

Review Article

Pharmacogenomics the Genetic Blue Print for Personalized Drug Therapy

SK. Abdul Muzeer, J. T. SaiKrishna, D. Raviteja, V R Teja Sruthi Pagadala*

Nirmala College of Pharmacy, Atmakur, Mangalagiri, Andhra Pradesh, India - 522503

ARTICLE INFO

Published: 12 Feb 2026

Keywords:

Pharmacogenomics,
Personalized medicine,
Genetic polymorphism,
Drug metabolism, Genomic
sequencing, Precision
therapy, Adverse drug
reactions.

DOI:

10.5281/zenodo.18621853

ABSTRACT

The pharmacogenomics represents a transformative approach in modern medicine, combining genomic science with pharmacology to personalize drug therapy. By identifying genetic variations that influence drug absorption, metabolism and response pharmacogenomics enables the optimization of treatment outcomes while minimizing adverse effects. This field bridges the gap between genetic diversity and therapeutic precision, allowing clinicians to tailor drug selection and dosage for individual patients. Recent advances in genomic sequencing bioinformatics, and also molecular diagnostics have accelerated the clinical application of pharmacogenomics across oncology, cardiology, and psychiatry and However, challenges such as limited population-specific data, ethical considerations, and integration into the routine healthcare systems persist. The future of pharmacogenomics lies in large-scale genomic databases, artificial intelligence-driven prediction models, and global collaboration to achieve true individualized and equitable healthcare. At its also conceptual core, pharmacogenomics functions as a genetic navigation system for clinicians. By decoding the patient genome, it provides predictive maps indicating the safest therapeutic routes.

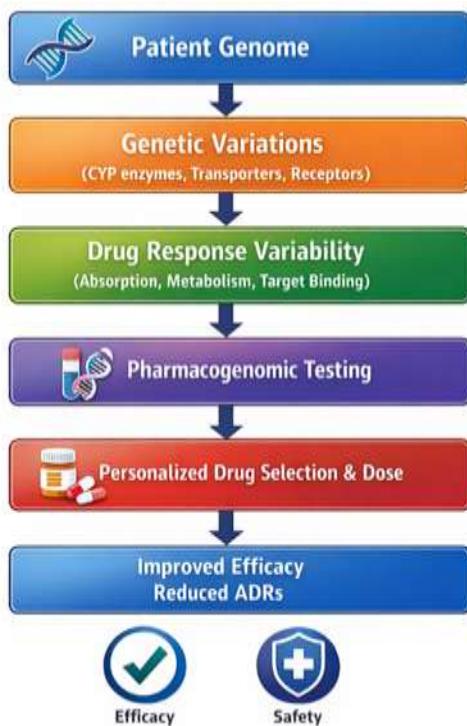
INTRODUCTION

Pharmacogenomics stands at the intersection of genetics and pharmacology, offering a revolutionary approach to understanding variability in drug response among individuals. Traditional pharmacotherapy largely follows a population-based “one-size-fits-all” model, which often fails to account for interindividual differences in efficacy and safety.

Pharmacogenomics shifts this paradigm by focusing on patient-specific genetic factors that influence drug response, thereby enabling personalized therapeutic strategies.

Genetic polymorphisms in drug-metabolizing enzymes, transporters, and drug targets play a critical role in determining therapeutic outcomes. Identification of these gene–drug interactions allow clinicians to predict drug efficacy, optimize

*Corresponding Author: V R Teja Sruthi Pagadala


Address: Nirmala College of Pharmacy, Atmakur, Mangalagiri, Andhra Pradesh, India - 522503

Email : tejam.pharmacy@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

dosing, and reduce adverse drug reactions. With rapid advancements in genomic technologies, pharmacogenomics is evolving from a research discipline into a clinically applicable tool. Its integration into healthcare promises a future where prescribing the right drug at the right dose for the right patient becomes the standard of care rather than an exception.

Flowchart 1: Conceptual Framework of Pharmacogenomics in Personalised Drug Therapy

2. CLASSIFICATION OF PHARMACOGENOMICS:

Pharmacogenomics can be classified based on genetic influence, mechanism of action, and clinical application.

2.1 Based on Genetic Variations

- **Monogenic pharmacogenomics:**

Drug response is influenced by variation in a single gene.

