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Drug design and discovery represent a multidisciplinary field combining chemistry,
biology, pharmacology, and computational sciences to develop safe and effective
therapeutic agents. This review provides an overview of the principles, methodologies,
and current trends shaping modern drug development. The process begins with target
identification and validation, followed by hit discovery, lead optimization, preclinical
studies, and clinical trials. Approaches such as Quantitative Structure—Activity
Relationship (QSAR), Computer-Aided Drug Design (CADD), pharmacophore
modeling, and combinatorial chemistry play vital roles in predicting molecular
interactions, optimizing lead compounds, and accelerating discovery timelines.
Integration of artificial intelligence, machine learning, and high-throughput screening
has revolutionized drug design, improved prediction accuracy and reducing costs.
Natural products, synthetic chemistry, and biotechnology continue to be significant
sources of novel therapeutics. Despite advancements, challenges such as high costs, long
development periods, and high attrition rates persist. Future directions emphasize Al-
driven modeling, precision medicine, sustainable chemistry, and nanotechnology-based
delivery systems to enhance innovation and efficiency in pharmaceutical research.

INTRODUCTION

Drug design and discovery form the cornerstone of
pharmaceutical sciences, integrating chemistry,
pharmacology,
approaches to transform basic concepts into
therapeutic agents. Over the past decades, several
landmark drugs have demonstrated the power of

biology,

and computational

rational discovery strategies. Statins, for instance,
were first identified as fungal metabolites and
subsequently  optimized through synthetic
modifications, revolutionizing the management of
hypercholesterolemia and cardiovascular disease
[12-16]. More recently, nutraceutical-based
interventions have been evaluated as alternatives
or adjuncts to conventional statin therapy,
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underscoring the continuous interplay between
natural products, synthetic chemistry, and clinical
practice in modern drug design [17].

The drug discovery process follows a series of
well-established  stages, including target
identification, hit discovery, lead optimization,
and preclinical development [1]. A key component
of these stages is the use of Quantitative Structure—
Activity Relationship (QSAR) models, which
predict biological activity based on molecular
descriptors and structural features [2]. Alongside
QSAR, a wide range of computational and
experimental tools—such as computer-aided drug
design (CADD), chemical structure illustration,
database searching, pharmacophore modeling,
docking, and ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) analysis—
have become integral to the discovery pipeline
[3,4]. These methodologies not only allow the
visualization and prediction of molecular
interactions but also accelerate the identification of
viable candidates for further evaluation.

Complementary strategies, including
combinatorial chemistry and high-throughput
screening (HTS), enable the rapid generation and
assessment of large chemical libraries, further
shortening timelines for identifying promising
leads [5]. Natural products continue to provide a
rich reservoir of structurally unique compounds,
with  microorganisms, plants, and marine
organisms contributing to the discovery of novel
bioactive agents [6,7]. Collectively, these
approaches illustrate how modern drug design
blends traditional sources with computational
advances to expand therapeutic options.
Moreover, ADMET profiling that
candidate molecules are not only effective but also
safe, thereby increasing the likelihood of clinical
success [8].

ensures
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By integrating historical examples such as statins
with contemporary approaches like CADD and
Al-driven methods, this review aims to provide a
comprehensive overview of the strategies,
applications, and challenges that define drug
design in the current era.

AIM AND OBJECTIVE

The primary aim of this review is to provide an
integrated understanding of drug design and
discovery, highlighting both theoretical concepts
and practical applications. An important objective
is to emphasize chemical management and safety
guidelines, including appropriate storage, labeling,
disposal, and emergency response strategies,
which are essential for minimizing risks in
laboratory environments. In addition, the review
seeks to knowledge of
preparation and purification methods, focusing on
techniques such as distillation, crystallization,
chromatography, and filtration, which ensure the
and well-characterized

enhance reaction

acquisition of pure
compounds.

Another key objective is to outline the major
phases of drug discovery, including target
identification and validation, hit identification,
lead optimization, and preclinical and clinical
development, while underscoring the collaborative
and multidisciplinary nature of the process [1].
Particular attention is given to physicochemical
properties and their role in Quantitative Structure—
Activity Relationship (QSAR) studies, covering
the use of molecular descriptors, statistical
modeling techniques, and model validation [2,19].
Furthermore, the review examines different
methods of structure-based drug design, such as
molecular docking and de design,
highlighting their principles, applications, and
limitations in identifying and refining potential
drug candidates [3,4].

novo
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The objectives also extend to the study of natural
products as a continuing source of therapeutic
agents, including their extraction, isolation,
structural determination, and evaluation of
pharmacological activity [6,7]. By combining
insights from chemical management, reaction
methodology, drug discovery phases, QSAR,
structure-based design, product
exploration, this review aims to present a unified

and natural

perspective of pharmaceutical development. Such
integration not only reinforces theoretical
knowledge but also develops practical
competencies that are essential for advancing drug
discovery research.

