
Thillai Vaani Iyyanar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 8, 1034-1048 | Review 

*Corresponding Author: Thillai Vaani Iyyanar 

Address: Kamalakshi Pandurangan College of Pharmacy, Ayyampalayam, Tiruvannamalai. 

Email      :  umavaani02@gmail.com   

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of 

any commercial or financial relationships that could be construed as a potential conflict of interest.   
                  

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                1034 | P a g e  

BMIs or value BCIs are the devices still in progress which create a couple connection 

of the outer workings of a device with a human body and brain for the purposes of a 

direct inter device intravital communication. They depend on, at the very least, invasive 

extraction and decoding of some brain activity which is captured through either non-

invasive or invasive methods, and translated into motions of speech that can be 

understood by hand, or robotic arms, and computers. BMIs were first aimed at clinically 

assisting patients with neurologic disorders such as ALS, and spinal cord injuries, but 

have now expanded to gaming and virtual reality, alongside non-medical fields.  BMIs, 

in their very basic form, encompass different parts such as acquisition of signal or neural 

signals, procession of undertones through, intention discerning by the aid of machine, 

learning, and an effector that will carry out the commands. A feedback loop that allows 

the device to dynamically adapt and learn over time provides the inbuilt greater 

functionality and ease of use flexibility. Electroencephalography enables the non-

invasive method of signal capture while surgery complicated. The article analyzes 

several dimensions of BMI technologies such as their development and categorisation, 

elements, advantages and disadvantages, future prospects and applications, and 

examines BCIs within the context of neurologic disease management. 
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INTRODUCTION 

Humans have long dreamed of creating gadgets 

that can see into people's minds and thoughts or of 

being able to engage and communicate with 

technology just through thinking. Ancient 

mythology and contemporary science fiction tales 

are examples of how these concepts have 

captivated people's imaginations. However, the 

ability to directly connect with the human brain 

has only just begun to be made possible by 

developments in cognitive neuroscience and brain 

https://www.ijpsjournal.com/
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imaging technologies(1). This capability is 

enabled by the use of sensors that are able to track 

some of the physiological processes that take place 

in the brain in relation to particular types of 

cognition(2). Contrary to popular belief, it is 

possible to operate a computer solely using mental 

power. With the help of braincomputer interfaces, 

which enable computers to read and interpret 

signals straight from the brain, quadriplegics, 

people with 'locked-in syndrome,' and stroke 

victims can now move their own wheelchairs and 

even pour themselves coffee from a cup by using 

their brain waves to control a robotic arm. Direct 

brain implants have also assisted those who have 

lost their sight in regaining some of their lost 

vision(3). Integrating technological progress with 

neuroscience, BCI technology shows the benefits 

of multidisciplinary cooperation. In electrode 

implantation, neurosurgeons are absolutely 

essential to guarantee less tissue damage (4). 

While material science helps to improve implant 

safety and stability (5), this discipline combines 

biomedical engineering, neurology, computer 

science, and artificial intelligence to examine 

neural data and create algorithms. Through 

significant gains in patient quality of life and the 

treatment of neurological diseases, such 

cooperative efforts forward BCI technologies (2).  

BCI has been a vibrant field of study with an array 

of stimulating opportunities(6) since Vidal’s 

inception in 1973 (7-15).  Scientists have, for 

illustration, recorded impressive results showing 

that BCI can effectively recover the capabilities of 

people with disabilities, including individuals with 

symptoms of schizophrenia (psychosis, influential 

problems, and cognitive dysfunction) (16–22). 

Based on industries classifications of BCI 

functions include video games and entertainment 

(23–25), security and authentication (26), 

healthcare (22), education (27–29), advertising 

and neuromarketing (commercial marketing based 

on cognitive science and neuroscience principles) 

(30-34), and neuroergonomics (application of 

biology to ergonomics) (35,36).  Because it 

touches on many different areas of advancements, 

BCI might keep going to be a popular and 

competitive field of study for some time to come.  

3.Elements of BCI:   

The complex system that converts brain activity 

into executable commands is known as a fully 

functional Brain-Machine Interface (BMI). 

Designing reliable and efficient BMI systems 

requires an understanding of each component. The 

BMI pipeline's essential elements are as follows.   