Example: CYP2D6 polymorphisms affecting the metabolism of codeine and certain antidepressants.

2.2 Based on Mechanism of Drug Response

- **Pharmacokinetic pharmacogenomics:**

Focuses on genetic differences affecting absorption, distribution, metabolism, and excretion of drugs.

Example: CYP450 enzyme polymorphisms altering drug metabolism.

2.3 Based on Clinical Application

- **Predictive pharmacogenomics:**

Predicts patient response prior to therapy initiation.

- **Diagnostic pharmacogenomics:**

Utilizes genetic testing to identify suitable drug therapy.

- **Therapeutic pharmacogenomics:**

Applies genetic information to guide drug selection and dosage adjustment.

3. THE ROLE OF GENETICS IN DRUG RESPONSE:

Genetic variations influencing drug response primarily occur in genes encoding drug-metabolizing enzymes, transporters, and drug targets.

3.1 Drug-Metabolizing Enzymes

- Cytochrome P450 (CYP) enzymes are the most extensively studied. Polymorphisms can classify individuals as poor, intermediate, extensive, or ultra-rapid metabolizers.

- Example: CYP2C9 variants significantly affect warfarin metabolism and anticoagulant response.

3.2 Drug Transporters

- Transport proteins such as P-glycoprotein (ABCB1) and OATP1B1 regulate drug movement across biological membranes. Genetic variations can alter drug bioavailability and tissue distribution, increasing the risk of toxicity or therapeutic failure.

3.3 Drug Targets and Receptors

- Polymorphisms in drug receptors or signal transduction proteins can modify drug binding affinity and downstream pharmacological effects.

3.4 Regulatory and Non-Coding Genes

- Emerging evidence highlights the role of microRNAs, epigenetic modifications, and transcriptional regulators in modulating drug response without altering the DNA sequence.

Table 1: Gene Variants and Drug Response Phenotypes

Gene	Drug	Responder Phenotype	Non-Responder Phenotype
TPMT	Thioquanine	Extensive metabolizer	Poor metabolizer
CETP	Pravastatin	B1	B2
ACE	Enalapril	Long	Short
CYP2C9	Warfarin	Extensive metabolizer	Poor metabolizer

4. PHARMACOGENOMICS IN REDUCING ADVERSE DRUG REACTIONS:

1. Predictive Genetic Testing:

Before starting treatment, genetic tests identify high-risk patients, allowing safe drug selection or dosage modification.

2. Personalized Dosing:

Genotype-based dosing helps maintain therapeutic levels while avoiding toxicity (e.g., warfarin dosing guided by CYP2C9 and VKORC1 genes).

3. Safer Drug Alternatives:

Genetic information helps clinicians choose alternative medications that suit the patient's genotype.

4. Integration with Clinical Data:

Including pharmacogenomic profiles in electronic medical records supports real-time decision-making to prevent ADRs.

Table 2: Role of Pharmacogenomics Across Major Clinical Area

Sr. No	Clinical Area	Applications
1	Personalized drug therapy	Tailoring drug selection and dosage to individual genetic profiles
2	Cardiovascular therapy	Guiding therapy with antiplatelet or anticoagulant drugs
3	infectious disease treatment	Optimizing antiviral therapy

Pharmacogenomics represents a major shift in modern medicine, transforming how clinicians approach drug therapy. Instead of a "one-size-fits-all" model, it allows for personalized treatment based on an individual's genetic profile. The ultimate goal is to maximize therapeutic benefit while minimizing adverse effects. Pharmacogenomic testing helps determine the

most effective and safe dose for each patient. For instance, genetic variants in metabolizing enzymes (like CYP2D6, CYP2C9, or TPMT) can drastically alter drug clearance, guiding precise dose adjustments in cancer therapy, pharmacogenomics assists in choosing targeted therapies that match tumor-specific mutations. Drugs like imatinib, trastuzumab, and erlotinib exemplify genotype-guided treatment success, improving survival rates and reducing systemic toxic pharmacogenomics is moving toward using gene signatures to identify drug resistance caused by methylation or histone modification patterns. Targeted nutrigenomic or microRNA-based co-therapies could selectively reverse epigenetic silencing in resistant patients, reviving responsiveness to standard medicines. Pharmacogenomics is evolving beyond static gene-drug matching into adaptive systems that forecast dose requirements over time. By integrating genetic information with real-time physiological data (like liver enzyme fluctuations and metabolic rhythms), clinicians can predict when a patient's drug metabolism may shift, allowing pre-emptive dose adjustment rather than reactive correction.

