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One of the most important and complex phases of drug development is lead optimization 

(LO), which turns early "hit" molecules into promising therapeutic candidates. The goal 

of this iterative approach is to reduce possible toxicity while improving a molecule's 

potency, selectivity, pharmacokinetics (ADME), and safety. In the past, LO depended 

on resource-intensive, empirical techniques. However, computational methods, 

especially virtual screening (VS), which includes structure-based (molecular docking 

and dynamics) and ligand-based (QSAR, pharmacophore modeling) approaches, have 

completely changed the area. These technologies aid in the logical design and synthesis 

of novel analogues by forecasting binding affinities and interaction patterns. Recent 

developments in artificial intelligence and machine learning are having a significant 

impact on LO, despite obstacles like precisely simulating receptor flexibility and 

desolvation effects. Generative Therapeutics Design (GTD) and Query-based molecular 

optimization (QMO) are two AI/ML-driven approaches that facilitate more effective 

chemical space exploration, improve the precision of molecular property predictions, 

and speed up the development of novel chemical entities. In order to overcome previous 

constraints and expedite the delivery of improved, safer, and more effective therapeutic 

candidates, this review examines the synergistic application of classic experimental, 

advanced computational, and transformative AI/ML approaches. 
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INTRODUCTION 

A crucial and intricate stage of drug discovery is 

lead optimization (LO), which turns early "hit" 

molecules into promising therapeutic prospects. In 

order to improve the potency, selectivity, 

pharmacokinetics (ADME properties: Absorption, 

Distribution, Metabolism, Excretion), and safety 

of promising molecules, this iterative process 

improves their physicochemical and 

pharmacological characteristics while also 

addressing potential drawbacks like toxicity. 

https://www.ijpsjournal.com/
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Finding a molecule with the ideal ratio of these 

characteristics to advance into preclinical and 

clinical development is the ultimate objective. 

Lead optimization has historically been a laborious 

and resource-intensive process that mostly relies 

on empirical techniques and trial-and-error testing. 

However, with the use of computer approaches 

and, more recently, AI and machine learning (ML) 

tools, the field of drug development is changing 

quickly. In order to find potential candidates, 

virtual screening (VS), which includes both 

ligand-based (such as QSAR and pharmacophore 

modeling) and structure-based techniques, is 

essential. In order to direct the synthesis of novel 

analogues, these computational methods seek to 

anticipate binding affinities, interaction 

modalities, and ADMET profiles. 

Lead optimization still faces several obstacles 

despite notable progress, including as precisely 

taking into consideration receptor flexibility, 

desolvation effects, and the intrinsic intricacy of 

ligand-receptor interactions. This stage is being 

completely transformed by the advent of AI/ML-

driven techniques like Generative Therapeutics 

Design (GTD) and Query-based molecular 

optimization (QMO), which allow for more 

effective chemical space exploration, more 

accurate molecular property prediction, and faster 

creation of new chemical entities. In order to 

produce optimal drug candidates, this study will 

explore the various approaches used in lead 

optimization, emphasizing the complementary use 

of cutting-edge computational tools, conventional 

experimental methodologies, and the 

revolutionary effects of artificial intelligence and 

machine learning. 

Virtual Screening : 

By using the Ligand for ligand-based high-

throughput virtual screening, an internal library of 

FAD structural analogues was produced.[27] 

Accurate ranking to drive analog synthesis and 

correct ligand orientation within the active site are 

both necessary for lead optimization by virtual 

screening. 

Substructures found in at least 5% of CNS 

medications were detected using SARvision, and 

their relative prevalence in non-CNS medications 

determined whether they were classified as equally 

preferred, non-CNS favored, or CNS-favored (C).  
[28] 

 
FIGURE 1. Application of the DMPK screening 

paradigm to the selection of HCV compounds as a 

component of the lead optimization and candidate 

selection process. 

The prominent alternative to de novo design 

involves virtual screening of compound libraries 

via docking methodologies." 
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"Our initial docking attempts failed to yield active 

compounds but indicated a promising lead series 

with potent anti-HIV activity." 

"Continuing efforts focused on the highest-ranked 

library compound, the inactive oxadiazole 3, 

which appeared to possess a suitable core." 

"A subsequent virtual screening initiative 

demonstrated significant success." 

