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Acetylcholine (ACh), a key neuromodulator, plays a critical role in cognitive function 

and has garnered significant interest for its involvement in memory processes, 

particularly in the context of Alzheimer's disease (AD). This review explores the 

intricate influence of cholinergic modulation on hippocampal activity and memory 

abilities, shedding light on the role of ACh in AD pathophysiology and memory 

function. We discuss the atrophy of the cholinergic system in early AD, alterations in 

ACh receptor function, and the impact of amyloid β peptide (Aβ) accumulation on 

cholinergic dysfunction. Additionally, we examine the modulation of neural pathways 

within the medial temporal lobe by ACh, focusing on its effects on synaptic plasticity 

and network dynamics. Furthermore, we explore the complex interplay of ACh in 

memory processes, highlighting its selective modulation of memory function and the 

diverse effects of cholinergic enhancement on memory encoding and consolidation. 

Understanding these complexities is crucial for developing effective therapeutic 

interventions for memory-related disorders like AD. 
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INTRODUCTION 

Understanding the Role of Acetylcholine in 

Alzheimer's disease and Memory Function 

Acetylcholine (ACh), identified initially as a 

neurotransmitter at the neuromuscular junction, 

has garnered substantial interest for its role as a 

vital modulator of cognitive functions [1]. 

Particularly, attention has focused on the 

cholinergic system due to its implication in 

dementia, notably Alzheimer’s disease (AD). AD, 

a progressive neurodegenerative condition 

primarily affecting mid- to late-age adults, 

prominently exhibits episodic memory decline 

from its early stages. Studies have consistently 

demonstrated cholinergic system atrophy in the 

basal forebrain of early AD patients and those at 

high risk of AD development [2]. This atrophy 

encompasses a decrease in both cholinergic neuron 

count and choline acetyltransferase levels, crucial 

for ACh synthesis [3]. Additionally, alterations in 

muscarinic and nicotinic ACh receptor function 

are linked to AD pathophysiology [4]. The 

administration of nicotine, enhancing ACh levels, 

has shown to improve cognitive functions in 

elderly individuals prone to memory issues [4, 5]. 

Conversely, anticholinergic medications, 

commonly prescribed for gastrointestinal and 

dizziness disorders, may contribute to dementia, 

underscoring the cholinergic system's relevance in 

memory [6]. While the precise pathophysiology of 

AD remains elusive, extensive human and animal 

studies suggest a strong correlation between 

amyloid β peptide (Aβ) accumulation and 

neurofibrillary tangle formation with AD 

development. Notably, Aβ accumulation in 

cholinergic neurons of the basal forebrain 

correlates with aging and AD progression. Aβ's 

interference with ACh synthesis, release, and 

receptor signalling further underscores its role in 

cholinergic dysfunction. Cholinergic dysfunction 

significantly impacts the hippocampus, a brain 

region crucial for memory function [7, 8, 9, 10]. 

Reduced cholinergic projections from the medial 

septum to the hippocampus, coupled with 

decreased cholinergic receptor levels and ACh 

binding, characterize AD patients and mouse 

models of AD [11, 12, 13] . These findings 

underscore the critical role of the cholinergic 

system in hippocampal function and its 

implication in AD pathology. 

Cholinergic Modulation of Cognitive Functions: Insights into Acetylcholine's Neurotransmission 

and Neuromodulation 

 
Fig. 1. Cholinergic Neurotransmission inside Hippocampal region 
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Acetylcholine serves as both a neurotransmitter 

and a neuromodulator in the nervous system, 

attracting considerable interest for its impact on 

cognitive functions. Cholinergic neurons, 

responsible for producing ACh, are distributed 

throughout the brain, with notable concentrations 

in regions like the brainstem, basal forebrain, 

stratum, and medial habenular nucleus. These 

neurons project to various brain areas, including 

the thalamus, basal ganglia, tectum, and basal 

forebrain, influencing diverse neural functions 

[14, 15, 16, 17, 18]. In the basal forebrain, 

cholinergic neurons located in regions like the 

medial septum and diagonal band of Broca provide 

essential inputs to the hippocampus, crucial for 

memory formation [19, 20]. Selective lesions of 

these neurons impair hippocampus-dependent 

memory function, indicating the significance of 

septohippocampal cholinergic projections [21]. 

Similarly, disruptions in the vesicular 

acetylcholine transporter (VAChT), vital for ACh 

release, lead to synaptic plasticity impairments in 

the hippocampus and affect RNA processing in the 

prefrontal cortex, resulting in memory and 

attention deficits [22, 23, 24, 25]. Cholinergic 

receptors comprise two main classes: nicotinic and 

muscarinic receptors, expressed throughout the 

central and peripheral nervous systems [26]. 