5. TECHNOLOGICAL ADVANCES IN PHARMACOGENOMICS:

Pharmacogenomics has evolved far beyond simple gene-drug association studies, moving toward an era of precision guided by advanced integrative technologies. Recent technological breakthroughs are redefining how genetic variability influences therapeutic outcomes, introducing a multidimensional understanding of drug response that merges genomics with real-time biological data. A major innovation lies in next-generation functional genomics, which uses single-cell transcriptomic mapping to reveal drug-response patterns at the cellular level. Unlike traditional bulk sequencing, these approaches identify microcellular variations that explain why patients with identical genotypes show different therapeutic outcomes. Combined with AI-driven multi-omic integration, it enables cross-analysis of genomics, proteomics, metabolomics, and epigenomics to predict patient-specific drug efficacy and toxicity before clinical exposure. Emerging nanogenomic biosensors represent another technological leap. These are ultra-sensitive nano-devices embedded with programmable DNA-recognition chips that can instantly detect polymorphisms in metabolic genes such as CYP2D6 or TPMT directly from body fluids. Their portability could shift pharmacogenomic testing from centralized laboratories to bedside or home-based precision monitoring.

Figure 1: Technological advances in Pharmacogenomics

6. CHALLENGES AND LIMITATIONS:

Despite the promising therapeutic potential of herbal medicines in cancer management, their integration into modern oncological practice faces several unaddressed challenges and intrinsic limitations.

A complexity of herbal formulations presents a major obstacle, as most plant extracts contain hundreds of bioactive molecules that act synergistically or antagonistically. This molecular diversity makes it difficult to establish consistent pharmacological profiles, leading to unpredictable therapeutic outcomes. Another challenge lies in the dynamic nature of phytochemical composition. The concentration of active constituents can vary drastically with geographical location, cultivation conditions, harvesting time, and extraction methods. Such variations compromise

reproducibility, making standardization and clinical validation difficult. Furthermore,

traditional extraction techniques often fail to isolate the true bioactive fraction responsible for anticancer activity, leading to over- or underestimation of efficacy. As more people undergo genetic testing, the volume of genomic data is becoming massive but paradoxically, the true drug-response signals are getting diluted. This “data saturation” makes it hard to distinguish clinically useful gene-drug relationships from background genetic noise. Gene expression patterns related to drug metabolism are not constant over time. Circadian rhythm, infection, or hormonal changes can transiently alter pharmacogenomic profiles, making “static” DNA-based predictions less reliable in real-world settings.

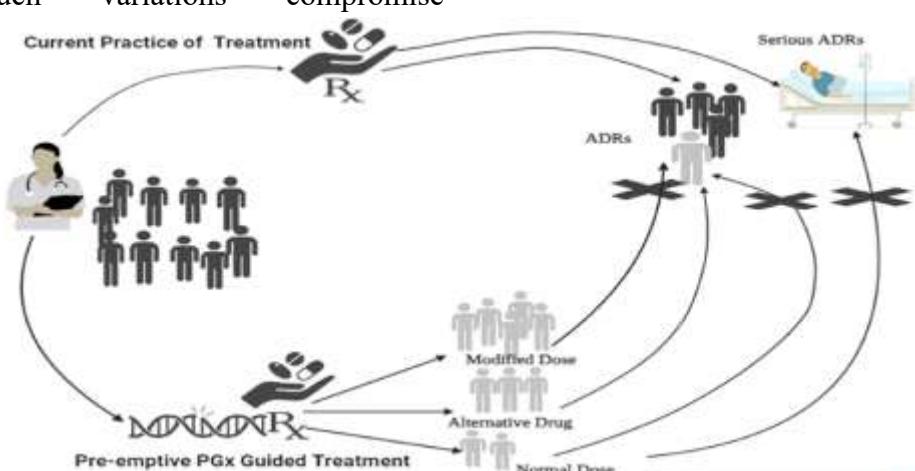


Figure 2: Impact of Pharmacogenomic-Guided Therapy on ADRs

7. FUTURE PERSPECTIVES:

The future of pharmacogenomics is moving toward a dynamic integration of genetic intelligence with real-time therapeutic decision-making. Instead of using static genetic tests, future systems will employ adaptive genomic monitoring, where an individual's gene expression changes will be tracked continuously using wearable micro-sensors. These devices may