DRUG DESIGN AND DEVELOPMENT -

Drug discovery and development is a complex,
multi-stage process that integrates chemistry,
biology, pharmacology, and computational
sciences to transform an initial idea into a
therapeutic agent. The stages include target
identification, hit discovery, lead optimization,
preclinical evaluation, regulatory submission, and
clinical trials. Each step is crucial, as attrition rates
in drug discovery are high, and only a fraction of
compounds ever reach the market [1].

1. Target Identification and Validation

The first stage in drug discovery involves
identifying a biological target, such as an enzyme,
receptor, or protein implicated in disease
pathology. Advances in genomics, proteomics,
and bioinformatics have accelerated this process,
enabling researchers to identify and validate
disease associated targets more effectively [1,5].
Target validation ensures that modulation of the
selected biomolecule will have a therapeutic effect
without causing unacceptable side effects. Natural
products and secondary metabolites have
historically contributed significantly to drug
discovery, and even in the genomic era, they
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remain valuable as novel sources of target
modulators [6,7].

2. Hit Identification

Once a validated target is identified, the next step
is to discover molecules, known as hits, that can
interact with it. High-throughput screening (HTS)
enables the rapid evaluation of thousands to
millions of compounds against a target to identify
initial hits [5]. In parallel, virtual screening
techniques employ computational methods to filter
large chemical libraries for compounds predicted
to bind effectively [4]. Increasingly, Al-based
algorithms are also being employed to enhance hit
identification by predicting molecular interactions
and prioritizing promising compounds [10].

3. Lead Optimization

Hit compounds are subsequently refined into lead
molecules with improved potency, selectivity, and
drug-like properties. Medicinal chemists employ
Quantitative  Structure—Activity  Relationship
(QSAR) models, which establish correlations
between chemical structures and biological
activity, allowing systematic modification of
functional groups to enhance activity [2].
Structure-based drug design uses crystallographic
or computational models of the target protein to
optimize binding interactions [4]. De novo drug
design approaches also contribute by generating
novel compounds from scratch, tailored to the
target binding site [3,9]. Al and machine learning
approaches are now automating parts of this
process, accelerating the design of new scaffolds
and optimizing pharmacokinetic properties
[10,11].

4. Computational Methods in Drug Discovery
Modern drug design increasingly depends on

computational techniques to simulate and predict
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drug—target interactions. Molecular docking
provides insights into the preferred orientation and
binding affinity of small molecules within a target
protein’s active site [4]. QSAR models
mathematically correlate chemical structures with
biological activities, enabling activity prediction
for novel compounds [2]. De novo drug design
tools construct novel molecular entities from
scratch, guided by target site characteristics [3,9].
These approaches, combined with Al-driven
methods such as explainable artificial intelligence
and large language models, are transforming drug
discovery by improving hit-to-lead predictions and
suggesting innovative chemical scaffolds [10,11].

5. Preclinical Research

After promising lead compounds are identified,
preclinical studies are conducted to evaluate
pharmacological ~ potential and  eliminate
molecules with poor efficacy or safety. These
studies involve a combination of in vitro assays
using cell and tissue cultures, biochemical
experiments such as isothermal titration
calorimetry to study protein—ligand interactions,
and in vivo animal studies using models with close
physiological resemblance to humans [1,5]. In
addition to experimental methods, ADMET
(Absorption, Distribution, Metabolism, Excretion,
and Toxicity) modeling is increasingly applied to
predict pharmacokinetic and safety profiles at
early stages, thereby reducing the risk of clinical
failure [18]. The goal of preclinical testing is to
generate a robust safety and efficacy profile that
supports progression to human trials.

6. Investigational New

Application

Drug (IND)
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If preclinical studies demonstrate favorable safety
and pharmacological results, an Investigational
New Drug (IND) application is submitted to the
U.S. Food and Drug Administration (FDA) or
other regulatory bodies. This application contains
preclinical data, including
pharmacology, toxicology, manufacturing, and
quality control information, to justify the initiation
of human clinical trials [1]. The sponsor
organization, which may be a pharmaceutical
company, academic institution, or collaborative
group, is responsible for preparing and submitting
the IND. Only after regulatory approval of the IND
can the investigational compound move forward

comprehensive

into clinical trials.
7. Clinical Trials

Clinical trials are prospective studies involving
human volunteers or human-derived specimens
that are conducted to answer specific research
questions about a drug candidate. These studies
assess the safety, efficacy, and therapeutic
effectiveness of new drugs or biological
interventions [1]. Clinical trials proceed through
multiple phases:

Phase 1 focuses on safety, tolerability, and
pharmacokinetics in a small group of healthy
volunteers. Phase Il evaluates efficacy and side
effects in a larger patient population.

