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Drug design and discovery represent a multidisciplinary field combining chemistry, 

biology, pharmacology, and computational sciences to develop safe and effective 

therapeutic agents. This review provides an overview of the principles, methodologies, 

and current trends shaping modern drug development. The process begins with target 

identification and validation, followed by hit discovery, lead optimization, preclinical 

studies, and clinical trials. Approaches such as Quantitative Structure–Activity 

Relationship (QSAR), Computer-Aided Drug Design (CADD), pharmacophore 

modeling, and combinatorial chemistry play vital roles in predicting molecular 

interactions, optimizing lead compounds, and accelerating discovery timelines. 

Integration of artificial intelligence, machine learning, and high-throughput screening 

has revolutionized drug design, improved prediction accuracy and reducing costs. 

Natural products, synthetic chemistry, and biotechnology continue to be significant 

sources of novel therapeutics. Despite advancements, challenges such as high costs, long 

development periods, and high attrition rates persist. Future directions emphasize AI-

driven modeling, precision medicine, sustainable chemistry, and nanotechnology-based 

delivery systems to enhance innovation and efficiency in pharmaceutical research. 
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INTRODUCTION 

Drug design and discovery form the cornerstone of 

pharmaceutical sciences, integrating chemistry, 

biology, pharmacology, and computational 

approaches to transform basic concepts into 

therapeutic agents. Over the past decades, several 

landmark drugs have demonstrated the power of 

rational discovery strategies. Statins, for instance, 

were first identified as fungal metabolites and 

subsequently optimized through synthetic 

modifications, revolutionizing the management of 

hypercholesterolemia and cardiovascular disease 

[12–16]. More recently, nutraceutical-based 

interventions have been evaluated as alternatives 

or adjuncts to conventional statin therapy, 

https://www.ijpsjournal.com/
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underscoring the continuous interplay between 

natural products, synthetic chemistry, and clinical 

practice in modern drug design [17].  

The drug discovery process follows a series of 

well-established stages, including target 

identification, hit discovery, lead optimization, 

and preclinical development [1]. A key component 

of these stages is the use of Quantitative Structure–

Activity Relationship (QSAR) models, which 

predict biological activity based on molecular 

descriptors and structural features [2]. Alongside 

QSAR, a wide range of computational and 

experimental tools—such as computer-aided drug 

design (CADD), chemical structure illustration, 

database searching, pharmacophore modeling, 

docking, and ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) analysis— 

have become integral to the discovery pipeline 

[3,4]. These methodologies not only allow the 

visualization and prediction of molecular 

interactions but also accelerate the identification of 

viable candidates for further evaluation.  

Complementary strategies, including 

combinatorial chemistry and high-throughput 

screening (HTS), enable the rapid generation and 

assessment of large chemical libraries, further 

shortening timelines for identifying promising 

leads [5]. Natural products continue to provide a 

rich reservoir of structurally unique compounds, 

with microorganisms, plants, and marine 

organisms contributing to the discovery of novel 

bioactive agents [6,7]. Collectively, these 

approaches illustrate how modern drug design 

blends traditional sources with computational 

advances to expand therapeutic options. 

Moreover, ADMET profiling ensures that 

candidate molecules are not only effective but also 

safe, thereby increasing the likelihood of clinical 

success [8].  

By integrating historical examples such as statins 

with contemporary approaches like CADD and 

AI-driven methods, this review aims to provide a 

comprehensive overview of the strategies, 

applications, and challenges that define drug 

design in the current era.   

AIM AND OBJECTIVE  

The primary aim of this review is to provide an 

integrated understanding of drug design and 

discovery, highlighting both theoretical concepts 

and practical applications. An important objective 

is to emphasize chemical management and safety 

guidelines, including appropriate storage, labeling, 

disposal, and emergency response strategies, 

which are essential for minimizing risks in 

laboratory environments. In addition, the review 

seeks to enhance knowledge of reaction 

preparation and purification methods, focusing on 

techniques such as distillation, crystallization, 

chromatography, and filtration, which ensure the 

acquisition of pure and well-characterized 

compounds.  

Another key objective is to outline the major 

phases of drug discovery, including target 

identification and validation, hit identification, 

lead optimization, and preclinical and clinical 

development, while underscoring the collaborative 

and multidisciplinary nature of the process [1]. 

Particular attention is given to physicochemical 

properties and their role in Quantitative Structure– 

Activity Relationship (QSAR) studies, covering 

the use of molecular descriptors, statistical 

modeling techniques, and model validation [2,19]. 

Furthermore, the review examines different 

methods of structure-based drug design, such as 

molecular docking and de novo design, 

highlighting their principles, applications, and 

limitations in identifying and refining potential 

drug candidates [3,4].  
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The objectives also extend to the study of natural 

products as a continuing source of therapeutic 

agents, including their extraction, isolation, 

structural determination, and evaluation of 

pharmacological activity [6,7]. By combining 

insights from chemical management, reaction 

methodology, drug discovery phases, QSAR, 

structure-based design, and natural product 

exploration, this review aims to present a unified 

perspective of pharmaceutical development. Such 

integration not only reinforces theoretical 

knowledge but also develops practical 

competencies that are essential for advancing drug 

discovery research.   

