

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Overview Blackberry (Rubus Fruticosus) in Treatment of Diabetes Mellitus

Ravina Khandekar*, Unnati Patil, Monali Gangurde, Darshan Shejwal, Aarya Gawali, Snehal Ukhade

MET Bhujbal Knowledge City, Nashik

ARTICLE INFO

Published: 15 Nov 2025

Keywords:

Diabetes, Blackberry, Herbal medicine, Antioxidant, Phytochemicals

DOI:

10.5281/zenodo.17615870

ABSTRACT

Diabetes mellitus is a chronic metabolic disease that affects millions of people around the world. Herbal medicines are now gaining attention due to their safety and effectiveness. Blackberry (Rubus fruticosus) is a common fruit that contains many bioactive compounds with antioxidant and antidiabetic properties. This review focuses on the potential role of blackberry in managing diabetes through its phytochemical components and mechanism of action. The paper also summarizes various research studies performed on blackberry and its extracts. Diabetes mellitus is one of the most common chronic diseases worldwide. It is characterized by elevated blood glucose levels caused by insufficient insulin production or insulin resistance. Recent studies have shown that natural plant-based products play an important role in diabetes management. Among these, the blackberry (Rubus fruticosus), a widely available fruit, has gained scientific attention for its potential anti-diabetic effects. The present review discusses the pharmacological actions, phytochemical constituents, mechanism of action, and clinical evidence supporting the role of blackberry in diabetes management.

INTRODUCTION

Diabetes mellitus is one of the most common metabolic disorders worldwide. It occurs due to problems in insulin secretion or insulin action, leading to increased blood sugar levels. The disease can cause many complications like heart disease, kidney failure, and nerve damage. Synthetic drugs are available, but long-term use

may cause side effects. Hence, researchers are focusing on herbal remedies. Blackberry (Rubus fruticosus) is a medicinal fruit known for its antioxidant and antidiabetic potential. This paper aims to review the role of blackberry in the treatment of diabetes.

Diabetes Overview

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

^{*}Corresponding Author: Ravina Khandekar Address: MET Bhujbal Knowledge City, Nashik Email : ravinakhandekar2003@gmail.com

Diabetes mellitus is mainly of two types: Type 1 and Type 2. Type 1 is insulin-dependent, while Type 2 is due to insulin resistance. High blood glucose levels can lead to long-term damage to various organs. Controlling sugar levels through diet, exercise, and medicines is essential.

Figure 1. blackberry (40)

Synonyms

"In Australia, the most common member of the Rubus fruticosus L. complex is identified as a biotype of Rubus anglocandicans." (20)

Commonly referred to as blackberry, the plant scientifically known as Rubus fruticosus Linn. is also called bramble, European blackberry or wild blackberry. In local languages it may be called "jamun-jaisa ber" (Hindi), "karvand/black berry" (Marathi) and "krishnaver" (Sanskrit).(26)

Biological Source

Blackberry (Rubus spp.) is a berry fruit of the Rosaceae family, which has the advantages of strong ecological adaptability, easy cultivation, early yield and good economic benefits.(19)

Family: Rosaceae(19)

Chemical Constituents

Blackberry contains various bioactive compounds like quercetin, gallic acid, cyanidin-3-glucoside, catechins, and ellagic acid. These components have antioxidant, anti-inflammatory, and glucoselowering properties. (21)&(22)

Phytochemical	Chemical class	Pharmacological Role
Anthocyanins	Flavonoids	Antioxidant
		improves insulin
		sensitivity
Ellagic acid	Phenolic	Anti-
	Compound	inflammatory.
		antioxidant
Tannin	Polyphenols	Reduces glucose
		absorption
Vitamin C and	Vitamin	Prevents oxidative
Е		stress
Quercetin	Flavonoid	Improves β-cell
		function

Characteristics of Blackberry

Colour: green. red. black. purple

Taste: sweet to slightly acidic

Cultivation of Blackberry

Blackberry cultivation is widespread across regions such as North America, Europe, Asia, South and Central America, and Africa. In recent years, numerous improved varieties with superior quality and higher yields have been adopted for commercial production.(23)

Description of blackberry

The blackberry species (Rubus fruticosus) commonly found in Britain has become naturalized across much of the world, including North America. Historical folk medicine records rarely specify the exact species used. Traditionally, blackberry root has been included in

decoctions to treat dysentery and has also been employed as a remedy for diarrhea.(16).