Phase III confirms therapeutic benefit and
compares the investigational drug against existing
standard treatments in diverse patient groups.

Upon successful completion of clinical trials,
regulatory authorities review the data and, if
satisfactory, approve the drug for clinical use.
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Approaches to drug design

[A] QSAR: Quantitative Structure-Activity
Relationship

Definition

Quantitative  Structure-Activity  Relationship
(QSAR) is a computational modeling technique
that employs mathematical and statistical
approaches to predict the biological activity,
physicochemical properties, or environmental
behavior of chemical compounds based on their
molecular structure [2,19]. The central principle of
QSAR is that quantifiable molecular descriptors
can be correlated with experimentally observed
biological or chemical activities. By analyzing
these correlations, QSAR models assist
researchers in designing and optimizing new
compounds with desired characteristics, thereby
accelerating the drug discovery and development
process [1,9,19].

Key Parameters in QSAR
Hydrophobicity (Log P): Hydrophobicity is

expressed as the logarithm of the partition
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coefficient (Log P) between water and a nonpolar
solvent such as octanol. It reflects the compound’s
preference for lipid versus aqueous environments.
Molecules with balanced hydrophobicity typically
show improved absorption and distribution,
making Log P a critical parameter in evaluating
drug-likeness [2,18,20].

Electronic Effects (Hammett Constant): The
Hammett constant (o) measures the electron-
donating or electron-withdrawing influence of
substituents on a benzene ring. These effects
influence molecular reactivity and interactions
with biological targets, impacting biological
activity [2,20].

Steric Effects (Taft’s Steric Factor): Taft’s steric
factor (Es) quantifies spatial hindrance caused by
substituents near reactive sites. Steric effects
determine how well a molecule fits into the active
site of a target enzyme or receptor, affecting
binding affinity and biological activity [2,20].

Molecular Weight: Molecular weight impacts
pharmacokinetic properties including absorption,
distribution, metabolism, and excretion (ADME).
Compounds with moderate molecular weight
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(300-500 Daltons) generally exhibit favorable
ADME profiles [18].

Dipole Moment: The dipole moment measures
charge separation in a molecule, reflecting
polarity. Compounds with optimal polarity interact
effectively with biological targets and aqueous
environments, influencing solubility and binding
efficiency [18].

Number of Aromatic Moieties: Aromatic rings
contribute to the stability and specificity of
drugtarget interactions. The number and type of
aromatic moieties can affect binding affinity,
selectivity, and overall biological activity [2,20].

Process and Examples

1. Data Collection: The first step is gathering
chemical corresponding
biological activity data for a series of
compounds. This forms the foundation for
QSAR modeling [1,2,19].

2. Descriptor Calculation: Molecular
descriptors such as hydrophobicity (Log P),

structures and

molecular weight, dipole moment, and
electronic effects are calculated using
computational chemistry tools [18,20].

3. Model Development: QSAR models are
constructed using statistical and
computational methods including multiple
linear regression (MLR), partial least squares
(PLS), and machine learning algorithms.
These models correlate molecular descriptors
with biological activity [9,10,11,19].

4. Validation: Models are validated using
independent datasets not included in training.
Validation metrics such as R2, root mean
square error (RMSE), and cross-validation
assess predictive accuracy, reliability, and
robustness [18,19].

5. Application: Validated QSAR models
predict the activity of new compounds,

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

allowing researchers to prioritize candidates
for experimental testing and optimization,
streamlining the drug discovery process
[1,9,19].

Examples of QSAR Applications:

Drug Design: QSAR models guide drug design,
such as optimizing chloroquine analogues for
antimalarial activity, enhancing efficacy while
reducing resistance [1,2,19].

Toxicity Prediction: QSAR predicts toxic effects
of chemicals and environmental pollutants, for
example, LC50 values of pesticides [18,21].

Environmental Chemistry: QSAR predicts
chemical behavior in the environment, including
biodegradability and bioaccumulation, supporting

regulatory decisions [18,21].
Tools Required for QSAR

QSAR Toolbox: Developed by OECD, it supports
chemical hazard assessment, experimental data
retrieval, metabolism simulation, and profiling
chemical properties, facilitating QSAR model
development and validation [18,19].

Chemical Databases: PubChem, ChemSpider,
and ChEMBL provide essential molecular
descriptors and experimental data for QSAR
analysis [18].

Computational Chemistry Software: Programs
like Gaussian, Spartan, and AutoDock calculate
molecular descriptors and perform molecular
docking simulations, improving QSAR predictive
accuracy [9,18,19].