DRUG DESIGN AND DEVELOPMENT - 

Drug discovery and development is a complex, 

multi-stage process that integrates chemistry, 

biology, pharmacology, and computational 

sciences to transform an initial idea into a 

therapeutic agent. The stages include target 

identification, hit discovery, lead optimization, 

preclinical evaluation, regulatory submission, and 

clinical trials. Each step is crucial, as attrition rates 

in drug discovery are high, and only a fraction of 

compounds ever reach the market [1].  

1. Target Identification and Validation  

The first stage in drug discovery involves 

identifying a biological target, such as an enzyme, 

receptor, or protein implicated in disease 

pathology. Advances in genomics, proteomics, 

and bioinformatics have accelerated this process, 

enabling researchers to identify and validate 

disease associated targets more effectively [1,5]. 

Target validation ensures that modulation of the 

selected biomolecule will have a therapeutic effect 

without causing unacceptable side effects. Natural 

products and secondary metabolites have 

historically contributed significantly to drug 

discovery, and even in the genomic era, they 

remain valuable as novel sources of target 

modulators [6,7].  

2. Hit Identification  

Once a validated target is identified, the next step 

is to discover molecules, known as hits, that can 

interact with it. High-throughput screening (HTS) 

enables the rapid evaluation of thousands to 

millions of compounds against a target to identify 

initial hits [5]. In parallel, virtual screening 

techniques employ computational methods to filter 

large chemical libraries for compounds predicted 

to bind effectively [4]. Increasingly, AI-based 

algorithms are also being employed to enhance hit 

identification by predicting molecular interactions 

and prioritizing promising compounds [10].  

3. Lead Optimization  

Hit compounds are subsequently refined into lead 

molecules with improved potency, selectivity, and 

drug-like properties. Medicinal chemists employ 

Quantitative Structure–Activity Relationship 

(QSAR) models, which establish correlations 

between chemical structures and biological 

activity, allowing systematic modification of 

functional groups to enhance activity [2]. 

Structure-based drug design uses crystallographic 

or computational models of the target protein to 

optimize binding interactions [4]. De novo drug 

design approaches also contribute by generating 

novel compounds from scratch, tailored to the 

target binding site [3,9]. AI and machine learning 

approaches are now automating parts of this 

process, accelerating the design of new scaffolds 

and optimizing pharmacokinetic properties 

[10,11].  

4. Computational Methods in Drug Discovery  

Modern drug design increasingly depends on 

computational techniques to simulate and predict 
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drug–target interactions. Molecular docking 

provides insights into the preferred orientation and 

binding affinity of small molecules within a target 

protein’s active site [4]. QSAR models 

mathematically correlate chemical structures with 

biological activities, enabling activity prediction 

for novel compounds [2]. De novo drug design 

tools construct novel molecular entities from 

scratch, guided by target site characteristics [3,9]. 

These approaches, combined with AI-driven 

methods such as explainable artificial intelligence 

and large language models, are transforming drug 

discovery by improving hit-to-lead predictions and 

suggesting innovative chemical scaffolds [10,11].  

5. Preclinical Research  

After promising lead compounds are identified, 

preclinical studies are conducted to evaluate 

pharmacological potential and eliminate 

molecules with poor efficacy or safety. These 

studies involve a combination of in vitro assays 

using cell and tissue cultures, biochemical 

experiments such as isothermal titration 

calorimetry to study protein–ligand interactions, 

and in vivo animal studies using models with close 

physiological resemblance to humans [1,5]. In 

addition to experimental methods, ADMET 

(Absorption, Distribution, Metabolism, Excretion, 

and Toxicity) modeling is increasingly applied to 

predict pharmacokinetic and safety profiles at 

early stages, thereby reducing the risk of clinical 

failure [18]. The goal of preclinical testing is to 

generate a robust safety and efficacy profile that 

supports progression to human trials.  

6. Investigational New Drug (IND) 

Application  

If preclinical studies demonstrate favorable safety 

and pharmacological results, an Investigational 

New Drug (IND) application is submitted to the 

U.S. Food and Drug Administration (FDA) or 

other regulatory bodies. This application contains 

comprehensive preclinical data, including 

pharmacology, toxicology, manufacturing, and 

quality control information, to justify the initiation 

of human clinical trials [1]. The sponsor 

organization, which may be a pharmaceutical 

company, academic institution, or collaborative 

group, is responsible for preparing and submitting 

the IND. Only after regulatory approval of the IND 

can the investigational compound move forward 

into clinical trials.  