Nicotinic receptors are excitatory ion channels, 

while muscarinic receptors are G protein-coupled 

receptors. In the hippocampus, nicotinic receptor 

subtypes like a7 homomeric and a4b2 heteromeric 

receptors play essential roles in synaptic plasticity 

and modulate neurotransmitter release. Muscarinic 

receptors, particularly M1 subtype, regulate 

neuronal excitability, while M2 and M4 subtypes 

modulate neurotransmitter release at synaptic 

terminals [27, 28, 29, 30]. Understanding the 

distribution and function of these receptors sheds 

light on the intricate mechanisms underlying 

cholinergic modulation of neural processes, 

particularly in cognitive functions. 

Modulating neural pathways within the medial 

temporal lobe through the influence of 

acetylcholine 

Acetylcholine plays a significant role in shaping 

neuronal circuits, impacting neurogenesis, spine 

formation, and synapse formation [31]. These 

lasting alterations necessitate protein synthesis, as 

evidenced by studies [32]. Furthermore, 

acetylcholine exerts immediate effects on synaptic 

plasticity by regulating neuronal spiking activity 

and neurotransmitter release. This section will 

delve into the rapid effects of acetylcholine, 

particularly its correlation with changes in 

extracellular acetylcholine levels in the medial 

temporal lobe during the learning process [33]. 

Inside the Hippocampal region 

Research has revealed that cholinergic neurons 

located in the medial septum play a crucial role in 

regulating hippocampal circuits. By utilizing 

optogenetic techniques, scientists have 

demonstrated that stimulating these cholinergic 

neurons not only alters the firing patterns of 

hippocampal neurons but also influences theta-

band oscillations within the hippocampus in live 

subjects [34]. Both experimental and 

computational studies have shed light on 

acetylcholine's role in modulating hippocampal 

pathways involved in memory consolidation and 

encoding. Acetylcholine selectively inhibits 

intrinsic pathways, which contribute to memory 

consolidation circuits, while enhancing afferent 

projections, which are part of the encoding 

pathway [35]. Activation of muscarinic 

acetylcholine receptors in interneurons within the 

CA3 region suppresses the recurrent pathway, 

ensuring preferential activation of circuits carrying 

extrinsic information over intrinsic projections. In 

the CA1 region of the hippocampus, acetylcholine 

has been observed to potentiate the Schaffer 

collateral pathway by activating either a7 or non-

a7 nicotinic acetylcholine receptors in pyramidal 

neurons and GABAergic interneurons. However, 
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there are conflicting findings regarding this effect, 

with some studies suggesting inhibition of the 

Schaffer collateral pathway by acetylcholine [36, 

37]. This inconsistency may stem from the timing-

dependent nature of acetylcholine's impact on 

synaptic plasticity and the activation of different 

cholinergic receptor subtypes under varying 

conditions. Moreover, the frequency of 

cholinergic neuron stimulation can evoke different 

responses in hippocampal interneurons, ranging 

from depolarization to hyperpolarization, 

mediated by distinct ACh receptor subtypes. In the 

dentate gyrus, acetylcholine has been found to 

enhance long-term potentiation through the 

activation of both nicotinic and muscarinic 

receptors. Additionally, septal cholinergic 

projections activate astrocytes to modulate dentate 

granule cells [38, 39, 40]. 

Inside the Para hippocampal region 

Acetylcholine plays a significant role in 

modulating neuronal activity within the entorhinal 

cortex (EC), which serves as a crucial link between 

the neocortex and hippocampus. Its effects vary 

depending on the specific circuits within the EC 

[41]. In the superficial layers (layer I, II, and III), 

where cortical neurons receiving external signals 

project, acetylcholine has been observed to 

increase neuronal spiking and promote 

synchronized oscillatory activity. These 

superficial layers are involved in memory 

encoding and are active during wakefulness. 

Conversely, the deep layers of the EC (layer V and 

VI in rodents) receive inputs from the 

hippocampus and project back to the neocortex for 

memory consolidation [42, 43]. Deep-layer EC 

neuron activity peaks during sharp-wave sleep, 

coinciding with heightened memory consolidation 

[44]. Studies also indicate that rhythmic activity in 

these deep layers correlates with hippocampal 

activity during slow-wave sleep but not 

wakefulness. Recent unpublished research 

suggests that acetylcholine activates hippocampal 

interneurons, which in turn inhibit hippocampal 

outputs to the deep EC layers. Exploring how 

cholinergic inputs affect hippocampal area activity 

poses an intriguing question for further 

investigation [44]. 

The intricate interplay of acetylcholine in 

modulating memory processes 

Understanding the intricate effects of medications 

altering extracellular acetylcholine (ACh) levels or 

its receptor activity on memory functions is 

crucial, particularly in the context of Alzheimer's 

disease treatment. Drugs like donepezil, 

rivastigmine, and galantamine are commonly 

prescribed for Alzheimer's patients due to their 

ability to inhibit acetylcholinesterase, thereby 

increasing ACh levels. However, the impact of 

these drugs on memory enhancement can vary 

significantly among individuals, highlighting the 

complexity and unpredictability of ACh's role in 

memory regulation [45]. One fundamental aspect 

contributing to the complexity of ACh's impact on 

memory is its selective modulation of memory 

function. ACh predominantly influences 

hippocampus-dependent learning, particularly 

declarative memory such as episodic and semantic 

memory, while exerting less influence on 

procedural or implicit memory [46, 47].  