"Notably, 11 compounds effectively inhibited 

protein-protein interactions in the micromolar 

range, with four exhibiting IC50 values under 5 

µM." [20] 

Steps 

1. Ligand Preparation: Following geometry 

tests, ligands were protonated at N1 after being 

drawn identically in Sybyl. 

2. Protein Preparation: Hydrogens were added, 

charges were calculated, sidechain orientations 

were adjusted (if necessary), and cofactors and 

ligands were combined to create PDB structures 

and homology models (such as LcDHFR). 

3. Protein Minimization: The Amber force field 

was used to reduce the resulting protein-ligand-

cofactor complexes, either completely or within a 

3.5 Å radius of the ligand. 

4. MD Ensemble Generation: Every 500 fs, 

conformational snapshots were produced via a 

10,000 fs MD simulation at 300 K. 

5. Definition of Active Sites and Minimization: 

After defining active sites (3.5 Å around the 

ligand/pteridine ring), the resulting MD ensemble 

structures were reduced using Amber. Geometry 

and charge verification came next.[21] 

Ligand-based virtual screening: 

Easy to use and efficient when ligands are known 

to exist; it finds similar binders but is constrained 

by a lack of data. De novo design is not the best 

option. 

Essential Methods:  

• QSAR: Predicts the behavior of novel 

molecules by relating structure to 

activity/toxicity. 

• Pharmacophore modeling is a technique that 

finds new, comparable compounds by 

identifying key molecular characteristics from 

known ligands. 

Structure-based virtual screening : 

• Utilizes 3D structures: Even in the absence 

of known ligands, this method depends on 

known (experimental or computational) 3D 

structures of the drug and target. 

• Molecular Docking: Assists with 

comparison and interaction quality by 

predicting binding modes. 

The best method for narrowing down 

candidate lists is to use molecular simulations 

(MD/Monte Carlo), which are 

computationally demanding and can predict 

structural, thermodynamic, and kinetic 

aspects of interactions. 

• Free Energy Estimation: Using techniques 

such as Alchemical Free Energy, 

Thermodynamic Integration, or Free Energy 

Perturbation, binding free energy is frequently 

predicted. 

Limitation : 

1. Most VS tools are applicable to specific case 

studies. 

2. Weakness in accurately incorporating water 

and receptor structural flexibility in docking 

calculations 
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3. The complicated ligand-receptor interactions 

and approximate desolvation/entropic terms 

make it difficult to score precise binding 

poses/rankings. 

4. Increased rates of false results could be caused 

by anticipated protein structures from 

homology modeling and predicted protein-

ligand complexes. .[5] 

Molecular Docking  and Dynamics : 

Maestro v9.2 was used to preprocess the ligands 

and MurB reductase for molecular docking. At the 

allosteric site, a three-phased Glide v5.7 docking 

approach (VHTS, SP, XP) was employed. In order 

to find strong binders, the XP technique produced 

and ranked 10,000 poses per ligand using 

XPGscore, excluding those with positive scores. 

To assess stability and conformational changes, 

MD simulations of the MurB reductase-lead1 

complex were carried out using Desmond v3.0 in 

Maestro v9.2. Before a 5000 ps NPT simulation at 

310 K, the system, which contains about 40,914 

atoms, underwent multi-step reduction and brief 

relaxation simulations (NVT, NPT). Hydrogen 

bonding interactions, stability, RMSD, and RMSF 

were then examined. [27] 

In vitro phenotypic experiments, as well as assays 

for enzyme inhibition and IC50 measurement, can 

employ N,8-dihydroxy-8-(naphthalen-2-yl) 

octanamide.[18] 

Docking accuracy is improved by receptor 

flexibility. 

All ligands were docked against a receptor library 

in Sybyl 7.2 using the Surflex-Dock docking 

protocol. Probes were used to determine active 

sites, and the software created ligands in a 

sequential fashion, producing 200 postures for 

each ligand. 

Pose selection and scoring: The pose with the 

highest score and the conserved geometry of the 

2,4-diaminopyrimidine ring was chosen as 

"correct." Docking scores were a weighted average 

of several atomic interactions and were reported in 

−log 10 (K d) units, where larger denotes stronger 

affinity. 

Ensemble Averaging: It was discovered that this 

method was better than Boltzmann distribution 

averaging for receptor ensembles, therefore the 

individual docking scores for each ensemble 

member were averaged to get a single overall 

docking score for each ligand. 

Ligands were binned by affinity, and a score of 1 

was assigned if the docked ligand fell into the same 

or an adjacent bin based on the docking score. 