7. Clinical Trials  

Clinical trials are prospective studies involving 

human volunteers or human-derived specimens 

that are conducted to answer specific research 

questions about a drug candidate. These studies 

assess the safety, efficacy, and therapeutic 

effectiveness of new drugs or biological 

interventions [1]. Clinical trials proceed through 

multiple phases:  

Phase I focuses on safety, tolerability, and 

pharmacokinetics in a small group of healthy 

volunteers. Phase II evaluates efficacy and side 

effects in a larger patient population.  

Phase III confirms therapeutic benefit and 

compares the investigational drug against existing 

standard treatments in diverse patient groups.  

Upon successful completion of clinical trials, 

regulatory authorities review the data and, if 

satisfactory, approve the drug for clinical use.  
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Approaches to drug design   

[A] QSAR: Quantitative Structure-Activity 

Relationship 

Definition 

Quantitative Structure-Activity Relationship 

(QSAR) is a computational modeling technique 

that employs mathematical and statistical 

approaches to predict the biological activity, 

physicochemical properties, or environmental 

behavior of chemical compounds based on their 

molecular structure [2,19]. The central principle of 

QSAR is that quantifiable molecular descriptors 

can be correlated with experimentally observed 

biological or chemical activities. By analyzing 

these correlations, QSAR models assist 

researchers in designing and optimizing new 

compounds with desired characteristics, thereby 

accelerating the drug discovery and development 

process [1,9,19].  

Key Parameters in QSAR  

Hydrophobicity (Log P): Hydrophobicity is 

expressed as the logarithm of the partition 

coefficient (Log P) between water and a nonpolar 

solvent such as octanol. It reflects the compound’s 

preference for lipid versus aqueous environments. 

Molecules with balanced hydrophobicity typically 

show improved absorption and distribution, 

making Log P a critical parameter in evaluating 

drug-likeness [2,18,20].  

Electronic Effects (Hammett Constant): The 

Hammett constant (σ) measures the electron-

donating or electron-withdrawing influence of 

substituents on a benzene ring. These effects 

influence molecular reactivity and interactions 

with biological targets, impacting biological 

activity [2,20].  

Steric Effects (Taft’s Steric Factor): Taft’s steric 

factor (Es) quantifies spatial hindrance caused by 

substituents near reactive sites. Steric effects 

determine how well a molecule fits into the active 

site of a target enzyme or receptor, affecting 

binding affinity and biological activity [2,20].  

Molecular Weight: Molecular weight impacts 

pharmacokinetic properties including absorption, 

distribution, metabolism, and excretion (ADME). 

Compounds with moderate molecular weight 
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(300–500 Daltons) generally exhibit favorable 

ADME profiles [18].  

Dipole Moment: The dipole moment measures 

charge separation in a molecule, reflecting 

polarity. Compounds with optimal polarity interact 

effectively with biological targets and aqueous 

environments, influencing solubility and binding 

efficiency [18].  

Number of Aromatic Moieties: Aromatic rings 

contribute to the stability and specificity of 

drugtarget interactions. The number and type of 

aromatic moieties can affect binding affinity, 

selectivity, and overall biological activity [2,20].  

Process and Examples  

1. Data Collection: The first step is gathering 

chemical structures and corresponding 

biological activity data for a series of 

compounds. This forms the foundation for 

QSAR modeling [1,2,19].  

2. Descriptor Calculation: Molecular 

descriptors such as hydrophobicity (Log P), 

molecular weight, dipole moment, and 

electronic effects are calculated using 

computational chemistry tools [18,20].   

3. Model Development: QSAR models are 

constructed using statistical and 

computational methods including multiple 

linear regression (MLR), partial least squares 

(PLS), and machine learning algorithms. 

These models correlate molecular descriptors 

with biological activity [9,10,11,19].   

4. Validation: Models are validated using 

independent datasets not included in training. 

Validation metrics such as R², root mean 

square error (RMSE), and cross-validation 

assess predictive accuracy, reliability, and 

robustness [18,19].  

5. Application: Validated QSAR models 

predict the activity of new compounds, 

allowing researchers to prioritize candidates 

for experimental testing and optimization, 

streamlining the drug discovery process 

[1,9,19].   

Examples of QSAR Applications:  

Drug Design: QSAR models guide drug design, 

such as optimizing chloroquine analogues for 

antimalarial activity, enhancing efficacy while 

reducing resistance [1,2,19].   

Toxicity Prediction: QSAR predicts toxic effects 

of chemicals and environmental pollutants, for 

example, LC50 values of pesticides [18,21].  

Environmental Chemistry: QSAR predicts 

chemical behavior in the environment, including 

biodegradability and bioaccumulation, supporting 

regulatory decisions [18,21].  

Tools Required for QSAR   

QSAR Toolbox: Developed by OECD, it supports 

chemical hazard assessment, experimental data 

retrieval, metabolism simulation, and profiling 

chemical properties, facilitating QSAR model 

development and validation [18,19].  

Chemical Databases: PubChem, ChemSpider, 

and ChEMBL provide essential molecular 

descriptors and experimental data for QSAR 

analysis [18].  