interpret molecular signals, such as circulating DNA fragments or epigenetic modifications, and instantly adjust drug dosages through AI-driven clinical software. A major upcoming shift will be the fusion of pharmacogenomics with digital therapeutics and nanomedicine. Smart nanoparticles will be designed to recognize the patient's genetic polymorphisms and selectively release drugs at optimal rates. This genetic-responsive drug delivery could eliminate adverse

drug reactions by ensuring that drug activity perfectly aligns with cellular metabolism at the genetic level. The future of pharmacogenomics lies in redefining how humanity perceives medicine not as a one-size-fits-all solution, but as a living interaction between the genome and the environment. In the coming decades pharmacogenomics is expected to evolve from a diagnostic adjunct into a predictive and preventive tool that can forecast an individual's therapeutic trajectory even before disease onset. The genetic blueprint of every person. Future pharmacogenomics will move beyond drug metabolism to include the genetic mapping of neural receptor dynamics. Individual differences

in neurotransmitter receptor gene expression (such as dynamic receptor plasticity genes) will allow precision-based psychopharmacology — where antidepressants or antipsychotics are chosen not just by genetic polymorphisms but also by predicted neuro-adaptive responses unique to each patient. The next generation of pharmacogenomic research will integrate RNA modification profiles (like m6A methylation) to predict transient drug responses. Unlike DNA-based prediction, these RNA signatures can change rapidly with environment, diet, or stress opening a new field called "Dynamic Pharmacogenomics", where drug regimens are adjusted in real-time according to changing gene expression patterns.

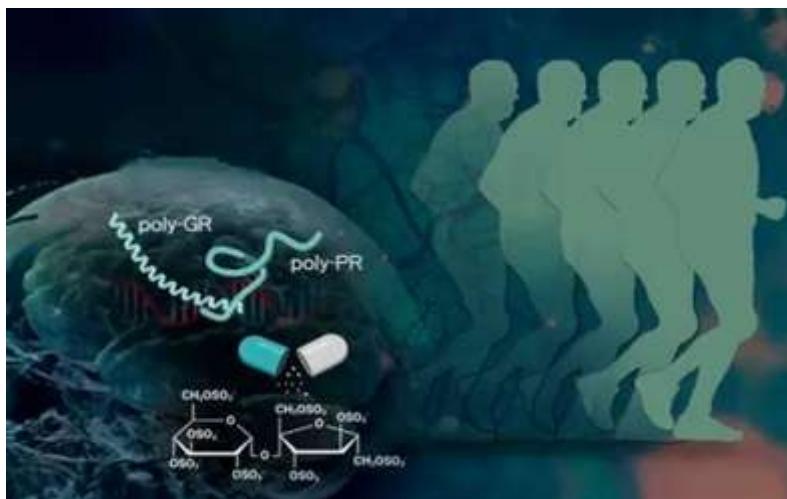


Figure 3: Protein Aggregation and Disease Progression

CONCLUSION:

Pharmacogenomics stands at the intersection of genetics and therapeutics, redefining how medicine interacts with individual biology. Its essence lies not only in predicting drug response but also in understanding the silent language of genes that shape our pharmacological destiny. As healthcare transitions from generalized treatment to genetic personalization, pharmacogenomics emerges as a cornerstone of precision medicine. However, its true success will not depend solely on scientific innovation but on ethical integration,

equitable access, and patient awareness. The journey of pharmacogenomics is not merely about tailoring drugs it is about tailoring hope, ensuring that every individual receives therapy that resonates with their genetic rhythm. In the coming decades, it may evolve from a supportive discipline to a guiding force that unites pharmacology, genomics, and human individuality into a single therapeutic harmony. Pharmacogenomics stands as a transformative bridge between genetics and therapeutics, redefining how medicine interacts with individuality. Rather than focusing on universal

treatment standards, it introduces the philosophy that every genome holds a distinct therapeutic code waiting to be understood. The true strength of pharmacogenomics lies not only in predicting drug responses but in reimagining healthcare as a continuously adaptive system that evolves with each patient's genetic insight. As technology integrates genomics into everyday practice, the discipline moves beyond being a laboratory science into a clinical compass guiding precise, safer, and more compassionate therapy. Ultimately, pharmacogenomics is not just the future of personalized medicine it is the ethical evolution of medicine itself, ensuring that therapy respects both the biology and the individuality of every human being.