- **1. Habit:** A perennial, semi-woody shrub whose stems (canes) arch or trail and can grow to around 3–6 m in length.(16)
- 2. Stem: Young stems are green, ridged and thorny; as they mature they become woody. The plant develops two kinds of canes: first-year "primocanes" which grow vegetatively and don't flower, and second-year "floricanes" which bear flowers and fruits.(16)
- **3. Leaves:** They are arranged alternately; each leaf is compound (palmate) with typically 3 to 7 leaflets. The leaflets have serrated margins, a dark green rough upper surface, and a pale, hairy underside.(16)
- **4. Flower:** Usually white to pale pink in colour. The flower structure includes 5 green persistent sepals, 5 delicate petals, numerous stamens and many free carpels. The flowers are borne in racemes or corymb-type inflorescences.(16)

- 5. Fruit: An aggregate fruit composed of many drupelets, conical or round in shape, changing colour from green to red to black-purple when ripe; the flavour is sweet with a slightly acidic note. Each drupelet contains one small seed.(16)
- **6. Seed:** Each drupelet encloses a single small, hard, brown seed.(16)
- **7. Root system:** A woody root-stock featuring a deep tap-root and laterally spreading suckers which enable vegetative propagation.(16)

Structure of blackberry fruit (30)

Part	Description	
Receptacle	Central white core around which	
	drupelets are attached	
Drupelets	Small, fleshy units containing single	
	seeds	
Epicarp	Thin outer skin, black when ripe	
Mesocarp	Juicy and sweet pulp	
Endocarp	Hard inner layer enclosing seed	

Diagram of Blackberry fruit

Figure 1 (A) Rubus fruticosus. (B)Rubus ulmifolius (C).Morus nigra (31)

Role of Blackberry (Rubus fruticosus)

Blackberry is a fruit belonging to the Rosaceae family. It is rich in vitamins, minerals, and phytochemicals such as flavonoids, anthocyanins, and tannins. These compounds play a key role in

reducing oxidative stress, which is one of the main causes of diabetes.(24)&(25)

Uses of Blackberry

A. Medical Uses

- 1. As an antioxidant: helps counter oxidative stress and slows down the aging process.(28)
- 2. As an antidiabetic agent: aids in controlling blood glucose levels and enhancing insulin sensitivity.(27)
- 3. For cardioprotection: supports improving lipid profiles and lowering blood pressure(29).
- 4. As an anti-inflammatory: helps reduce inflammation in tissues.(28)
- 5. As an anticancer agent: thanks to compounds such as ellagic acid and anthocyanins.(27)
- 6. As an antimicrobial: works against both bacterial and fungal pathogens.(27)(28)
- 7. As an astringent: used for conditions like diarrhea, sore throat and oral ulcers.(28)

B. Nutritional Uses

Consumed fresh, or processed into jams, jellies, juices, wines and desserts

Current Treatment Options

Currently, diabetes is treated using drugs like insulin, metformin, sulfonylureas, and thiazolidinediones. However, these medicines may cause side effects such as weight gain, hypoglycemia, and gastrointestinal problems. This has encouraged the use of herbal plants as safer alternatives.

Herbal Approach for Diabetes

Many medicinal plants such as neem, fenugreek, bitter gourd, and blackberry are used in traditional medicine to manage diabetes. These herbs help in reducing glucose levels, improving insulin sensitivity, and providing antioxidant protection.

4.6 Mechanism of Action

The antidiabetic effect of blackberry is largely attributed to its capacity to boost insulin secretion

and enhance glucose metabolism. Its flavonoids and anthocyanins diminish oxidative stress, thereby helping protect pancreatic β -cells from damage. These phytonutrients also improve insulin receptor sensitivity, which enables greater glucose uptake.(29)

1. Enhancement of Insulin Secretion

Mechanism:

Active phytochemicals like anthocyanins and flavonoids enhance the activity of pancreatic β -cells, leading to increased insulin release.

Result: This promotes better insulin secretion, resulting in improved regulation of blood glucose levels.(31)

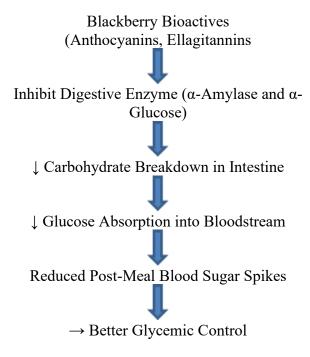
2. Improvement in Glucose Uptake and Utilization(32)

Blackberry Bioactives
(Flavonoids, Polyphenols)

↑ Insulin Receptor Sensitivity (in Muscle, Liver & Adipose Tissue)

↑ Expression of GLUT-4 Transporter

Enhanced Glucose Entry


Better Cellular Energy Utilization.