  

3.1 Acquisition of signals: 

Electrodes or sensors are used to record brain 

activity at the start of the procedure. The technique 

employed (ECoG, intracortical electrodes, or 

EEG) determines the kind and calibre of data 

acquired. While non-invasive techniques (like 

EEG caps) yield safer but noisier data, invasive 

techniques (like Utah array) yield high-resolution 

spike data. High temporal resolution, low noise 

levels, and biocompatibility (for implants) are 

essential requirements(37).    

3.2 Preprocessing of signals:  

Noise and artefacts from external electronics, 

blinking, and muscular action are frequently 

present in raw brain data.  Signal quality is 

enhanced by preprocessing methods including 

normalisation, artefact rejection, and bandpass 

filtering.  Quick Fourier Transform (FFT), 

Independent Component Analysis (ICA), and 

Bandpower computation (e.g., alpha, beta waves) 

are some of the methods used(38).  

3.3 The Extraction of features:   

Analysed preprocessed signals help to extract 

useful information reflecting the intention of the 

user. Typical elements are spectral power, 
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amplitude variations, and event-related potentials 

(ERPs). Notable Techniques: P300, SSVEP 

patterns; common spatial patterns (CSP); event-

related desynchronization (ERD)(39).  

3.4 Algorithms for classification and 

translation:   

Machine learning techniques arrange the acquired 

features into relevant commands. These methods 

can be unsupervised (e.g., clustering’s) or 

supervised (e.g., SVM, LDA, CNNs). Actions: 

Sort user intent (left vs. right movement) then 

translate mental states into useful outputs(40).  

3.5 Output Equipment (Effector):  

The last result of the classifier is sent to an external 

gadget (such as a wheelchair, robotic arm, cursor) 

that does the desired action. Illustrations include: 

Medical: speech synthesizer’s, prosthetic limbs 

Commercial: Virtual reality headsets, gaming 

controllers(41).  

3.6 Loop of Feedback:   

Real-time feedback included in some BMIs lets 

users hone their mental methods for greater 

control. Feedback could be haptic (vibrations), 

aural (beeps), or visual—that of a screen 

display(42).  

Fig no: 1 Block Diagram of BCI 

4.Development And Categorization of BCI: 
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The evolution of BCI technology has experienced 

several transforming phases, as shown in With a 

thorough narrative given in Supplementary File 1 

(Supplemental Digital Content 1, 

http://links.lww.com/JS9/ D262); these phases are 

classified as the Academic Exploration Phase, the 

Scientific Validation Phase, and the Experimental 

Application Phase. Every phase has greatly 

improved our understanding and ability for 

directly engaging with the human brain. Three 

invasiveness levels define BCI technology: 

intrusive, non-invasive, and semi-invasive. 

Though with surgical risks and biocompatibility 

problems, invasive BCIs offer great signal quality 

and precise control by implanting electro-des 

straight into the cerebral cortex(43,44). Although 

they have lower signal quality and are vulnerable 

to environmental noise interference, non-invasive 

BCIs fit for first brain function studies and clinical 

diagnosis since they use external electro-

encephalography (EEG) electrodes to detect brain 

signals with minimal risk(40,45,46). By placing 

electrodes in sub-dural or subcortical brain areas, 

semi-invasive BCIs balance fewer risks than 

invasive techniques with better signal quality than 

non-invasive approaches(47,48). Moreover, BCIs 

are categorized as either bidirectional, which allow 

interactive communication by means of feedback 

from the device to the brain, so improving control 

and response for advanced applications, or 

unidirectional, which transmit signals just from the 

brain to a device, so limiting feedback and 

adaptation(4,49).Choosing a BCI system requires 

careful consideration of these traits against the 

particular needs of patients and the expected 

uses(50).  

5.Investigations Into BCI For the Management 

of Neurological Disorders:   

5.1 Motor dysfunction:   

5.1.1 Epilepsy:   

Epilepsy can be described as a paroxysmal 

condition caused by recurrent aberrant and 

synchronised neuronal activity(51).  Its causes 

include tumor’s, traumatic injuries, genetic 

predispositions, and sometimes unknown causes.  

