Category	Major Challenge	Proposed Solution / Future Direction
Safety	Neurotoxicity, narrow therapeutic index	Peptide engineering, targeted delivery
Production	Low venom yield, high cost	Recombinant synthesis, microbial expression
		systems
Standardization	Species variability	Proteomic fingerprinting and venom databases
Regulation	Complex approval pathway	Early collaboration with regulatory bodies
Innovation	Limited translational success	AI-assisted drug design, nanocarriers

7. COMMERCIAL AND MARKETED VENOM-BASED THERAPEUTICS

Scorpion venom-derived peptides have transitioned from experimental research to clinically and commercially relevant therapeutics, though the number of approved drugs remains limited due to safety, production, and regulatory challenges [53].

7.1 Approved and Investigational Drugs

One of the most notable venom-derived agents is TM601, a synthetic analog of chlorotoxin from *Leiurus quinquestriatus*. TM601 selectively binds to chloride channels and MMP-2 expressed on

glioma cells and has been tested in Phase I/II clinical trials for tumor imaging and targeted therapy [54].

Other peptides are under investigation for anticancer, analgesic, and antimicrobial applications:

- **BmK AGAP** (from *Buthus martensii Karsch*): under preclinical studies for analgesic and anticancer properties [55].
- Scorpine and Hadrurin: investigated for antibacterial, antifungal, and antiparasitic activity [56].

• Charybdotoxin and Margatoxin: explored for immunomodulatory therapy in autoimmune diseases [57].

7.2 Biotechnology Companies and Research Programs

Several biotech companies and research institutions worldwide are developing venombased therapeutics:

- Blaze Bioscience (USA): TM601 development for glioma targeting.
- China's Academy of Medical Sciences: Studies on BmK AGAP derivatives for analgesia and cancer therapy.
- Indian Council of Medical Research (ICMR) initiatives: Exploring indigenous

scorpion species for antimicrobial and anticancer leads.

7.3 Indian and Global Market Overview

Globally, market venom-derived the for therapeutics is niche but growing, primarily in oncology and neurology. Regulatory approval hurdles and high development costs limit largescale commercialization. In India, research is mainly in the preclinical and early clinical phase, with government and academic institutions leading exploration of scorpion venom peptides [58]. The global venom-derived drug market is projected to expand as peptide synthesis, recombinant production, and targeted delivery systems improve.

Table 5: Commercial and Investigational Scorpion Venom-Derived Therapeutics

Drug/Peptide	Source Species	Application	Status
TM601 (Chlorotoxin analog)	Leiurus quinquestriatus	Glioma imaging/ therapy	Phase I/ II
			clinical trials
BmK AGAP	Buthus martensii Karsch	Analgesic, anticancer	Preclinical
Scorpine	Pandinus imperator	Antimicrobial, antiparasitic	Preclinical
Hadrurin	Hadrurus spadix	Antibacterial, antifungal	Preclinical
Charybdotoxin	Leiurus quinquestriatus	Immunomodulatory	Research
Margatoxin	Centruroides margaritatus	Autoimmune therapy	Research

8. VENOM-DERIVED PEPTIDES IN DRUG DEVELOPMENT

Scorpion venom peptides, with their high specificity for ion channels and cellular targets, are promising leads for therapeutic development. To transform these toxins into clinically viable drugs, several strategies are employed:

8.1 Structure–Activity Relationship (SAR) Studies

Understanding the molecular determinants of bioactivity is critical. Peptide engineering allows modification of amino acid residues to enhance selectivity, reduce toxicity, and improve stability. For example, analogs of chlorotoxin (ClTx) have been developed to increase tumor-targeting efficiency while minimizing off-target neurotoxicity [59].

8.2 Recombinant Production and Peptide Modification

Natural venom yield is extremely low, necessitating recombinant expression in microbial or eukaryotic systems. This approach enables large-scale production, ensures batch consistency, and allows post-translational modifications critical for bioactivity [60]. Chemical modifications, including cyclization or PEGylation, further

enhance peptide stability and pharmacokinetic properties [61].