Improper Orientation Rate (%IO - Ligand 

Orientation Accuracy): This metric measures the 

proportion of ligands where the top-scoring pose 

did not have the correct 2,4-diaminopyrimidine 

orientation; Grouped Ranking Score (Ligand 

Ranking Accuracy): This metric evaluates how 

well docking predicts the tightest-binding 

ligands.[3] 

Methods : 

Utility of AI\ ML Methods in Lead optimization   

1. GTD: Workflow with 2D ML models 

2. GTD: Modified workflows with 

pharmacophore models 

The ability of GTD to produce pertinent and 

effective inhibitor concepts was greatly enhanced 

by the use of a 3D pharmacophore model, which 

represents crucial inhibitory properties. 

The iterative process of GTD enabled the 

successful synthesis of desired substructures, such 

as amino pyrazines, that were first overlooked and 
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a wider exploration of the chemical space by 

gradually activating restrictions. 

Even with challenges, GTD successfully produced 

hundreds of diverse molecular ideas that fit the 

pharmacophore and physicochemical property 

models, demonstrating its potential for lead 

optimization. [33] 

LOMAP Method 

1. Design goals 

1. Atomic deletions and insertions should be 

minimized by making the compounds under 

comparison as comparable as possible. 

2. Rings ought to be kept as long as possible. 

3. Ligands must have the same net charge in 

order to be compared. 

4. Only if rings are planar can parts of multi-ring 

systems be removed, hence this should be 

avoided wherever feasible. 

5. Each molecule needs to participate in a 

minimum of one closed thermodynamic cycle. 

6. Only a small number of computations should 

cover the set of intended calculations. 

2. Algorithm 

3. Our implementation is in Python Simulation 

methods: 

1. Topology construction 

2. Simulation protocols 

4. Results [23] 

Methods for Safety Risk Assessment 

Both quantitative (statistical) and qualitative 

(judgment-based) techniques are used in 

construction risk measurement to measure and 

reduce dangers. Researchers have created a 

number of strategies to include safety, including 

activity-based quantification techniques and the 

risk assessor model (RAM). There are two types of 

safety risk assessment methods: activity-based and 

job-based. This study focuses on the latter. The 

QASR framework for TCSO analysis is presented 

in this research. 

QSAR \ QSPR Modelling : 

Through developments in de novo design, virtual 

screening, pharmacologically significant property 

prediction, and protein-ligand binding affinity 

estimate, computational chemisthas made a 

substantial contribution.[20] 

Drug discovery is effectively being impacted by 

artificial intelligence, especially machine learning 

techniques like QSAR, SVMs, and Random 

Forests. In benchmark experiments, new 

developments in neural networks—particularly 

deep learning—improve property predictions even 

more, surpassing traditional techniques [19] 

Steps 

• Step 1) Identification of significant safety 

risks 

• Step 2) Likelihood and severity evaluation of 

the risks 

• Step 3) Overall evaluation of the risks 

SAR of an HIV-1 Vif-APOBEC3G Axis 

Inhibitor.   
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Figure 2 :SAR and lead optimization of HIV-APOBEC3G Axis inhibitor 

Ring C: It is preferable to have a methyl at R1. 

Good activity was demonstrated by the analogues 

of 2-iodo (4g) and methanesulfonate (4i); methyl 

carboxylate (4f) at R2 also maintained action. 

 

Bridge A-B: Other linkers (CH2 extension, 

amide, and urea) decreased efficacy, while 

sulfone (5) demonstrated five times the activity of 

sulfide (1). 

 

Ring B: Methyl at position 6 (8b) increased 

activity, while pyridine analogues (8a, 8b) were 

well tolerated. During S-arylation, a novel and 

surprising reaction was noted. 

 

Ring B/Bridge A-B Position: Strong analogue 

11 was produced by switching the thioether 

attachment to para on ring B with an ortho chloro 

group. Compounds were rendered inactive by 

employing methyl/benzyl moieties or by 

removing ring A and bridge A-B (12). 

Ring A: The water-soluble choline carboxylate 

(17) shown strong antiviral action, but carboxylic 

acid and methyl carboxylate on ring A did not. 

Additionally active was its oxidized sulfone 

analog (19). 