Computational Chemistry Software: Programs 

like Gaussian, Spartan, and AutoDock calculate 

molecular descriptors and perform molecular 

docking simulations, improving QSAR predictive 

accuracy [9,18,19].  

Types of QSAR  

1. Regression QSAR: Statistical methods like 

linear regression or PLS relate molecular 

https://pubmed.ncbi.nlm.nih.gov/21091654/
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descriptors to continuous biological 

responses, e.g., IC50 values of enzyme 

inhibitors [2,19].  

2. Classification QSAR: Assigns compounds 

into categories such as active vs inactive or 

toxic vs non-toxic using machine learning 

algorithms like decision trees, SVM, and k-

NN [10,19].  

3. Read-Across QSAR: Predicts properties of a 

target compound using data from structurally 

similar molecules, based on the principle that 

similar structures yield similar activities 

[18,22].  

1. 4.Trend Analysis QSAR: Identifies patterns 

in biological activity across a compound 

series, helping predict new compound 

behavior and key structural determinants 

[18,22].  

Advantages of QSAR  

Efficiency: QSAR accelerates drug discovery by 

predicting compound activity without extensive 

laboratory testing [1,9,19]. 

Cost-Effectiveness: Reduces reliance on 

expensive and time-consuming experiments 

[18,19].  

Predictive Capability: Provides insights into 

structure-activity relationships, guiding the design 

of safer and more effective compounds [2,10,19].  

[B] ( Computer-Aided Drug Design )  

Computer-Aided Drug Design (CADD) is an 

advanced computational approach used to 

facilitate drug discovery and development. By 

employing algorithms and computational tools, 

CADD predicts how drug molecules interact with 

biological targets, thereby accelerating the 

identification of potential drug candidates while 

reducing experimental costs and efforts (1,3,4). It 

plays a pivotal role in modern drug development 

by enabling in silico simulation and analysis of 

molecular interactions, structure-activity 

relationships (SAR), and drug efficacy before 

experimental testing (2,19). A widely used 

application of CADD is Structure-Based. 

Drug Design (SBDD), which utilizes the three-

dimensional structure of biological targets, such as 

enzymes or receptors, to design molecules that can 

effectively bind to them (4). For example, 

inhibitors targeting HIV protease or cancerrelated 

kinases often rely on SBDD (4,5). Another 

approach, Ligand-Based Drug Design (LBDD), 

uses information from known active compounds to 

design new molecules with similar biological 
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activity (3,19). Common techniques in CADD 

include molecular docking, virtual screening, 

pharmacophore modeling, and QSAR analysis 

(2,19).   

Key CADD-related terms include molecular 

modeling (visualizing and simulating molecular 

structures), docking (predicting optimal drug-

target binding poses), and pharmacokinetics 

(studying drug absorption, distribution, 

metabolism, and excretion) (8). Notable drugs 

developed using CADD include imatinib 

(Gleevec) for chronic myeloid leukemia and 

oseltamivir (Tamiflu) for influenza (6,7). By 

leveraging computational power and sophisticated 

algorithms, CADD has transformed drug 

discovery, allowing for more efficient and 

accurate drug design while minimizing trial-and-

error experiments (3,9,10).   

Structure-Based Drug Design (SBDD): Utilizes 

the 3D structure of a target protein to design drugs 

that bind effectively to its active site (4).   

Ligand-Based Drug Design (LBDD): Designs or 

identifies new molecules based on the knowledge 

of ligands that interact with the target, focusing on 

patterns in molecular activity (3).   

Chemical Structure Drawing in CADD  

Chemical structure drawing is a fundamental part 

of CADD, allowing researchers to visually 

represent chemical compounds and understand 

their properties and interactions with biological 

targets (3,4).  

Typical steps involved:  

a. Drawing the Structure: Tools like 

ChemSketch enable users to create structures 

by adding atoms and bonds interactively (1).  
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b. Property Calculation: The drawn structures 

can be analyzed to determine molecular 

weight, chemical formula, and hydrogen bond 

donors/acceptors (20).  

c. IUPAC Name Generation: Software can 

automatically provide standardized IUPAC 

names for chemical compounds (1). 

d. Reaction Creation: Users can illustrate 

chemical reactions, linking reactants and 

products (1). 

e. Visualization: Programs such as PyMOL and 

UCSF Chimera allow for 3D visualization of 

complex biomolecules, revealing molecular 

interactions and conformations (3,4).  

Key Tools: ChemSketch (1), PyMOL (3), UCSF 

Chimera (3), Jmol (3), and Marvin Sketch (1). 

Computational Drawing in CADD  

Computational drawing involves creating detailed 

2D and 3D models of molecules and biological 

targets using specialized software. This facilitates 

visualization of molecular interactions, 

optimization of drug candidates, and prediction of 

their behavior in biological systems (3,4,9).   

Key Tools:  

• Schrödinger Suite: Comprehensive 

molecular modeling suite for SBDD and 

virtual screening (includes Maestro, Glide, 

Prime) (3).  