Types of QSAR
1. Regression QSAR: Statistical methods like

linear regression or PLS relate molecular
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descriptors  to  continuous  biological
responses, e.g., IC50 values of enzyme
inhibitors [2,19].

2. Classification QSAR: Assigns compounds
into categories such as active vs inactive or
toxic vs non-toxic using machine learning
algorithms like decision trees, SVM, and k-
NN [10,19].

3. Read-Across QSAR: Predicts properties of a
target compound using data from structurally
similar molecules, based on the principle that
similar structures yield similar activities
[18,22].

1. 4.Trend Analysis QSAR: Identifies patterns
in biological activity across a compound

series, helping predict new compound

behavior and key structural determinants
[18,22].

Advantages of QSAR

Efficiency: QSAR accelerates drug discovery by
predicting compound activity without extensive
laboratory testing [1,9,19].

Cost-Effectiveness: Reduces reliance on
expensive and time-consuming experiments
[18,19].

Predictive Capability: Provides insights into
structure-activity relationships, guiding the design
of safer and more effective compounds [2,10,19].

Flowchart for clinical trial phases decision points
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[B] ( Computer-Aided Drug Design )

Computer-Aided Drug Design (CADD) is an
advanced computational approach used to
facilitate drug discovery and development. By
employing algorithms and computational tools,
CADD predicts how drug molecules interact with
biological targets, thereby accelerating the
identification of potential drug candidates while
reducing experimental costs and efforts (1,3.,4). It
plays a pivotal role in modern drug development
by enabling in silico simulation and analysis of
molecular interactions, structure-activity
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relationships (SAR), and drug efficacy before
experimental testing (2,19). A widely used
application of CADD is Structure-Based.

Drug Design (SBDD), which utilizes the three-
dimensional structure of biological targets, such as
enzymes or receptors, to design molecules that can
effectively bind to them (4). For example,
inhibitors targeting HIV protease or cancerrelated
kinases often rely on SBDD (4,5). Another
approach, Ligand-Based Drug Design (LBDD),
uses information from known active compounds to
design new molecules with similar biological
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activity (3,19). Common techniques in CADD
include molecular docking, virtual screening,

pharmacophore modeling, and QSAR analysis
(2,19).
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Key CADD-related terms include molecular
modeling (visualizing and simulating molecular
structures), docking (predicting optimal drug-
target binding poses), and pharmacokinetics
(studying  drug  absorption,  distribution,
metabolism, and excretion) (8). Notable drugs
developed using CADD include imatinib
(Gleevec) for chronic myeloid leukemia and
oseltamivir (Tamiflu) for influenza (6,7). By
leveraging computational power and sophisticated
algorithms, CADD has transformed drug
discovery, allowing for more efficient and
accurate drug design while minimizing trial-and-
error experiments (3,9,10).

Structure-Based Drug Design (SBDD): Utilizes
the 3D structure of a target protein to design drugs
that bind effectively to its active site (4).

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

Ligand-Based Drug Design (LBDD): Designs or
identifies new molecules based on the knowledge
of ligands that interact with the target, focusing on
patterns in molecular activity (3).

Chemical Structure Drawing in CADD

Chemical structure drawing is a fundamental part
of CADD, allowing researchers to visually
represent chemical compounds and understand
their properties and interactions with biological
targets (3,4).

Typical steps involved:

a. Drawing the Structure: Tools like

ChemSketch enable users to create structures
by adding atoms and bonds interactively (1).
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b. Property Calculation: The drawn structures
can be analyzed to determine molecular
weight, chemical formula, and hydrogen bond
donors/acceptors (20).

c. IUPAC Name Generation: Software can
automatically provide standardized IUPAC
names for chemical compounds (1).

d. Reaction Creation: Users can illustrate
chemical reactions, linking reactants and
products (1).

e. Visualization: Programs such as PyMOL and
UCSF Chimera allow for 3D visualization of
complex biomolecules, revealing molecular
interactions and conformations (3,4).

Key Tools: ChemSketch (1), PyMOL (3), UCSF
Chimera (3), Jmol (3), and Marvin Sketch (1).

Computational Drawing in CADD

Computational drawing involves creating detailed
2D and 3D models of molecules and biological
targets using specialized software. This facilitates
visualization of  molecular interactions,
optimization of drug candidates, and prediction of

their behavior in biological systems (3,4,9).
Key Tools:

e Schrodinger Suite:
molecular modeling suite for SBDD and

Comprehensive

virtual screening (includes Maestro, Glide,
Prime) (3).

e AutoDock Vina: Predicts ligand-protein
binding affinities and docking modes (4).

e Molecular Operating Environment
(MOE): Supports computational chemistry,
modeling, and simulations (3).

e OpenEye Scientific Software: Offers tools
for cheminformatics and SBDD (3).

e Avogadro: Open-source molecular editor for
creating and visualizing structures (3).