8.3 Preclinical and Clinical Evaluation

Several venom-derived peptides have advanced into preclinical and clinical studies. TM601, a synthetic ClTx analog, is currently in Phase I/II trials for glioma imaging and therapy [54]. Peptides such as BmK AGAP and Scorpine are undergoing preclinical evaluation for analgesic, anticancer, and antimicrobial applications [55,56]. These studies focus on safety, efficacy, and delivery optimization.

8.4 Integration with Formulation Approaches

Drug development efforts are increasingly coupled with advanced formulation strategies, including nanoparticles, liposomes, and hydrogels, to improve peptide bioavailability, targeted delivery, and controlled release. Such integration facilitates translation from bench to bedside while minimizing systemic toxicity [50,52].

CONCLUSION

Scorpion venom, once feared for its lethality, has now emerged as a rich and promising source of bioactive peptides with significant therapeutic potential. Over the past two decades, advances in molecular biology, proteomics, and pharmacological screening have revealed its multifaceted roles — from ion channel modulation to anticancer, antimicrobial, and immunomodulatory applications.

While challenges persist in toxicity reduction, large-scale production, and regulatory approval, continued research into structure—activity relationships and novel delivery systems is steadily transforming venom peptides into viable drug candidates. The integration of synthetic biology and artificial intelligence in peptide design

further promises to accelerate the discovery of safe, selective, and potent therapeutic analogs.

Ultimately, the transformation of scorpion venom from a deadly natural toxin to a valuable biomedical resource exemplifies the power of nature-inspired drug discovery. With rigorous research, ethical oversight, and cross-disciplinary innovation, these molecules may soon contribute meaningfully to modern pharmacotherapy and precision medicine.

REFERENCES

- 1. Possani LD, et al. Scorpion toxins and their potential therapeutic applications. Pharmacol Rev. 1999;51(1):87–95.
- 2. Soroceanu L, et al. Chlorotoxin binds to glioma cells and inhibits their invasion. Clin Cancer Res. 1998;4(6):1343–1350.
- 3. Quintero-Hernández V, et al. Scorpion venom: From deadly to healing peptides. Biochim Biophys Acta. 2013;1834(9):1666–1678.
- 4. Ortiz E, et al. Scorpion venom peptides with potential in cancer therapy. Toxins. 2020;12(5):323.
- 5. Khalil M, et al. The therapeutic promise of venom-derived peptides in pain and inflammation. Front Pharmacol. 2022;13:882417.
- 6. Fet V, Soleglad ME. Contributions to scorpion systematics. I. On recent changes in higher classification of scorpions. Euscorpius. 2005;31:1–13.
- 7. Possani LD, et al. Scorpion venom peptides: structure, function and evolution. Toxicon. 2018;158:122–142.
- 8. Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+channels and related peptides. Toxicon. 2005;46(8):831–844.

- 9. Sharma PP, et al. Phylogenomic resolution of scorpion relationships and divergence times. BMC Evol Biol. 2015;15:9.
- 10. de la Vega RCR, Possani LD. Scorpion venom peptides and their potential in pharmacology. Cell Mol Life Sci. 2005;62(9):1050–1069.
- 11. Mouhat S, et al. Diversity of scorpion toxins targeting potassium channels. Toxicon. 2004;43(8):877–886.
- 12. Rodríguez de la Vega RC, Possani LD. Novel paradigms on scorpion toxins and their interactions with ion channels. Toxicon. 2013;76:90–109.
- 13. Deshane J, et al. Chlorotoxin inhibits glioma cell invasion and angiogenesis. Oncogene. 2003;22(52):8074–8082.
- 14. Batista CVF, et al. Proteomic analysis of scorpion venoms: a comparative approach. Comp Biochem Physiol C. 2007;146(1–2):147–157.
- 15. Bawaskar HS, et al. Scorpion venom and its biochemical components: clinical relevance. Indian J Crit Care Med. 2018;22(5):344–350.
- 16. Quintero-Hernández V, et al. Proteomic and transcriptomic approaches in scorpion venom research. Toxicon. 2011;58(1):96–105.
- 17. Casewell NR, et al. The evolutionary and functional diversity of animal venoms. Nat Rev Drug Discov. 2013;12(8):628–644.
- 18. Gwee MCE, et al. Mechanisms of scorpion venom action on ion channels: from neurotoxicity to therapy. Pharmacol Ther. 2002;93(2–3):299–324.
- 19. Cestèle S, Catterall WA. Molecular mechanisms of scorpion toxin action on sodium channels. Toxicon. 2000;39(9):1241–1252.
- 20. Ismail M, et al. Physiopathological effects of scorpion venom and their clinical significance. Toxicon. 1995;33(9):1181–1191.