• AutoDock Vina: Predicts ligand-protein 

binding affinities and docking modes (4).   

• Molecular Operating Environment 

(MOE): Supports computational chemistry, 

modeling, and simulations (3).  

• OpenEye Scientific Software: Offers tools 

for cheminformatics and SBDD (3).  

• Avogadro: Open-source molecular editor for 

creating and visualizing structures (3).  

Chemical Structure Presentation  

Chemical structure presentation is crucial for 

accurately communicating molecular information 

in research and education (3).  

The process involves:  

1. Initial Sketching: Drawing the basic molecular 

skeleton using tools like ChemSketch and 

MarvinSketch (1).  

2. Functional Group Addition: Adding specific 

functional groups to define chemical properties 

(1).  

3D Visualization: Using PyMOL, UCSF 

Chimera, or Jmol to study spatial arrangement and 

interactions (3,4).  

3. Property Calculation: Computing molecular 

properties such as weight, hydrophobicity  (Log 

P), and hydrogen bond donors/acceptors to predict 

biological activity (20,21)  

4. Structure Optimization: Ensuring molecules 

adopt stable, low-energy conformations (3).  

5. Reaction Drawing: Illustrating reactants, 

products, and reaction conditions for synthetic 

pathways (1). 

6. File Formats and Export: Saving structures in 

formats like .mol, .sdf, or .pdb for compatibility 

with computational tools (3).  

Popular Tools: ChemSketch (1), PyMOL (3), 

UCSF Chimera (3), Jmol (3), MarvinSketch (1), 

ChemDraw (1), BIOVIA Draw (3), MOE (3), 

Avogadro (3), ChemDoodle (1).  
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Chemical Databases  

Chemical databases are vital resources for 

researchers, chemists, and pharmaceutical 

scientists, providing comprehensive information 

on chemical compounds, their properties, and 

biological activities (5,6). The internet has greatly 

expanded access to these resources, and new 

databases continue to emerge alongside 

established ones, offering innovative tools for drug 

discovery and chemical research (5,7).  

Some of the widely used chemical databases 

include:  

1. PubChem: Free database of chemical 

structures, properties, and biological activities 

(5).  

2. ChemSpider: Provides chemical structures, 

properties, and literature references (5).  

3. Reaxys: Commercial database for chemical 

reactions, structures, and properties (6).  

4. SciFinder: Commercial database providing 

chemical structures, properties, and literature 

references (6).  

5. ChEMBL: Free database of bioactive 

molecules and their molecular targets (7).  

6. Biological Activity Databases: Contain 

information on the biological effects of 

compounds to aid in drug activity prediction 

(7).  

These databases support the design, optimization, 

and analysis of potential therapeutic molecules by 

providing reliable, searchable, and up-to-date 

chemical information (3,5,7).  

[C] Pharmacophore models   

Computer-Aided Drug Discovery (CADD) uses 

computational methods and data resources to 

investigate molecular properties and develop new 

therapeutic agents. Broadly, it involves designing 

or selecting compounds as potential drug 

candidates before synthesis and experimental 

testing, helping reduce costs and research time 

([3],[4],[10]). Traditional in vitro screening is 

expensive and time-consuming, making 

computational alternatives highly valuable. 

Virtual Screening (VS) is a CADD technique that 

screens chemical libraries in silico to identify 

compounds most likely to interact with a target, 

which can be accelerated using pharmacophore 

models as queries to select molecules with desired 

features ([3],[4]).  
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Pharmacophore modeling is based on the principle 

that compounds with common chemical 

functionalities arranged similarly in space often 

exhibit activity against the same biological target. 

These features are represented as geometric 

entities—such as spheres, planes, or vectors—in 

the pharmacophore model. Key features include 

hydrogen bond acceptors (HBA), hydrogen bond 

donors (HBD), hydrophobic regions (H), 

positively and negatively ionizable groups (PI/NI), 

aromatic rings (AR), and metal-coordinating 

regions ([4],[23]). Shape or exclusion volumes 

(XVOL) can be added to define steric constraints 

of the binding pocket.  

Structure-Based Pharmacophore Modeling: 

This method relies on the 3D structure of a protein 

target. Atomic-level details extracted from the 

protein’s holo or apo form allow the identification 

of stereo-electronic features responsible for ligand 

activity ([4],[23]).  

Ligand-Based Pharmacophore Modeling: This 

approach starts with active compounds that bind 

the same target. Since the bioactive conformations 

of these ligands may be unknown, multiple 

conformers are generated to ensure at least one 

represents the biologically active form. Shared 

chemical features from these conformers are then 

used to construct the pharmacophore ([4],[23]).  

• Docking Analysis  

Molecular docking predicts how a ligand binds to 

a protein target. A 3D structure of the protein, 

often determined by X-ray crystallography or 

NMR spectroscopy, is required ([3],[4]). The 

protein and a library of ligands are used as input 

for docking programs.  