Additional SAR concentrated on: 

Ring A has a nitro group, and bridges A-B are 

made of sulfone. Methylene 4-mercaptobenzoate, 

CuI, K2CO3, SOCl2, o-anisidine, Et3N, 

KMnO4/MnO2, (CH3)3SnOH, and choline base 

were among the synthesis-related reagents.[16] 

ADME 

Table 1 : Propertis and their Definations 

Terms Requirement 

Potency Strength the innate ability of a 

substance to produce the intended 

pharmacological action. 

Bioavailability The ability of a compound to pass 

through multiples barriers, such as 

the GI tract and 

the liver in order to reach the 

target 

T 1\2 The ability of a substance to 

remain in the bloodstream long 

enough to provide a notable 

pharmacological effect. 

Safety In order to develop an appropriate 

therapeutic index, the chemical 

must demonstrate adequate 

selectivity for its intended 

therapeutic action while limiting 

unwanted consequences. 

P. 

Acceptability 

Among other pertinent qualities, 

the compound should have the 

following suitable pharmaceutical 

properties: a feasible synthesis 

pathway, adequate water 

solubility, a satisfactory rate of 

dissolution, and strong chemical 

stability. 
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Figure 3: Diagram illustrating the iterative process of lead optimization that results in a candidate. 

AI\ Machine Learning : 

Quantitative structure-activity relationship 

(QSAR) models are frequently created using 

machine learning (ML) methods, which may 

identify mathematical relationships between 

chemical characteristics and the relationship 

between chemical activity and property can be 

classified as either categorical (active, inactive, 

toxic, nontoxic, etc.).[11] 

Conventional Approaches against AI-Powered 

Lead Optimization: 

Traditional drug lead optimization utilizes 

empirical methods and is sluggish and resource-

intensive, yet it works well for medications like 

statins and aspirin.This is being changed by AI-

driven strategies that use machine learning and 

computational methods to speed up drug 

discovery. Large datasets are analyzed by these 

techniques in order to forecast good candidates 

and even suggest new chemical structures. 

Through virtual screening and QSAR modeling, 

artificial intelligence greatly broadens the scope of 

chemical space exploration. It lessens the need for 

experimental validation by assisting in the 

prediction of important characteristics like binding 

affinity and ADMET. AI also provides scalability 

and automation, which facilitates better decision-

making and lowers expenses. Lead discovery, 

optimization, and even re-identifying therapeutic 

prospects are being successfully accomplished 

with the help of tools such as BIOVIA Generative 

Therapeutics Design (GTD). Enhancing molecular 

attributes such as drug-likeness and solubility is a 

strong suit for the Query-based molecular 

Optimization (QMO) framework. 

Enhancing molecular attributes such as drug-

likeness and solubility is a strong suit for the 

Query-based molecular Optimization (QMO) 

framework. Through protein structure prediction 

and the creation of new compounds, the 

combination of AlphaFold2 and Chemistry42 has 

proved crucial in the discovery of new 

inhibitors.[31] 

ML: 

These scoring functions (SFs) are evaluated using 

benchmarks such as the PDBbind datasets (CASF-

2007, 2013, 2016), where the main metric is the 

Pearson correlation coefficient (Rp). Deep Neural 

Networks (DNNs), like DLSCORE, have been 

developed, and they achieve high Rp values by 

using a variety of descriptors. Other CNN-based 

SFs, like Pafnucy, and graph CNN-based SFs, like 

PotentialNet, offer advantages by directly 

generating features from crystal structures, 

avoiding manual feature engineering. Machine 

learning (ML) techniques, such as Random Forest 

(RF) and Gradient Boosting Decision Tree 

(GBDT), consistently outperform classical SFs. 
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Hybrid SFs, which combine features from multiple 

SFs or integrate ML algorithms, frequently exhibit 

improved predictive performance. Newer SFs, like 

ΔvinaXGB and FFT-BP incorporate 

To improve accuracy, more sophisticated elements 

like explicit water molecules and protein stiffness 

changes are incorporated into newer SFs like 

ΔvinaXGB and FFT-BP. Calibration on docked 

poses can further correct the relatively minimal 

influence of pose generating mistake on SF 

performance. Importantly, compared to classical 

SFs, ML-based SFs show better performance with 

more training data, underscoring the need of 

expanding datasets for future developments. [32] 

CASE STUDIES : 

Four Takeaways from an Effective Lead 

Optimization Case Study 

1. A realistic picture of model performance and 

builds is provided by regular time-based and 

series-level evaluation ml models can be 

trusted to be used as a tool during the design 

process. 