- 21. Rodríguez de la Vega RC, et al. Potassium channel toxins from scorpion venoms: pharmacological and structural diversity. Toxicon. 2008;51(7):1238–1250.
- 22. Beeton C, et al. Targeting potassium channels for immunosuppression: scorpion toxins as templates for drug design. Curr Pharm Des. 2007;13(25):2459–2469.
- 23. Gurrola GB, et al. The calcin family of peptides: a new class of cell-penetrating peptides from scorpion venom. Toxicon. 2010;56(7):1159–1168.
- 24. Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200.
- 25. Albuquerque PLMM, et al. Inflammatory and enzymatic aspects of scorpion venom action. J Venom Anim Toxins Incl Trop Dis. 2013;19:16.
- 26. Bawaskar HS, Bawaskar PH. Scorpion sting: update on management. Indian J Crit Care Med. 2017;21(12):850–855.
- 27. Possani LD, et al. Scorpion toxins as molecular probes of ion channels and potential therapeutic agents. FEBS J. 2020;287(14):3032–3052.
- 28. Ortiz E, et al. Scorpion venom research: from toxins to therapeutics. Biochem Pharmacol. 2015;93(1):1–10.
- 29. Deshane J, et al. Chlorotoxin: a scorpion venom peptide with tumor-targeting potential. Nat Rev Cancer. 2003;3(9):714–722.
- 30. Mamelak AN, et al. Phase I single-dose study of TM601, a synthetic chlorotoxin peptide, in patients with malignant glioma. Cancer Res. 2006;66(6):3054–3061.
- 31. Ding J, et al. BmK AGAP selectively induces apoptosis in human breast cancer cells via mitochondrial pathways. Peptides. 2014;53:45–51.
- 32. Rodríguez A, et al. Antimicrobial peptides from scorpion venoms: structural diversity

- and therapeutic potential. Toxins. 2018;10(12):502.
- 33. Harrison PL, et al. Scorpion antimicrobial peptides and their applications in antibiotic-resistant infections. Front Pharmacol. 2020;11:1206.
- 34. Corzo G, et al. Scorpine: a multifunctional peptide active against Plasmodium and bacteria. FEBS Lett. 2001;505(3):369–373.
- 35. Guo X, et al. Analgesic peptide BmK AGAP inhibits voltage-gated sodium channels in nociceptive neurons. Toxicon. 2016;123:123–131.
- 36. Heinen TE, et al. Tt28 peptide: novel analgesic from scorpion venom targeting Nav1.8 channels. Pain. 2019;160(5):1102–1113.
- 37. Luo S, et al. Scorpion toxins as non-opioid analgesics: therapeutic perspectives. Br J Pharmacol. 2022;179(5):982–996.
- 38. Beeton C, et al. Kv1.3 channel blockers from scorpion venom as immunomodulators for autoimmune disease therapy. J Biol Chem. 2005;280(36):33445–33452.
- 39. Chandy KG, et al. Targeting ion channels in T lymphocytes for autoimmune regulation. Trends Pharmacol Sci. 2019;40(1):35–48.
- 40. Bosmans F, et al. Scorpion toxins affecting cardiac ion channels: potential for antiarrhythmic agents. Cardiovasc Toxicol. 2012;12(2):89–99.
- 41. Gong N, et al. Scorpion toxins as neuroprotective tools: applications in stroke and epilepsy research. Neurosci Bull. 2021;37(1):1–15.
- 42. Quintero-Hernández V, et al. Scorpion venom research: evolution of techniques and therapeutic insights. Toxicon. 2013;76:225–236.
- 43. Bordon KCF, et al. Toxicological challenges in developing scorpion venom–derived drugs. Front Pharmacol. 2015;6:205.