It usually shows up as symptoms like moderate 

distraction, autonomic nervous system 

dysfunction, convulsions, and altered 

consciousness.  In more extreme cases, it might 

also include behavioral and cognitive changes, 

which differ in kind and severity from person to 

person (52). The main areas of study for BCI 

technology in epilepsy research include neural 

signal recognition, seizure prediction, seizure 

origin localization, and closed-loop stimulation 

treatment improvement.  Neural signal detection 

methods include conventional EEG and its 

improved forms, including functional magnetic 

resonance imaging (fMRI) and enhanced video 

EEG monitoring.  Early seizure warnings are made 

possible by researchers building epilepsy 

prediction models from neural electrical impulses 

using machine learning methods.  The accurate 

localization of seizure foci is made possible by 

advanced imaging technology.  The goal of closed 

loop stimulation treatments is to detect seizure 

signals in real time and then activate devices for 

either medication release or brain manipulation to 

lessen seizures. According to observations, there is 

a crucial phase connection between cortical neuron 

discharges and micro-ECoG signals, which is 

impacted by a number of variables, including 

outside factors, spatial separation, brain state, and 

cortical architecture (53).  This knowledge is 

essential for improving BCI technology and 

understanding the origins of ECoG signals.  Smith 

(2005) notes the limitations of EEG in the 

treatment of epilepsy, including its limited spatial 

and temporal coverage, but emphasises how 

essential it is for identifying, categorizing, and 

treating epilepsy because of its affordability, 

convenience, and capacity to show the 

physiological symptoms of aberrant cortical 

excitability (54). Therefore, EEG's usefulness as a 

brain signal detection technique in epilepsy 
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research is still substantial. Although the 

underlying therapeutic mechanisms are still 

unclear, a recent study has verified that 

bidirectional brain-machine interfaces that can 

stimulate the brain have demonstrated 

effectiveness in improving seizure control in 

individuals with intractable epilepsy(55).  It has 

been demonstrated that rather than merely 

suppressing seizures, systems such as responsive 

neurostimulation (RNS) promote seizure control 

by modulating the activity within epileptic 

networks over an extended period of time.  This 

demonstrates how neuroplasticity may play a key 

role in how well epilepsy medications work. 

Additionally, research using non-human primates 

have confirmed the safety and efficacy of a new 

invention in the form of a wireless neural 

prosthesis (ECOGIW-16E), which has been shown 

to provide direct cortical stimulation (DCS) and 

prolonged electrocorticography (ECoG) 

recordings for up to six months(56).  This device 

improves reliability. This tool improves seizure 

focus localization accuracy and creates new 

opportunities for BCI and closed-loop seizure 

management.  Further demonstrating its 

considerable potential for effective neural signal 

analysis in BCI technology is a memristor-based 

neural signal analysis system which interprets 

signals in the analogue domain. This system 

achieved a high accuracy of 93.46% and a nearly 

400fold increase in power efficiency over leading 

CMOS systems (57). Although these 

developments, there are still issues with using BCI 

to treat epilepsy.  Crucial concerns include the 

precision of signal identification and decoding, the 

security and biocompatibility of long-term 

implants, and the adjustment of electrical 

stimulation or medication release parameters for 

improved therapeutic results.  likewise, in the 

current research atmosphere, bridging the 

difference between the laboratory research and 

clinical practice continues to be an important 

challenge.  

5.1.2 Spinal Cord Injury:   

Damage to the structure or function of the spinal 

cord is known as spinal cord injury (SCI), and it 

usually happens as a result of diseases like myelitis 

or external forces like falls, vehicle crashes, or 

sports injuries(58).  SCI occurs in 3.6 to 195.4 

cases per million persons worldwide(59), and 

injuries can be categorised as either full or partial.  

Complete SCI causes an unconditional cessation 

of motor and sensory functioning below the site of 

injury by interfering with all neuronal 

communications within the spinal cord.  On the 

other hand, incomplete SCI allows for some 

degree of sensory and motor function retention by 

maintaining some brain activity. BCIs are mostly 

used in the field of SCI rehabilitation to restore 

function in the upper and lower limbs (60,61). By 

managing gadgets like robotic arms or electrical 

stimulation systems, BCIs boost motor activity 

and neuroplasticity, the brain's ability to create 

new neural connections.  The effectiveness of BCI 

in SCI rehabilitation has been confirmed by recent 

clinical research and case studies.  Multimodal 

BCIs have been shown to improve lower limb 

mobility and reduce discomfort in SCI 

patients(58), whereas BCI-assisted motor imagery 

training dramatically increases upper limb 

functioning, especially in the early stages of 

treatment(62).  Additionally, precise control of 

bionic limbs is made possible by sophisticated BCI 

systems that use implanted microelectrode arrays, 

improving operational flexibility and specificity. 