2. The best model is due to training using a 

combination of "local" program data and 

"global" curated data performance 

3. As a program transitions into a new chemical 

space, frequent model retraining enables ml 

models to learn local sar. and faced cliffs in 

activity 
4. In order to have the most possible influence 

on the design process, ml models ought to be 

interactive, interpretable, and linked with 

additional tools [29] 

GPCR : 

Case Study 1: Identification of specific 5-HT2C 

agonists to treat metabolic diseases 

Case study 2: Fighting obesity with a sugar-based 

library 

Case study 3: Identification of strong and specific 

antagonists of the OX2 receptor[14] 

The first step in target-based treatments is to 

identify a crucial enzyme or pathway that is ideally 

unique to the parasite. Following the creation of a 

biochemical assay in vitro, an HTS (high-

throughput screen) can be used to determine which 

chemicals are hit.[4] 

Toxic effects of lead: 

Lead poisoning rarely manifests as traditional 

colic and constipation in affluent nations; instead, 

patients frequently have vague symptoms 

including exhaustion, joint and muscle pain, and 

stomach discomfort. 

1. Neurological 

2. Biochemical and haematological: Inhibits 

sulphydryl dependent enzymes 

3. Renal : Chronic renal failure and interstitial 

nephritis are brought on by prolonged 

exposure to lead. Proximal tubular formation 

may result from acute, severe lead exposure. 

dysfunction accompanied by aminoaciduria, 

hyperphosphaturia, and glycosuria 

Treatment : use of chelating agents 

polyaminocarboxylic acids, of which sodium 

calcium edetate (EDTA) is particularly effective 

for lead poisoning [6] 

FUTURE DIRECTION : 

Present achievements and future directions 

Although automation and task consolidation are 

the main goals of workflow optimization in the 

imaging department, several additional aspects 

should be taken into account, such as the stochastic 
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task characteristics, human resource availability, 

and the particular technology being used. 

Workflow software, fully integrated electronic 

medical records, and macro-level data 

consolidation fueled by multi-facility networks 

aiming for financial and operational savings will 

be the main sources of future productivity 

increases.[2] The foundation of the combinatorial 

optimization model is the idea that resources and 

activities, like people, machines, and airplanes, are 

often indivisible in real-world scenarios. 

Impact of Formulation: The time required to 

identify an optimal solution is greatly influenced 

by the mathematical formulation of a 

combinatorial optimization issue. 

 

LP Relaxation: Although LP relaxation is a 

popular approximation that eliminates integrality 

constraints, its solution may differ significantly 

from the actual integer answer. 

 

"Good" Formulation Strategies: A "good" 

formulation could include prioritizing identical 

objects, disaggregating limitations, adding limits 

(cutting planes), or raising variables or constraints. 

 

Tight Bounds Are Important: Since loose 

bounds result in bigger coefficients and weaker LP 

relaxations, it is imperative to provide tight bounds 

for variables. 

 

Automatic Reformulation: Most software 

packages now incorporate "automatic" 

reformulation or preprocessing processes to 

enhance solvability because of the crucial role that 

formulation plays. [24] 

AL is mostly utilized for compound screening, but 

it can also be used to optimize hits that are found, 

which is a field that is ideal for investigation.[12] 

RESULT 

The repeated drug development process known as 

"lead optimization" improves "hit" molecules for 

safety, ADME, and potency. For directing 

chemical alterations, computational techniques 

like as molecular dynamics and virtual screening 

are essential, as is Structure-Activity Relationship 

(SAR) analysis. This method is being 

revolutionized by AI/ML tools, which improve 

property predictions and speed up chemical space 

research. Finding a substance that is appropriate 

for use in pharmaceuticals and has the best 

possible balance between safety and efficacy is the 

ultimate objective. 

DISCUSSION 

Lead optimization is changing dramatically, 

shifting from time-consuming empirical 

techniques to more complex computational and 

AI/ML-driven methodologies. Virtual screening 

and molecular dynamics now provide previously 

unheard-of efficiency and insight into molecular 

interactions, even though conventional methods 

like SAR and experimental tests are still essential. 

Despite persistent issues with data quality and 

model accuracy, the incorporation of AI/ML, 

especially in generative design and predictive 

modeling, promises to significantly speed up the 

development of drug candidates with optimal 

potency, ADME, and safety profiles. In order to 

navigate the diverse chemical landscape and 

provide effective medicines more quickly, this 

synergistic strategy is crucial. 
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