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

Chemical Structure Presentation

Chemical structure presentation is crucial for
accurately communicating molecular information
in research and education (3).

The process involves:

1. Initial Sketching: Drawing the basic molecular
skeleton wusing tools like ChemSketch and
MarvinSketch (1).

2. Functional Group Addition: Adding specific
functional groups to define chemical properties

(D.

3D Visualization: Using PyMOL, UCSF
Chimera, or Jmol to study spatial arrangement and
interactions (3,4).

3. Property Calculation: Computing molecular
properties such as weight, hydrophobicity (Log
P), and hydrogen bond donors/acceptors to predict
biological activity (20,21)

4. Structure Optimization: Ensuring molecules
adopt stable, low-energy conformations (3).

5. Reaction Drawing: Illustrating reactants,
products, and reaction conditions for synthetic
pathways (1).

6. File Formats and Export: Saving structures in
formats like .mol, .sdf, or .pdb for compatibility
with computational tools (3).

Popular Tools: ChemSketch (1), PyMOL (3),
UCSF Chimera (3), Jmol (3), MarvinSketch (1),
ChemDraw (1), BIOVIA Draw (3), MOE (3),
Avogadro (3), ChemDoodle (1).
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Chemical Databases

Chemical databases are vital resources for
researchers, chemists, and pharmaceutical
scientists, providing comprehensive information
on chemical compounds, their properties, and
biological activities (5,6). The internet has greatly
expanded access to these resources, and new
databases continue to emerge alongside
established ones, offering innovative tools for drug
discovery and chemical research (5,7).

Some of the widely used chemical databases
include:

1. PubChem: Free database of chemical

structures, properties, and biological activities
(5).

2. ChemSpider: Provides chemical structures,
properties, and literature references (5).

3. Reaxys: Commercial database for chemical
reactions, structures, and properties (6).

4. SciFinder: Commercial database providing
chemical structures, properties, and literature
references (6).

5. ChEMBL: Free database
molecules and their molecular targets (7).

of bioactive
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6. Biological Activity Databases: Contain
information on the biological effects of
compounds to aid in drug activity prediction

7).

These databases support the design, optimization,
and analysis of potential therapeutic molecules by
providing reliable, searchable, and up-to-date
chemical information (3,5,7).

[C] Pharmacophore models

Computer-Aided Drug Discovery (CADD) uses
computational methods and data resources to
investigate molecular properties and develop new
therapeutic agents. Broadly, it involves designing
or selecting compounds as potential drug
candidates before synthesis and experimental
testing, helping reduce costs and research time
([3],[4],[10]). Traditional in vitro screening is
expensive  and  time-consuming,  making
computational alternatives highly valuable.
Virtual Screening (VS) is a CADD technique that
screens chemical libraries in silico to identify
compounds most likely to interact with a target,
which can be accelerated using pharmacophore
models as queries to select molecules with desired
features ([3],[4]).
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Pharmacophore modeling is based on the principle
that compounds with common chemical
functionalities arranged similarly in space often
exhibit activity against the same biological target.
These features are represented as geometric
entities—such as spheres, planes, or vectors—in
the pharmacophore model. Key features include

STRUCTURE-BASED APPROACH

:
PROTEIN
H BINDING POCKET
ANALYSIS

PROTEIN
STRUCTURE

PREFPARATION

PHARMACOPHORE MODELING

J S

hydrogen bond acceptors (HBA), hydrogen bond
donors (HBD), hydrophobic regions (H),
positively and negatively ionizable groups (PI/NI),
aromatic rings (AR), and metal-coordinating
regions ([4],[23]). Shape or exclusion volumes
(XVOL) can be added to define steric constraints
of the binding pocket.

3
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Structure-Based Pharmacophore Modeling:
This method relies on the 3D structure of a protein
target. Atomic-level details extracted from the
protein’s holo or apo form allow the identification
of stereo-electronic features responsible for ligand
activity ([4],[23]).

Ligand-Based Pharmacophore Modeling: This
approach starts with active compounds that bind
the same target. Since the bioactive conformations
of these ligands may be unknown, multiple
conformers are generated to ensure at least one
represents the biologically active form. Shared
chemical features from these conformers are then
used to construct the pharmacophore ([4],[23]).

e Docking Analysis

Molecular docking predicts how a ligand binds to
a protein target. A 3D structure of the protein,
often determined by X-ray crystallography or
NMR spectroscopy, is required ([3],[4]). The
protein and a library of ligands are used as input
for docking programs.