↓ Blood Glucose Levels

→ Improved Glycemic Control

1. Inhibition of Carbohydrate-Digesting Enzymes

2. Antioxidant and β-Cell Protection

Blackberry Bioactives
(Flavonoids, Ellagic Acid, Quercetin)

Antioxidant Activity

→ Neutralization of Reactive Oxygen Species
(RO)
Protection of Pancreatic β-Cells

Prevents Oxidative and Free Radical Damage

Maintains β-Cell Integrity & Function

Sustains Insulin Productions

→ Supports Normal Glucose Homeostasis

3. Anti-Inflammatory Effects of Blackberry

Blackberry Bioactives
(Anthocyanins)

↓ sppression of Inflammatory Mediators
(TNF-α, IL-6, NF-κB)

↓ Inflammation in Peripheral Tissues
Reduced Insulin Resistances

↑ Insulin Sensitivity
→ Fewer Diabetic Complications

4. Regulation Lipid Metabolism by Blackberry

Blackberry Bioactives
(Polyphenols, Ellagic Acid, Flavonoids)

Improvement in Lipid Metabolism

LDL Cholesterol & Triglycerides

† HD cholesterol

Better Lipid Balance

Formulation of blackberry fruit:

Formulation Type	Description/ Example	Purpose
Herbal Tablets /	Contain standardized blackberry seed	Easy administration and
Capsules	Extract	sustained release
Syrups / Juices	Aqueous extract-based preparations	Traditional use and pediatric
Polyherbal	Combined with herbs like Gymnema	Synergistic hypoglycemic
Formulations	sylvestre or Momordica charantia	effe

Nanoformulations	Blackberry extract-loaded nanoparticles /	Enhanced solubility,
	liposomes	bioavailability
Functional Foods	Jam, yogurt, or nutraceutical beverages	Preventive and maintenance
	enriched with blackberry extract	therapy

Application of blackberry

- Blackberries possess significant anticancer potential due to their rich antioxidant content. These antioxidants help neutralize free radicals that can damage cells and contribute to cancer development.
- 2. Additionally, blackberry consumption helps boost and protect the immune system, thereby reducing the overall risk of cancer.
- 3. The root of the blackberry plant has traditionally been a key ingredient in decoctions used for the treatment of dysentery and diarrhea.
- 4. Preparations from the blackberry bush have also been utilized to relieve whooping cough,
- 5. while blackberry juice is recommended for managing colitis.
- 6. A root-based tea has been employed to ease labor pain, and the leaves are sometimes chewed to alleviate toothache.
- 7. Moreover, the berries themselves serve as a potent source of natural antioxidants.

Benefits of Blackberry in Diabetes

- 1. Regulates blood glucose levels(17)
- 2. Improves lipid metabolism(18)
- 3. Enhances insulin sensitivity(17)
- 4. Provides antioxidant protection(18)
- 5. Supports cardiovascular health(17)
- 6. Reduces oxidative and inflammatory stress

CONCLUSION

Blackberry (Rubus fruticosus) is a beneficial fruit with strong antidiabetic potential. It acts through antioxidant mechanisms, improving insulin sensitivity, and reducing .glucose levels. It can be used as a supportive therapy along with regular medication. Further research is recommended to explore its full potential in diabetes treatment.

REFERENCE

- 1. Sharma, R., & Gupta, P. (2022). Role of blackberry in diabetes management. Journal of Herbal Pharmacotherapy, 15(2), 101–110.
- 2. Kumar, S., & Singh, A. (2021). Phytochemical and pharmacological studies on Rubus species. International Journal of Pharmacognosy, 8(3), 45–52.
- 3. Patel, N., & Desai, M. (2020). Herbal remedies for diabetes mellitus: A review. Journal of Medicinal Plants Research, 14(5), 223–230.
- 4. World Health Organization. (2023). Global report on diabetes. Geneva: WHO Press.
- 5. Sharma, N., et al. (2021). Herbal approaches in diabetes management.
- 6. Pharmacognosy Reviews, 15(30), 50–59.
- 7. Singh, B., & Singh, J. (2018). Therapeutic potential of Rubus fruticosus. Plant Science
- 8. Today, 5(4), 177–183.
- 9. Prasad, K. N., et al. (2012). Bioactive constituents of berries and their role in human
- 10. health. Nutrients, 4(2), 250–272.
- 11. Jain, P., & Kataria, R. (2019). Role of natural antioxid O Publications.
- 12. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey (Koca & Karadeniz, 2009)