REFERENCES

1. Andhi, N., & Darawadi, B. (2024). The genetic blueprint of cardiovascular therapy: Pharmacogenomics for improved efficacy and safety. *Journal of Indian College of Cardiology*, 14(3), 79–87.
2. Samajdar, S. S., Maheshwari, A., Tiwari, A., Mukherjee, S., Biswas, K., Saboo, B., & Joshi, S. R. (2024). Decoding the genetic blueprint: Advancing personalized medicine in type 2 diabetes through pharmacogenomics. *Clinical Diabetology*, 13(6), 386–396.

3. Roederer, M. W., Kuo, G. M., Kisor, D. F., Frye, R. F., Hoffman, J. M., Jenkins, J., & Weitzel, K. W. (2017). Pharmacogenomics competencies in pharmacy practice: A blueprint for change. *Journal of the American Pharmacists Association*, 57(1), 120–125.
4. Madadi, P., & Koren, G. (2012). Pharmacogenomics principles: Introduction to personalized medicine. In *Pharmacogenomics in clinical therapeutics* (pp. 1–14).
5. Kisor, D. F., Kane, M. D., Sprague, J. E., & Talbot, J. N. (2013). *Pharmacogenetics, kinetics, and dynamics for personalized medicine*. Jones & Bartlett Publishers.
6. Greenbaum, D. (2008). Incentivizing pharmacogenomic drug development: How the FDA can overcome early missteps in regulating personalized medicine. *Rutgers Law Journal*, 40, 97–140.
7. Owusu Obeng, A., Egelund, E. F., Alsultan, A., Peloquin, C. A., & Johnson, J. A. (2014). CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: Are we ready for clinical implementation of pharmacogenomics? *Pharmacotherapy*, 34(7), 703–718.
8. Kemper, A. R., Trotter, T. L., Lloyd-Puryear, M. A., Kyler, P., Feero, W. G., & Howell, R. R. (2010). A blueprint for maternal and child health primary care physician education in medical genetics and genomic medicine. *Genetics in Medicine*, 12(2), 77–80.
9. Frick, A., Benton, C., Suzuki, O., Dong, O., Howard, R., El-Sabae, H., & Wiltshire, T. (2018). Implementing clinical pharmacogenomics in the classroom: Student pharmacist impressions of an educational intervention including personal genotyping. *Pharmacy*, 6(4), 115.
10. Tremmel, R., Schreeck, F., Jaeger, S., Schricker, S., Schaeffeler, E., Igel, S., &

Schwab, M. (2025). Clinical implementation of pharmacogenomics and drug–drug interaction screening in a German academic teaching hospital and outpatient follow-up. *Clinical Pharmacology & Therapeutics*.