Activation of cholinergic receptors is crucial for 

episodic and spatial memory but less so for 

procedural memory. Moreover, the manipulation 

of ACh release through various techniques leads to 

diverse findings, further complicating the 

understanding of its role in memory. Cholinergic 

neurons often release neurotransmitters like 

GABA and glutamate alongside ACh, 

complicating the interpretation of experimental 

results [48, 49,  50]. Studies targeting ACh release 

selectively or using specific ACh receptor 

antagonists have provided unique insights 

compared to studies ablating cholinergic neurons. 

Another layer of complexity in ACh's modulation 

of memory lies in its differential effects at various 
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stages of memory processing. While ACh tends to 

facilitate memory encoding, it may suppress 

memory consolidation. Memory formation 

involves two primary stages: encoding, where 

sensory inputs are relayed from the cortex to the 

hippocampus, and consolidation, where temporary 

memories are transferred back to the cortex for 

long-term storage [51,  52, 53]. ACh seems to play 

a pivotal role in mediating the transition between 

these two stages of memory formation. The 

diversity of ACh receptor subtypes, each 

exhibiting distinct desensitization characteristics, 

further adds to the complexity of its effects on 

memory. Nicotinic ACh receptors, for instance, 

display various conformations, with a7-containing 

receptors being particularly prone to rapid 

desensitization. The kinetics of receptor 

desensitization can significantly influence the 

overall effects of ACh on memory function [54,55, 

56]. Furthermore, the efficacy of cholinergic 

enhancement of memory function is closely 

intertwined with basal cholinergic activity [57]. 

Individuals with lower baseline cognitive 

performance may experience more substantial 

cognitive improvements in response to 

pharmacological increases in ACh levels 

compared to those with higher baseline 

performance [58, 59]. This suggests a nonlinear 

relationship, resembling an inverted U-shaped 

curve, between ACh concentration and memory 

function, where an optimal effect occurs within a 

specific range of ACh levels. In summary, the 

intricate interplay of ACh in memory processes 

involves multiple signaling pathways with 

opposing effects on memory function [60, 61]. The 

delicate balance of ACh levels and receptor 

activity, influenced by factors such as receptor 

subtype, release modulation, and basal cholinergic 

activity, ultimately determines its overall impact 

on memory. A comprehensive understanding of 

these complexities is indispensable for the 

development of effective therapeutic interventions 

for memory-related disorders like Alzheimer's 

disease [62, 63]. 

 

 

 

 
Fig. 2.  Influence of acetylcholine (ACh) on cognitive function is nuanced and intricate

A. ACh's impact on cognitive processes is notably 

specific, particularly in the realm of 
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hippocampus-dependent memory. It primarily 

affects spatial memory while leaving 

procedural memory relatively unaffected. 

B. The method by which ACh is modulated can 

lead to varying results. For instance, employing 

optogenetic techniques to manipulate 

cholinergic neurons is considered more akin to 

the natural physiological process but lacks the 

specificity observed with direct antagonism of 

ACh receptors (AChRs). 

C. ACh exhibits distinct effects on memory 

encoding and consolidation, with a preference 

for enhancing pathways involved in encoding 

information. 

D. Moreover, the responses induced by ACh can 

vary depending on the specific receptor 

subtypes it activates. Each subtype has unique 

desensitization characteristics, leading to 

differing outcomes in cognitive processes. 

E. The degree to which ACh enhances memory 

function is contingent upon the baseline 

cholinergic activity. It tends to have a more 

pronounced positive effect on individuals with 

lower baseline ACh levels. 

CONCLUSION: 

Acetylcholine (ACh) serves as a crucial 

neuromodulator in cognitive function, particularly 

in hippocampus-dependent memory. Past studies 

utilizing various methodologies such as 

immunohistochemistry, electrophysiology, 

pharmacology, and behavioral analyses have 

revealed the multifaceted ways in which ACh 

influences memory circuits. However, due to the 

intricate nature of ACh's actions in the brain, 

research findings have often been met with 

controversy. A comprehensive understanding of 

the complexity underlying ACh's actions is 

essential for unraveling its physiological roles in 

cognitive functions and for developing improved 

treatment strategies for age-related dementia. In 

recent decades, significant advancements have 

been made in elucidating how ACh modulates 

memory circuits. Leveraging novel tools now 

available, investigating ACh's actions at different 

levels—ranging from cellular mechanisms to 

network dynamics and behavioral outcomes—will 

be vital for comprehensively deciphering its 

complex effects. This holistic approach holds 

promise for gaining deeper insights into the 

intricate interplay of ACh in cognitive processes 

and for guiding the development of more effective 

therapeutic interventions. 
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