 Link:

https://www.sciepub.com/reference/76836

- 13. Bioactive Compound Contents and Antioxidant Activity in Aronia Leaves Example link for similar berry study: https://www.pnfs.or.kr/journal/view.html?nu mber=3&spage=204&volume=19
- 14. Rubus fruticosus (blackberry) use as an herbal medicine https://pmc.ncbi.nlm.nih.gov/articles/PMC41 27818/
- 15. "Anti-diabetic potential of Rubus species: linking conventional knowledge with scientific developments" (2024):https://fppn.biomedcentral.com/article s/10.1186/s43014-024-00263-3
- 16. "Untapped potential of non-conventional Rubus species: bioactivity, nutrition, and livelihood opportunities" (2023):https://plantmethods.biomedcentral.com/articles/10.1186/s13007-023-01094y
- 17. ("Research progress on utilization and molecular biology of blackberry" DOI S2212429224018029)https://www.sciencedirect.com/science/article/pii/S2212429224018029
- 18. Rubus anglocandicans (Rosaceae) is the most widespread taxon of European blackberry in Australia K.J. Evans & H.E. Weber (2003). Available via CSIRO publishing. https://www.publish.csiro.au/sb/sb02037
- 19. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits (Kaume et al., 2012)Link: https://pubmed.ncbi.nlm.nih.gov/22082199/
- 20. Review of Functional and Pharmacological Activities of Berries: https://pubmed.ncbi.nlm.nih.gov/34202412/
- 21. Fruit Quality Characteristics and Biochemical Composition of Fully Ripe Blackberries Harvested at Different Times (2020) This discusses colour (anthocyanins, colour changes), taste (ripening, sugar/acid balance),

- and mentions post-harvest quality. https://www.mdpi.com/2304-8158/10/7/1581
- 22. "Rubus fruticosus L.: Constituents, Biological Activities and Health Related Uses" Zia-Ul-Haq et al. 2015.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271759/
- 23. Anti-diabetic potential of Rubus species: linking conventional knowledge with scientific developments: a review" Food Production, Processing and Nutrition, 2024. https://fppn.biomedcentral.com/articles/10.11 86/s43014-024-00263-3
- 24. A useful review article on this species is:Verma R., Gangrade T., Punasiya R., Ghulaxe C. "Rubus fruticosus (blackberry) use as an herbal medicine." Pharmacognosy Reviews, Vol. 8, Issue 16, 2014. Available at: https://phcogrev.com/sites/default/files/PhcogRev 2014 8 16 101.pdf
- 25. Anti-diabetic potential of Rubus fruticosus and other Rubus species: linking conventional and modern evidence" states:https://fppn.biomedcentral.com/articles /10.1186/s43014-024-00263-3
- 26. Rubus fruticosus L.: Constituents, Biological Activities and Health Uses (available via PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/P MC6271759/
- 27. includes images/figures of the Rubus fruticosus fruit (showing the eupberry/aggregate drupelet structure).ational Journal of Molecular Sciences. 2023. https://www.mdpi.com/1422-0067/24/15/12024
- 28. "Anthocyanins from berry fruits act as natural inhibitors of carbohydrate-digesting enzymes." (McDougall G. J. et al., Journal of Agricultural and Food Chemistry, 2008) https://pubs.acs.org/doi/10.1021/jf801797h

- 29. Blackberry phenolics protect β-cells by reducing ROS and lipid peroxidation."(Source: Rubus fruticosus (blackberry) use as an herbal medicine Pharmacognosy Reviews, 2014)
- 30. "Blackberry polyphenols modulate inflammatory cytokines associated with insulin resistance." (Source: MDPI Molecules, 2014 PMC6271759)
- 31. Verma R. et al. (2014). Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacognosy Reviews,8(16),101–104.https://www.researchgate.net/publication

- /264833123_Rubus_fruticosus_blackberry_u se as an herbal medicine
- 32. P2. Skrovankova S. et al. (2015). Rubus fruticosus L.: Constituents, Biological Activities and HealthUses.Molecules,19(8),10998–11029.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271759/

HOW TO CITE: Ravina Khandekar, Unnati Patil, Monali Gangurde, Darshan Shejwal, Aarya Gawali, Snehal Ukhade, Overview Blackberry (Rubus Fruticosus) in Treatment of Diabetes Mellitus, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 2310-2317. https://doi.org/10.5281/zenodo.17615870