11. Weitzel, K. W. (2018). Pharmacists' advancing role in pharmacogenomics. *Journal of the American Pharmacists Association*, 58(6), 593–595.
12. Liko, I., Corbin, L., Tobin, E., Aquilante, C. L., & Lee, Y. M. (2021). Implementation of a pharmacist-provided pharmacogenomics service in an executive health program. *American Journal of Health-System Pharmacy*, 78(12), 1094–1103.
13. Di Paolo, A., & Luci, G. (2021). Personalized medicine of monoclonal antibodies in inflammatory bowel disease. *Frontiers in Pharmacology*, 11, 610806.
14. Maamari, D., El-Khoury, H., Saifi, O., Muwakkit, S. A., & Zgheib, N. K. (2020). Implementation of pharmacogenetics to individualize treatment regimens for children with acute lymphoblastic leukemia. *Pharmacogenomics and Personalized Medicine*, 295–317.
15. Angelini, S., Ravegnini, G., Fletcher, J. A., Maffei, F., & Hrelia, P. (2013). Clinical relevance of pharmacogenetics in gastrointestinal stromal tumor treatment. *Pharmacogenomics*, 14(8), 941–956.
16. Schmidt, R. (2025). Unlocking the code of innovation: TRIZ theory's blueprint for precision medicine breakthroughs. In *Innovations in healthcare and outcome measurement* (pp. 3–18). Springer Nature.
17. Shah, A. B., & Lee, K. Y. (2025). Integrative metabolomics and system pharmacology reveal the antioxidant blueprint of *Psoralea corylifolia*. *Scientific Reports*, 15(1), 28632.
18. Kost, J. A., & Ruaño, G. (2020). Pharmacogenetics and the personalization of pain management. *Connecticut Medicine*, 84(1).
19. Rasmussen, H. B., Bjerre, D., Linnet, K., Jürgens, G., Dalhoff, K., Stefansson, H., & INDICES Consortium. (2015). Individualization of treatments with drugs metabolized by CES1. *Pharmacogenomics*, 16(6), 649–665.
20. He, H. Y., Liu, M. Z., Zhang, Y. L., & Zhang, W. (2017). Vitamin pharmacogenomics. *Genomics, Proteomics & Bioinformatics*, 15(2), 94–100.
21. Medhasi, S., Pinthong, D., Pasomsub, E., Vanwong, N., Ngamsamut, N., Puangpetch, A., & Sukasem, C. (2016). Pharmacogenomic study of risperidone in autism spectrum disorder. *Frontiers in Pharmacology*, 7, 475.
22. De Andrés, F., Terán, S., Hernández, F., Terán, E., & Llerena, A. (2016). To genotype or phenotype for personalized medicine? *OMICS*, 20(12), 699–710.
23. Talwar, P., Silla, Y., Grover, S., Gupta, M., Grewal, G. K., & Kukreti, R. (2014). Systems pharmacology and pharmacogenomics for drug discovery. In *Systems and synthetic biology* (pp. 173–193). Springer.
24. Chen, C., Liu, Y., Li, Q., Zhang, Z., Luo, M., Liu, Y., & Han, L. (2023). Genetic and pharmacogenomic landscapes in cancer. *Cancer Research*, 83(22), 3673–3680.
25. Uher, R. (2011). Genes, environment, and individual differences in treatment response. *Harvard Review of Psychiatry*, 19(3), 109–124.
26. Adesta, F., Mahendra, C., Junusmin, K. I., Rajah, A. M. S., Goh, S., Sani, L., & Irwanto, A. (2021). Pharmacogenomics implementation training. *Frontiers in Pharmacology*, 12, 684907.
27. Wang, H., Chan, K. Y. Y., Cheng, C. K., Ng, M. H., Lee, P. Y., Cheng, F. W. T., & Leung, K. T. (2022). Pharmacogenomic profiling of

pediatric AML. *Blood Cancer Discovery*, 3(6), 516–535.

28. Prendecki, M., Kowalska, M., Toton, E., & Kozubski, W. (2020). Genetic editing and pharmacogenetics in neurocognitive disorders. *Current Alzheimer Research*, 17(3), 238–258.

29. Giri, A. K., Khan, N. M., Grover, S., Kaur, I., Basu, A., Tandon, N., & Bharadwaj, D. (2014). Pharmacogenetic variations influencing warfarin dosage in Indians. *Pharmacogenomics*, 15(10), 1337–1354.

30. Hsu, D. S., Balakumaran, B. S., Acharya, C. R., Vlahovic, V., Walters, K. S., Garman, K., & Potti, A. (2007). Pharmacogenomic strategies for cisplatin-resistant cancer. *Journal of Clinical Oncology*, 25(28), 4350–4357.

31. Jayachandran, D., Laínez-Aguirre, J., Rundell, A., Vik, T., Hannemann, R., Reklaitis, G., & Ramkrishna, D. (2015). Model-based individualized chemotherapy dosing. *PLOS ONE*, 10(7), e0133244.

HOW TO CITE: SK. Abdul Muzeer, J. T. SaiKrishna, D. Raviteja, V R Teja Sruthi Pagadala, Pharmacogenomics the Genetic Blue Print for Personalized Drug Therapy, Int. J. of Pharm. Sci., 2026, Vol 4, Issue 2, 1924-1932. <https://doi.org/10.5281/zenodo.18621853>