Docking depends on two main components: the 

search algorithm, which explores possible ligand 

orientations and conformations relative to the 

protein, and the scoring function, which estimates 

binding affinity. Exhaustively searching all 

conformations and orientations is computationally 

impossible. Most programs account for flexible 

ligands, and some also incorporate flexible protein 

receptors to improve prediction accuracy 

([3],[23]).  
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Recent docking innovations include AI-assisted 

methods and flexible receptor modeling to 

increase accuracy and speed in virtual screening 

([23],[24]).  

• ADMET  

ADMET properties—absorption, distribution, 

metabolism, excretion, and toxicity—are critical 

in assessing drug candidates. An effective 

compound must not only target the intended 

receptor but also demonstrate suitable ADMET 

characteristics at therapeutic doses ([8],[23]).  

Numerous in silico models predict ADMET 

properties. One approach is the ADMET-score, 

which evaluates drug-likeness based on 18 

ADMET endpoints predicted via the admetSAR 

web server. Each property is weighted according 

to model accuracy, pharmacokinetic importance, 

and usefulness ([23],[24]).  

Performance was evaluated using FDA-approved 

drugs, ChEMBL small molecules, and drugs 

withdrawn due to safety concerns. Analysis 

showed significant differences among these 

datasets, with no clear linear correlation between 

the ADMET-score and quantitative estimate of 

druglikeness (QED) ([23]).  

For scoring, beneficial endpoints (e.g., hERG–) 

are assigned a value of 1, while harmful endpoints 

(e.g., hERG+, Ames, CARC, CYP inhibitors, 

OCT2, P-gp inhibitors) are assigned 0. The 

ADMETscore is normalized between 0 and 1, 

where 1 represents the most favorable profile. 

Scores below 0 are set to 0, and those above 1 are 

capped at 1 ([23],[24]). This system allows 

prioritization of compounds with optimal 

pharmacokinetic and safety profiles.  

[D] Combinatorial Chemistry   

Combinatorial chemistry is a strategy that 

generates a large collection of structurally diverse 

compounds, known as a chemical library, by 

systematically linking different “building blocks” 

through repetitive covalent reactions [25]. Once 

synthesized, these compounds can be 

simultaneously screened for their interactions with 

specific biological targets [25,26]. Active 

compounds can be identified directly in position-

addressable libraries or indirectly through 

decoding techniques using chemical or genetic 
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methods. Common approaches include phage 

display, yeast display, bacterial display, mRNA 

display, one-bead-one-compound (OBOC), 

DNAencoded chemical libraries (DECL), and 

solution-phase mixture libraries [25,28].  

Besides creating a vast number of compounds, 

these combinatorial methods allow rapid 

concurrent screening against specific drug targets 

[25,29]. Lower-throughput techniques, such as 

parallel synthesis libraries and planar microarray 

libraries, produce more focused libraries [25]. 

Planar microarrays are mainly used for peptide 

research but, in principle, can be adapted for other 

compound types through automation. Focused 

small-molecule libraries, typically consisting of 

hundreds to thousands of compounds, are 

especially valuable for lead optimization when 

combined with computational chemistry 

[25,26,30].  

• High-Throughput Screening (HTS)  

High-Throughput Screening (HTS) involves 

testing a large number of potential bioactive 

compounds against a target biological process or 

event [5,25]. HTS is applied to combinatorial 

chemistry libraries, including genomic, protein, 

peptide, and DNA-encoded libraries (DECL) 

[5,25,28]. The main aim is to accelerate drug 

discovery by screening vast numbers of 

compounds, often hundreds of thousands, at rates 

exceeding 20,000 compounds per week [5,25]. 

Advanced HTS relies on assay adaptation, robotic 

systems, and optimized implementation strategies. 

UltraHigh-Throughput Screening (UHTS) extends 

this further, enabling the testing of up to 100,000 

compounds per day while reducing costs, 

manipulation steps, and enhancing efficiency 

[25,29,30].  

• Combinatorial Chemistry and QSAR  

Combinatorial chemistry combined with HTS has 

become a key method for identifying active 

compounds from large chemical libraries [25,26]. 

Integration with Quantitative Structure-Activity 

Relationship (QSAR) studies helps reduce drug 

development costs by screening compounds 

virtually, filtering out those predicted to be toxic 

or having poor pharmacokinetic profiles 

[2,19,25,27]. Techniques include classical linear 

methods, such as partial least squares, as well as 

nonlinear approaches [2,19]. Increasingly, 

machine learning and pattern recognition methods 

are being applied to rapidly and accurately assess 

large compound datasets, supported by 

chemoinformatics tools for QSAR modeling 

[10,26,30].  

• Drug Discovery from Natural and 

Synthetic Sources  

Drug discovery involves identifying and 

developing new therapeutic agents from diverse 

sources [1,6,7]:   

1. Natural Products: 

Plants, microorganisms, animals, and marine 

organisms have historically provided bioactive 

compounds [6,7]. Plants yield secondary 

metabolites such as alkaloids, flavonoids, and 

glycosides—for example, morphine from Papaver 

somniferum and paclitaxel from Taxus brevifolia 

[6]. Microorganisms produce antibiotics like 

penicillin from Penicillium notatum and 

streptomycin from Streptomyces griseus [6]. 