Docking depends on two main components: the
search algorithm, which explores possible ligand
orientations and conformations relative to the
protein, and the scoring function, which estimates
binding affinity. Exhaustively searching all
conformations and orientations is computationally
impossible. Most programs account for flexible
ligands, and some also incorporate flexible protein
receptors to improve prediction accuracy

(3L[23D.
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Recent docking innovations include Al-assisted
methods and flexible receptor modeling to
increase accuracy and speed in virtual screening

([231.[24D).

e ADMET

ADMET-score = -4

ADMET properties—absorption, distribution,
metabolism, excretion, and toxicity—are critical
in assessing drug candidates. An effective
compound must not only target the intended
receptor but also demonstrate suitable ADMET
characteristics at therapeutic doses ([8],[23]).

”
—~—

w, X g
1

E w
I
iwl

Figure 6

2) Wi= Wi X Wy x Wy

3)) wai=[0.5x(1~-((-p) xlog:p-(1-p)=log:(1-p)))]+0.53

4)

TP+ TN

O =

1 B% LN+ FP +FIN

Numerous in silico models predict ADMET
properties. One approach is the ADMET-score,
which evaluates drug-likeness based on 18
ADMET endpoints predicted via the admetSAR
web server. Each property is weighted according
to model accuracy, pharmacokinetic importance,
and usefulness ([23],[24]).

Performance was evaluated using FDA-approved
drugs, ChEMBL small molecules, and drugs
withdrawn due to safety concerns. Analysis
showed significant differences among these
datasets, with no clear linear correlation between
the ADMET-score and quantitative estimate of
druglikeness (QED) ([23]).

For scoring, beneficial endpoints (e.g., hERG-)
are assigned a value of 1, while harmful endpoints
(e.g., hERG+, Ames, CARC, CYP inhibitors,
OCT2, P-gp inhibitors) are assigned 0. The

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

ADMETscore is normalized between 0 and 1,
where 1 represents the most favorable profile.
Scores below 0 are set to 0, and those above 1 are
capped at 1 ([23],[24]). This system allows
prioritization of compounds with optimal
pharmacokinetic and safety profiles.

[D] Combinatorial Chemistry

Combinatorial chemistry is a strategy that
generates a large collection of structurally diverse
compounds, known as a chemical library, by
systematically linking different “building blocks”
through repetitive covalent reactions [25]. Once
synthesized, these = compounds can be
simultaneously screened for their interactions with
specific biological targets [25,26]. Active
compounds can be identified directly in position-
addressable libraries or indirectly through
decoding techniques using chemical or genetic
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methods. Common approaches include phage
display, yeast display, bacterial display, mRNA
display, = one-bead-one-compound (OBOC),
DNAencoded chemical libraries (DECL), and
solution-phase mixture libraries [25,28].

Besides creating a vast number of compounds,
these methods rapid
concurrent screening against specific drug targets
[25,29]. Lower-throughput techniques, such as
parallel synthesis libraries and planar microarray
libraries, produce more focused libraries [25].
Planar microarrays are mainly used for peptide
research but, in principle, can be adapted for other

combinatorial allow

compound types through automation. Focused
small-molecule libraries, typically consisting of
hundreds of compounds, are
especially valuable for lead optimization when
combined with  computational  chemistry
[25,26,30].

to thousands

e High-Throughput Screening (HTS)

High-Throughput Screening (HTS)
testing a large number of potential bioactive
compounds against a target biological process or
event [5,25]. HTS is applied to combinatorial
chemistry libraries, including genomic, protein,
peptide, and DNA-encoded libraries (DECL)
[5,25,28]. The main aim is to accelerate drug
discovery by screening vast numbers of
compounds, often hundreds of thousands, at rates
exceeding 20,000 compounds per week [5,25].
Advanced HTS relies on assay adaptation, robotic
systems, and optimized implementation strategies.
UltraHigh-Throughput Screening (UHTS) extends
this further, enabling the testing of up to 100,000
compounds per day while reducing costs,
manipulation steps, and enhancing efficiency
[25,29,30].

involves

e Combinatorial Chemistry and QSAR
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Combinatorial chemistry combined with HTS has
become a key method for identifying active
compounds from large chemical libraries [25,26].
Integration with Quantitative Structure-Activity
Relationship (QSAR) studies helps reduce drug
development costs by screening compounds
virtually, filtering out those predicted to be toxic
or having poor pharmacokinetic profiles
[2,19,25,27]. Techniques include classical linear
methods, such as partial least squares, as well as
nonlinear approaches [2,19].
machine learning and pattern recognition methods
are being applied to rapidly and accurately assess
large compound datasets, supported by
chemoinformatics tools for QSAR modeling
[10,26,30].