This demonstrates the useful advantages and 

efficacy of BCI technology in promoting patient 

independence and well-being, in addition to 

highlighting the potential of BCIs to enhance daily 

living and quality of life for SCI patients (63). 

Regarding advancements in the use of BCI for SCI 

rehabilitation, barriers such longterm integration 

problems, patient variability, and technological 

difficulties limit its widespread adoption. 

Although intracortical interfaces have made 

progress, there are still many obstacles because of 

their invasiveness, according to a review published 

in Nature Reviews Neuroscience (64). It is 

expected that future developments in algorithms 
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and technology will increase the effectiveness of 

BCIs.  The use of BCI in rehabilitation is set to 

grow dramatically as a result of advancements in 

creating minimally invasive systems, customising 

therapies to meet the needs of each patient, 

encouraging interdisciplinary collaborations, and 

integrating both augmented and virtual reality 

technology.  

5.2 Mental and cognitive disorder:  

Alzheimer’s Disease (AD): 

The main symptoms of AD, a progressive 

neurological disease, include behavioral 

abnormalities, cognitive impairment, and memory 

loss. The frequency of AD is rising as the world's 

population ages, which has a significant effect on 

people, families, and social structures (65). The 

function of BCIs in treating mental and cognitive 

diseases is illustrated in Figure 4. Further more, a 

comprehensive summary of research studies 

examining the effectiveness of BCIs in the 

treatment and management of various illnesses 

may be found in Supplementary Table S2 

(Supplemental Online Content 3, 

http://links.lww.com/JS9/D264). Initial 

examination, management of symptoms, medical 

care, and cognitive rehabilitation were the main 

areas of focus for studies regarding BCI 

technology in the treatment of AD. These studies 

use leading-edge technological techniques to 

improve patients' quality of life, slow the disease's 

course, and discover non-pharmacological therapy 

options. Early detection of AD is essential for 

commencing successful treatments and slowing 

the disease's progression. The traditional 

diagnostic methods typically identify the disease at 

a later stage, even though they primarily rely on 

neurological symptoms and neuroimaging.  

According to Dubois et al.(66), traditional 

diagnoses have several drawbacks, including 

delays, high biomarker variability, low imaging 

sensitivity, and outcomes that are influenced by a 

number of factors.  By recording and examining 

data from electroencephalograms to detect early 

changes in neurological activity, BCI technology, 

on the other hand, makes early diagnosis more 

straightforward(67,68).  For example, during 

cognitive tasks, anomalies in particular EEG 

frequency bands, such as theta and alpha waves, in 

AD patients may signal the onset of the disease 

early.  It has been demonstrated by Prichep et al. 

(69) that measuring certain EEG features, 

particularly elevated theta power, can precisely 

foresee future dementia. This approach supports 

early detection and intervention techniques in AD 

by showing excellent sensitivity and specificity for 

identifying possible losses in healthy older adults. 

Moreover, new research has looked into the 

possibility of using ultra-weak photon emission 

from the hippocampus to noninvasively record the 

progression of AD. This suggests that minimally 

invasive BCI photon chips could be developed as 

novel tools for AD diagnosis and monitoring (70). 

The use of BCI technology in AD treatment and 

cognitive rehabilitation has attracted a lot of 

attention lately, especially because it improves 

patient quality of life and symptom control.  By 

using neural modulation techniques, such as 

neurofeedback training, which modifies brain 

electrical activity, BCI can alleviate symptoms and 

improve mood while lowering anxiety and 

depressive symptoms.  To improve the therapeutic 

results, BCI can also be combined with other 

treatment approaches like FES and Transcranial 

Magnetic Stimulation (TMS). According to 

research, BCI-driven neurofeedback training can 

improve memory and recall skills in AD patients 

while also stabilizing or boosting cognitive 

processes(71).  A preliminary study examined the 

effectiveness of neurological training in improving 

reading and visual attention in individuals with 

moderate Alzheimer's disease, suggesting this 

strategy as a new avenue for non-pharmacological 

AD treatment (72). Moreover, in order to support 

fundamental communication and mental 

rehabilitation, a recent study suggested a BCI 

model for AD patients based on classical 

conditioning and brain state classification. This 
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model correlates both "yes" and "no" ideas with 

emotional inputs.  This study offers novel 

approaches and possible applications of BCI for 

cognitive rehabilitation (73).  