Marine organisms have emerged as a source of 

novel drugs, such as ziconotide from cone snail 

venom and trabectedin from sea squirts [7]. 

Animals have also inspired drugs, like captopril, 

derived from the venom of the Brazilian pit viper 

[6,7].   

2. Synthetic Chemistry:  
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Synthetic approaches allow the creation of entirely 

new molecules or modifications of natural 

compounds to improve their properties [1]. 

Aspirin, for instance, is a synthesized derivative of 

salicylic acid from willow bark [1]. Synthetic 

drugs such as propranolol (beta-blocker) and 

fentanyl (opioid) illustrate the scalability and 

versatility of this approach [1] 

3. Biotechnology:  

Genetic engineering enables the production of 

biologics, including recombinant proteins and 

monoclonal antibodies [1,10]. Examples include 

insulin and adalimumab, which are effective 

against complex conditions like cancer and 

autoimmune diseases [1,10].  

Applications of Drug Design  

Drug design, whether structure-based, ligand-

based, or computationally aided, is a cornerstone 

of modern pharmaceutical research. Its 

applications span the discovery, optimization, and 

development of therapeutic agents, improving 

efficiency, reducing costs, and minimizing 

trialand-error in drug development [31,32,33].  

1. Development of Targeted Therapeutics  

Drug design enables the rational creation of 

molecules that selectively interact with biological 

targets, including enzymes, receptors, or nucleic 

acids. Structure-based drug design (SBDD) has 

been instrumental in developing inhibitors for HIV 

protease, tyrosine kinases, and other cancerrelated 

targets [33,34]. Ligand-based drug design (LBDD) 

assists in developing compounds when the 3D 

structure of the target is unknown by utilizing 

information from known active ligands [33,34]. 

Computational tools such as molecular docking 

and pharmacophore modeling help predict binding 

affinities and interactions, accelerating the 

identification of potent candidates [34,35]. 

Examples: Imatinib (Gleevec) for chronic myeloid 

leukemia and Oseltamivir (Tamiflu) for influenza 

were developed using CADD approaches [31,33].  

2. High-Throughput Screening (HTS) and 

Combinatorial Libraries  

Combinatorial chemistry combined with HTS 

allows rapid evaluation of large compound 

libraries. Structurally diverse molecules are 

generated systematically, enabling thousands to 

millions of compounds to be screened efficiently 

[25,26,28,30]. DNA-encoded chemical libraries 

(DECL) and one-bead-one-compound (OBOC) 

libraries are commonly used for hit identification 

[28,30]. Computational filtering and virtual 

screening help prioritize compounds with 

favorable pharmacokinetic and toxicity profiles, 

reducing experimental screening costs and time 

[27,31].  

3. Optimization of Lead Compounds  

After hit identification, drug design facilitates lead 

optimization to improve efficacy, selectivity, and 

safety. Molecular dynamics simulations, QSAR 

modeling, and ADMET predictions guide 

structural refinement [2,19,23,26,27]. Predictive 

tools, such as ADMET scoring and AI-based 

models, allow simultaneous evaluation of multiple 

candidates, enhancing the selection of promising 

leads [23,26,27,31].   

4. Natural Product Drug Discovery  

Drug design aids in identifying and optimizing 

bioactive compounds from natural sources such as 

plants, microorganisms, marine organisms, and 

animals [6,7,31]. Rational modifications improve 

efficacy, bioavailability, and reduce toxicity.   

Examples: Morphine from Papaver somniferum 

and paclitaxel from Taxus brevifolia [6] 
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Antibiotics like penicillin from Penicillium 

notatum and streptomycin from Streptomyces 

griseus.[6] Marine-derived drugs such as 

ziconotide from cone snail venom [7]  

5. Synthetic and Biotechnological Drug 

Development  

Synthetic chemistry and biotechnology benefit 

from drug design by enabling the creation of new 

molecules or modifying existing compounds 

[31,32].  

Examples: Aspirin, a synthetic derivative of 

salicylic acid, designed for improved efficacy [31] 

Beta-blockers like propranolol and opioids like 

fentanyl illustrate scalability [31] Biologics, 

including recombinant insulin and monoclonal 

antibodies (e.g., adalimumab), optimized using 

computational modeling and AI [10,26,31]   

6. ADMET and Toxicity Prediction  

In silico ADMET modeling predicts absorption, 

distribution, metabolism, excretion, and toxicity, 

prioritizing drug-like compounds while 

eliminating those with adverse effects 

[23,26,27,31]. Tools like ADMETlab 3.0 and AI-

based models enable rapid, large-scale 

evaluations, saving time and cost in early drug 

development [23,26,27,31].  