Increasingly,

e Drug Discovery from Natural and
Synthetic Sources
Drug discovery involves identifying and

developing new therapeutic agents from diverse
sources [1,6,7]:

1. Natural Products:

Plants, microorganisms, animals, and marine
organisms have historically provided bioactive
compounds [6,7]. Plants yield secondary
metabolites such as alkaloids, flavonoids, and
glycosides—for example, morphine from Papaver
somniferum and paclitaxel from Taxus brevifolia
[6]. Microorganisms produce antibiotics like
penicillin  from Penicillium notatum and
streptomycin from Streptomyces griseus [6].
Marine organisms have emerged as a source of
novel drugs, such as ziconotide from cone snail
venom and trabectedin from sea squirts [7].
Animals have also inspired drugs, like captopril,
derived from the venom of the Brazilian pit viper
[6,7].

2. Synthetic Chemistry:
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Synthetic approaches allow the creation of entirely
new molecules or modifications of natural
compounds to improve their properties [1].
Aspirin, for instance, is a synthesized derivative of
salicylic acid from willow bark [1]. Synthetic
drugs such as propranolol (beta-blocker) and
fentanyl (opioid) illustrate the scalability and
versatility of this approach [1]

3. Biotechnology:

Genetic engineering enables the production of
biologics, including recombinant proteins and
monoclonal antibodies [1,10]. Examples include
insulin and adalimumab, which are effective
against complex conditions like cancer and
autoimmune diseases [1,10].

Applications of Drug Design

Drug design, whether structure-based, ligand-
based, or computationally aided, is a cornerstone
of modern pharmaceutical research. Its
applications span the discovery, optimization, and
development of therapeutic agents, improving
efficiency, reducing costs, and minimizing
trialand-error in drug development [31,32,33].

1. Development of Targeted Therapeutics

Drug design enables the rational creation of
molecules that selectively interact with biological
targets, including enzymes, receptors, or nucleic
acids. Structure-based drug design (SBDD) has
been instrumental in developing inhibitors for HIV
protease, tyrosine kinases, and other cancerrelated
targets [33,34]. Ligand-based drug design (LBDD)
assists in developing compounds when the 3D
structure of the target is unknown by utilizing
information from known active ligands [33,34].
Computational tools such as molecular docking
and pharmacophore modeling help predict binding
affinities and interactions, accelerating the
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identification of potent candidates [34,35].
Examples: Imatinib (Gleevec) for chronic myeloid
leukemia and Oseltamivir (Tamiflu) for influenza

were developed using CADD approaches [31,33].

2. High-Throughput Screening (HTS) and
Combinatorial Libraries

Combinatorial chemistry combined with HTS
allows rapid evaluation of large compound
libraries. Structurally diverse molecules are
generated systematically, enabling thousands to
millions of compounds to be screened efficiently
[25,26,28,30]. DNA-encoded chemical libraries
(DECL) and one-bead-one-compound (OBOC)
libraries are commonly used for hit identification
[28,30]. Computational filtering and virtual
screening help prioritize compounds with
favorable pharmacokinetic and toxicity profiles,
reducing experimental screening costs and time
[27,31].

3. Optimization of Lead Compounds

After hit identification, drug design facilitates lead
optimization to improve efficacy, selectivity, and
safety. Molecular dynamics simulations, QSAR
modeling, and ADMET predictions guide
structural refinement [2,19,23,26,27]. Predictive
tools, such as ADMET scoring and Al-based
models, allow simultaneous evaluation of multiple
candidates, enhancing the selection of promising
leads [23,26,27,31].

4. Natural Product Drug Discovery

Drug design aids in identifying and optimizing
bioactive compounds from natural sources such as
plants, microorganisms, marine organisms, and
animals [6,7,31]. Rational modifications improve
efficacy, bioavailability, and reduce toxicity.

Examples: Morphine from Papaver somniferum
and paclitaxel from Taxus brevifolia [6]
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Antibiotics like penicillin from Penicillium
notatum and streptomycin from Streptomyces
griseus.[6] Marine-derived drugs such as
ziconotide from cone snail venom [7]

5. Synthetic and Biotechnological
Development

Drug

Synthetic chemistry and biotechnology benefit
from drug design by enabling the creation of new
molecules or modifying existing compounds
[31,32].

Examples: Aspirin, a synthetic derivative of
salicylic acid, designed for improved efficacy [31]
Beta-blockers like propranolol and opioids like
fentanyl illustrate scalability [31] Biologics,
including recombinant insulin and monoclonal
antibodies (e.g., adalimumab), optimized using
computational modeling and AI[10,26,31]

6. ADMET and Toxicity Prediction

In silico ADMET modeling predicts absorption,
distribution, metabolism, excretion, and toxicity,
prioritizing  drug-like ~ compounds  while
eliminating  those  with  adverse effects
[23,26,27,31]. Tools like ADMET]Iab 3.0 and Al-
based models enable rapid, large-scale
evaluations, saving time and cost in early drug
development [23,26,27,31].