5.3 Sensory Impairment:   

Vision Disorder:   

Any disorder that reduces a person's ability to 

process visual stimuli is referred to as impaired 

vision. This can impact various elements of a 

person's life, including their eyesight, visual field, 

sense of contrast, colored perception, and depth 

perception.  Diminished visual acuity, visual field 

deficits, color vision abnormalities, decreased 

contrast sensitivity, and difficulties perceiving 

depth are some of the clinical symptoms linked to 

visual impairment.  Applications like high-

frequency SSVEP-based BCIs that combine with 

computer vision to enable the control of robotic 

arms for particular actions are the main focus to 

investigate into BCI technologies for those with 

visual impairments. Users can choose and handle 

things using BCI for automated tasks like holding 

and positioning through the system's ability to 

recognize and pinpoint objects within a work 

environment.  These advanced control systems 

improve task performance's reliability and 

effectiveness while drastically reducing the user's 

requirements for operation(74).  The use of BCI 

technology for treating visual problems is still 

primarily experimental at the moment.  

6.ADVANTAGES AND DISADVANTAGES:   

Since no program is flawless in every way, each 

one has advantages and disadvantages.  Therefore, 

even while brain-computer interfaces are a 

fantastic way to improve direct communication 

between humans and machines, they do have 

certain drawbacks.   

6.1 ADVANTAGES: 

-This technology may eventually enable paralyzed 

individuals to manipulate prosthetic limbs using 

their thoughts.   

 -Assist individuals with disabilities in using their 

brain activity to operate wheelchairs or other 

devices.   

-Improve the sensor system.    

  

-Give a blind person the ability to sight by sending 

visual images into their brain.    

-Send audio information to a deaf person's brain so 

they can hear.   

-Permit players to manipulate video games with 

their thoughts.    

-Permit a device to speak and display the ideas of 

a person who's mute.   

-By using BCI in addition to telepresence, military 

officers can monitor any suspicious activity that 

may occur at the border.  

-By identifying what is happening in the driver's 

head and making a choice in a couple of seconds, 

a car with BCI abilities may prevent any accidents 

from happening.   

-BCIs can be used anywhere in the globe and are 

linguistically independent.  For researchers and 

scientists across the globe, this has opened up 

novel possibilities.  

6.2 DISADVANTAGES:   

-The complexity of the brain is vast.   

  

-The transmissions are susceptible to interference 

and are inadequate.   

-Brain surgery can be dangerous and can result in 

brain death.   
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-BCI technologies are unable to detect certain 

chemical reactions that occur in the brain.  

-The equipment is not as portable as it could be.   

-The research is still in its early phases.    

-The technology in use today is preliminary.  Its 

growth may be hindered by ethical concerns.   

-Very few signals from the brain can be detected 

by electrodes outside the skull.    

-The brain develops scar tissues as a result of 

electrodes inserted inside the skull.  

-BCI doesn't always produce precise findings, it 

can occasionally misinterpret the user's intentions.   

-The user may experience significant physical and 

mental stress due to the extensive wiring needed.   

-This computerized technology makes it possible 

for anyone to decipher your thoughts and violate 

your privacy.  

7.The Future and Applications of Brain 

Machine Interface:  

Because BCI technology can help persons who 

have lost or damaged their body parts restore their 

physical and mental power, it has drawn interest in 

the medical field.  It enables persons with physical 

impairments to operate devices with their 

thoughts, enabling them to engage with the outside 

world independently.  Industrial uses of BCI can 

be found in neurophysiological research, 

education, and mining(75-78).  To create new 

applications and hasten the fourth industrial 

revolution, researchers must collaborate and 

update often.  

7.1 Thoughts decoding:  

Comprising a complicated organ, the brain 

generates and regulates our ideas and 

Physiological characteristics. Though brain-

computer interfaces (BCI) may enhance 

performance in polygraphs, Current technology 

cannot precisely predict an individual’s thoughts. 

Researchers are Investigating how BCI might print 

actual documents, map imaginations into real 

items, Convert human thoughts into legible text, 

and extract wills from dying people’s 

Thoughts(79). Future BCI breakthroughs could 

involve people with physical limitations Driving 

and controlling machines remotely using their 

thoughts, and goods that Directly map human 

thoughts into tangible items. Advanced BCI 

technologies, However, could create privacy and 

security concerns that need global norms for 

Control(80,81). 