- 44. Possani LD, et al. Recombinant expression and immunogenicity of scorpion toxin peptides: progress and problems. Peptides. 2018;103:41–50.
- 45. de la Vega RC, et al. Venom extraction and yield standardization in scorpion research. Toxins. 2017;9(3):97.
- 46. Cardoso FC, et al. Synthetic and recombinant production of scorpion venom peptides for therapeutic use. Biotechnol Adv. 2019;37(2):276–292.
- 47. Abdel-Rahman MA, et al. Intraspecies variability and standardization issues in scorpion venom composition. J Venom Anim Toxins Incl Trop Dis. 2017;23:15.
- 48. Tavares-Furtado E, et al. Regulatory pathways for venom-derived biologics. Drug Discov Today. 2021;26(5):1220–1229.
- 49. CDSCO (Central Drugs Standard Control Organization). Guidelines for biological product development in India. 2020.
- 50. Almaaytah A, et al. Nanoformulation strategies to improve peptide-based toxin therapeutics. Pharmaceutics. 2022;14(4):789.
- 51. Santibáñez-López CE, et al. Scorpion venom genomics: uncovering new therapeutic peptides. BMC Genomics. 2020;21:373.
- 52. Wong JH, et al. Artificial intelligence and synthetic biology approaches in venom peptide discovery. Trends Biotechnol. 2023;41(3):345–358.
- 53. Ortiz E, et al. Translational aspects of scorpion venom peptides: from lab to clinic. Toxins. 2019;11(10):573.
- 54. Mamelak AN, et al. Phase I single-dose study of TM601, a synthetic chlorotoxin peptide, in patients with malignant glioma. Cancer Res. 2006;66(6):3054–3061.
- 55. Ding J, et al. BmK AGAP selectively induces apoptosis in human breast cancer cells via mitochondrial pathways. Peptides. 2014;53:45–51.

- 56. Rodríguez A, et al. Antimicrobial peptides from scorpion venoms: structural diversity and therapeutic potential. Toxins. 2018;10(12):502.
- 57. Beeton C, et al. Kv1.3 channel blockers from scorpion venom as immunomodulators for autoimmune disease therapy. J Biol Chem. 2005;280(36):33445–33452.
- 58. Bawaskar HS, Bawaskar PH. Scorpion sting research and venom-based drug initiatives in India. Indian J Pharm Sci. 2020;82(1):10–18.
- 59. Almaaytah A, et al. Nanoformulation strategies to improve peptide-based toxin therapeutics. Pharmaceutics. 2022;14(4):789.

- 60. Wong JH, et al. Artificial intelligence and synthetic biology approaches in venom peptide discovery. Trends Biotechnol. 2023;41(3):345–358.
- 61. Mamelak AN, et al. Phase I single-dose study of TM601, a synthetic chlorotoxin peptide, in patients with malignant glioma. Cancer Res. 2006;66(6):3054–3061.

HOW TO CITE: Revanth Durga Chodipilli, Maheswari Geddada, Pooja Meka, Lokesh Babu Peddireddy, Sheba Khandavalli, Sunil Boddani, Scorpion Venom: From Deadly Toxin to Therapeutic Treasure, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 10, 2635-2647. https://doi.org/10.5281/zenodo.17441678