7. Personalized and Precision Medicine  

CADD and AI-driven approaches facilitate 

personalized therapies by predicting patient-

specific responses based on genetic, metabolic, 

and proteomic data. This enhances efficacy and 

minimizes adverse effects, contributing to 

precision medicine [10,11,31].     

8. Emerging Applications  

• Recent advances in AI, machine learning, and 

ultra-large combinatorial libraries have 

expanded drug design applications:  

• Machine learning-guided virtual screening for 

ultra-large libraries [28,30,31]  

• Evolutionary algorithms for optimizing 

compound libraries [29,31]  

• AI-driven molecular modeling and ADMET 

prediction for next-generation drug discovery 

[26,31]  

“While these approaches and applications 

highlight the potential of modern drug 

discovery, it is equally important to recognize 

the challenges and limitations that continue to 

constrain progress.”  

CHALLENGES AND LIMITATIONS  

Despite significant advances in technology and 

methodology, drug discovery continues to face 

multiple challenges and limitations that hinder 

efficiency and innovation. One of the most 

persistent obstacles is the high cost and extended 

development timelines. It is estimated that 

bringing a single drug to market may take more 

than a decade and require billions of dollars in 

investment [35]. Although new technologies such 

as automation and AI are increasingly adopted, the 

paradox remains that drug development has not 

become substantially more cost-effective or time-

efficient [35].  

Another major limitation is the high attrition rate 

in clinical trials, where the majority of drug 

candidates fail to progress to approval. Failures 

often occur due to unforeseen safety concerns, 

poor efficacy, or suboptimal pharmacokinetic 

properties, reflecting the unpredictable nature of 

complex biological systems [34]. This high failure 

rate underscores the inherent risks of drug 

discovery and the urgent need for more predictive 

preclinical models.  
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The integration of artificial intelligence (AI), 

while promising, also presents its own set of 

challenges. Issues related to data quality, bias, 

model interpretability, and ethical considerations 

continue to restrict the widespread adoption of AI 

in drug development [36]. Furthermore, the 

complexity of biological networks often exceeds 

the current capabilities of computational models, 

limiting their predictive accuracy [36].  

Regulatory hurdles add another layer of difficulty, 

as evolving policies and the absence of clear 

guidance for novel therapeutics frequently delay 

approvals [37]. These delays not only extend 

development timelines but also impact patient 

access to innovative therapies. Similarly, 

polypharmacology—designing drugs that act on 

multiple targets—offers therapeutic potential but 

raises concerns about unintended off-target 

effects, which can increase the risk of adverse 

outcomes [38].  

Equally pressing are the challenges in drug 

delivery systems, where ensuring stability, 

targeted release, and biological compatibility 

remain major barriers. Despite progress, 

scalability and reproducibility continue to impede 

the successful translation of novel delivery 

platforms into clinical practice [39]. These issues 

are compounded by the complexity of disease 

mechanisms themselves, as incomplete 

understanding of disease biology complicates 

target identification and drug design [40].  

Finally, academic drug discovery faces systemic 

limitations. Many universities and research 

institutes struggle with inadequate funding, limited 

infrastructure, and lack of prioritization for 

translational drug development [41]. As a result, 

promising discoveries in the academic setting 

often fail to progress toward commercialization, 

highlighting the gap between early-stage research 

and industrial application.  

Collectively, these challenges—ranging from 

economic constraints and scientific uncertainty to 

regulatory and infrastructural barriers—

underscore the complexity of drug discovery. 

Addressing them will require interdisciplinary 

collaboration, integration of advanced 

technologies, and adaptive regulatory frameworks 

to accelerate the translation of innovative ideas 

into safe and effective therapies.  

CONCLUSION   

Drug design and discovery remain a dynamic and 

rapidly advancing discipline that is central to 

improving healthcare and patient outcomes 

[1,3,6]. Traditional strategies, such as the use of 

natural products, continue to play an important 

role, but they are now complemented by modern 

innovations including artificial intelligence, 

genomics, and nanotechnology, which are 

reshaping the way novel therapeutics are 

conceived and developed [7,9–11]. Each phase of 

the discovery pipeline—from target identification 

and validation through to preclinical and clinical 

evaluation— illustrates the synergy between 

scientific insight and technological advancement 

[1,3,4].  

Nevertheless, persistent barriers such as high 

costs, long development timelines, and high 

attrition rates remain major limitations to 

efficiency [34,35]. The growing threat of drug 

resistance further underscores the urgency for new 

discovery strategies. Promising solutions are 

emerging through the application of machine 

learning, precision medicine, sustainable “green 

chemistry” approaches, and advanced drug 

delivery systems [10,11,26,39]. Together, these 

innovations are enabling more predictive, 

efficient, and safer drug development pathways.  

Ultimately, drug discovery exemplifies human 

ingenuity in addressing the complexities of disease 
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biology. Its interdisciplinary nature—spanning 

chemistry, biology, data science, and clinical 

medicine—ensures a continuous flow of 

innovation with the potential to reshape medical 

treatment and significantly improve global health 

outcomes [1,3,5,11]. 
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