7.2 Increasing the capacity of human memory: 

The hypothesis of Stephen Hawking on uploading 

the human mind into a computer calls on issues 

regarding the possibilities of brain-computer 

interface (BCI) technology for memory 

extension(82). Recent advances reveal that brain 

signals can be obtained and transformed into data 

reflecting human activities(83,84). Though ethical 

standards must be observed, future research may 

investigate using BCI to gather behaviors and 

attributes for scientific and commercial uses. One 

could create portable flash drives or other physical 

memories to access brain data. Reaching this 

scientific aim calls for extensive multidisciplinary 

investigation.  

7.3 Communication with telepathy:   

A method currently in its early phases of research, 

telepathic communication can be enabled by BCI 

and computer-brain interface (CBI), Rao et al. 

showed(85,86).  Future research might look at 

combining LOT and BCI networks to improve 

data flow.  While keeping ethical standards, more 

research is required to investigate more 

possibilities and features (87-92).  

7.4 Command and automation:   
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Particularly in home automation and control for 

physically challenged people, BCI technology is 

exciting for sectors of automation and control (93). 

It may also be employed in industrial manufacture 

as it develops, maybe over a safe wireless network 

(76,77). Still, more study is required to go over 

constraints and guarantee flawless interaction with 

smart sensors.  

7.5 Sharing of intelligence:   

Can the BCI and the CBI help to remodel the brain 

so enabling intelligence sharing among people?  

Though it sounds like fantasy, the basic ideas of 

the technology imply that brains might be 

artificially changed.  But reaching this mark calls 

for strong knowledge of the nature and operation 

of human brains—a level not attained by present 

knowledge.  

7.6 Harnessing brain energy:   

With just 2% of the mass of the body, the human 

brain uses 20% of the total body energy budget to 

run its operations in an ordinary adult in a normal 

condition (94).  With this energy-consuming ratio, 

this body organ ranks third in terms of energy 

hunger (95).  We propose to harvest some of this 

vast amount of energy for running low-energy 

external devices by combining the BCI technology 

with other cutting-edge technologies.  Researching 

how much energy a normal BCI system can gather 

from the brain will help to realize the concept.  

7.7 Localized interface between the brain and 

computer:   

Brain signal collection in Brain-Computer 

Interfaces (BCIs) is inherently non-selective. 

Whether electrodes are placed on the scalp (non-

invasive) or beneath it (invasive), they detect all 

electrical impulses within their spatial range. As a 

result, BCIs collect large volumes of neural data 

and ambient noise, even when only a single 

function— such as controlling a prosthetic leg—is 

intended. This abundance of non-targeted data 

complicates signal processing and interpretation 

(96,97). However, by localizing the BCI system to 

specific brain regions responsible for targeted 

motor or cognitive functions, we can improve 

signal relevance. For example, in individuals with 

speech impairments, placing the BCI system over 

areas that process speech-related neural activity 

could yield cleaner, more specific signals (98). 

Such targeted localization not only enhances 

system performance but also allows for more 

compact and efficient BCI designs (2,97).  

  

8.CONCLUSION:  

The BMIs or Brain-Machine Interfaces mark a 

notable leap in technological advancement in the 

fields of neuroscience, artificial intelligence, and 

engineering. From helping individuals with 

paralysis regain mobility through robotic limbs 

controlled by the individual’s mind to other 

astonishing feats, BMIs have showcased their 

capability in improving human life. The venture 

has gone through a transformational journey, 

starting from old invasive systems that were 

difficult to use, to modern interfaces that are non-

invasive, easy to use, and integrated with AI. 

Regardless of the advancements made, the 

practical use of BMIs faces some issues. Barriers 

to using this technology include low signal quality, 

differences in user performance, high costs of the 

system, and the extensive training that needs to be 

done before utilizing them. Moreover, privacy 

risks surrounding cognitive processes and mental 

control put need for proactive policy-making, with 

the need to establish so-called ‘neurorights’ that 

serve to guard users from surveillance.  The further 

advancements of BMIs is expected to be achieved 

as new technologies roll out. New systems that 

will be more practical, easy to wear, and hybrid are 

bound to be able to incorporated into everyday life. 

Brain-to-brain communication stands to make 

significant changes along with augmented reality, 

and neural and digital therapy. 
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