7. Personalized and Precision Medicine

CADD and Al-driven approaches facilitate
personalized therapies by predicting patient-
specific responses based on genetic, metabolic,
and proteomic data. This enhances efficacy and
minimizes adverse effects, contributing to
precision medicine [10,11,31].

8. Emerging Applications
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e Recent advances in Al, machine learning, and

ultra-large  combinatorial libraries have
expanded drug design applications:

e Machine learning-guided virtual screening for
ultra-large libraries [28,30,31]

e Evolutionary algorithms for
compound libraries [29,31]

e Al-driven molecular modeling and ADMET
prediction for next-generation drug discovery

[26,31]

optimizing

“While these approaches and applications
highlight the potential of modern drug
discovery, it is equally important to recognize
the challenges and limitations that continue to
constrain progress.”

CHALLENGES AND LIMITATIONS

Despite significant advances in technology and
methodology, drug discovery continues to face
multiple challenges and limitations that hinder
efficiency and innovation. One of the most
persistent obstacles is the high cost and extended
development timelines. It is estimated that
bringing a single drug to market may take more
than a decade and require billions of dollars in
investment [35]. Although new technologies such
as automation and Al are increasingly adopted, the
paradox remains that drug development has not
become substantially more cost-effective or time-
efficient [35].

Another major limitation is the high attrition rate
in clinical trials, where the majority of drug
candidates fail to progress to approval. Failures
often occur due to unforeseen safety concerns,
poor efficacy, or suboptimal pharmacokinetic
properties, reflecting the unpredictable nature of
complex biological systems [34]. This high failure
rate underscores the inherent risks of drug
discovery and the urgent need for more predictive
preclinical models.
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The integration of artificial intelligence (Al),
while promising, also presents its own set of
challenges. Issues related to data quality, bias,
model interpretability, and ethical considerations
continue to restrict the widespread adoption of Al
in drug development [36]. Furthermore, the
complexity of biological networks often exceeds
the current capabilities of computational models,
limiting their predictive accuracy [36].

Regulatory hurdles add another layer of difficulty,
as evolving policies and the absence of clear
guidance for novel therapeutics frequently delay
approvals [37]. These delays not only extend
development timelines but also impact patient
access to innovative therapies. Similarly,
polypharmacology—designing drugs that act on
multiple targets—offers therapeutic potential but
raises concerns about unintended off-target
effects, which can increase the risk of adverse

outcomes [38].

Equally pressing are the challenges in drug
delivery systems, where ensuring stability,
targeted release, and biological compatibility
remain major barriers. Despite progress,
scalability and reproducibility continue to impede
the successful translation of novel delivery
platforms into clinical practice [39]. These issues
are compounded by the complexity of disease
mechanisms  themselves, as  incomplete
understanding of disease biology complicates
target identification and drug design [40].

Finally, academic drug discovery faces systemic
limitations. Many universities and research
institutes struggle with inadequate funding, limited
infrastructure, and lack of prioritization for
translational drug development [41]. As a result,
promising discoveries in the academic setting
often fail to progress toward commercialization,
highlighting the gap between early-stage research
and industrial application.
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Collectively, these challenges—ranging from
economic constraints and scientific uncertainty to
regulatory and  infrastructural = barriers—
underscore the complexity of drug discovery.
Addressing them will require interdisciplinary
collaboration, integration of
technologies, and adaptive regulatory frameworks
to accelerate the translation of innovative ideas

into safe and effective therapies.

advanced

CONCLUSION

Drug design and discovery remain a dynamic and
rapidly advancing discipline that is central to
improving healthcare and patient
[1,3,6]. Traditional strategies, such as the use of

outcomes

natural products, continue to play an important
role, but they are now complemented by modern
including artificial intelligence,
genomics, and nanotechnology, which are
reshaping the way novel therapeutics are
conceived and developed [7,9-11]. Each phase of
the discovery pipeline—from target identification
and validation through to preclinical and clinical

innovations

evaluation— 1illustrates the synergy between
scientific insight and technological advancement
[1,3,4].

Nevertheless, persistent barriers such as high
costs, long development timelines, and high
attrition rates remain major limitations to
efficiency [34,35]. The growing threat of drug
resistance further underscores the urgency for new
discovery strategies. Promising solutions are
emerging through the application of machine
learning, precision medicine, sustainable “green
chemistry” approaches, and advanced drug
delivery systems [10,11,26,39]. Together, these
innovations are enabling more predictive,
efficient, and safer drug development pathways.

Ultimately, drug discovery exemplifies human
ingenuity in addressing the complexities of disease
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biology. Its interdisciplinary nature—spanning
chemistry, biology, data science, and clinical

medicine—ensures a

continuous flow of

innovation with the potential to reshape medical
treatment and significantly improve global health
outcomes [1,3,5,11].
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