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Amphetamine (AMPH) and its derivatives, exhibiting diverse structures and 

psychoactive effects, share similarities with the botanical diversity of orchids. This 

review delves into the multifaceted mechanisms underlying their primary biological 

impact: the elevation of extracellular catecholamines and serotonin levels. We explore 

these mechanisms independently of classical transmitter release pathways, providing 

historical context and future research directions. While traditionally referred to in plural 

form, we cautiously define "the amphetamines" to encompass compounds sharing an α-

methyl-phenethyl-amine motif. Focusing primarily on AMPH and methamphetamine 

(METH), exemplary catecholamine releasers, we discuss subtle distinctions between 

these compounds and their differential effects. Furthermore, we examine the historical 

utilization of natural plant-derived amphetamines, tracing their origins from Ephedra 

species to contemporary clinical applications. Additionally, we explore the role of trace 

amines in affective modulation and their potential as endogenous amphetamines. Lastly, 

we discuss the evolution and impact of synthetic amphetamines, from their inception to. 
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contemporary epidemics and clinical uses. Through 

comprehensive exploration of amphetamine actions on 

synaptic vesicles and plasma membrane transporters, we 

unravel their complex pharmacological effects and 

therapeutic implications 

INTRODUCTION 

Amphetamine (AMPH) and its various derivatives 

exhibit a wide range of structural diversity and 

psychoactive effects, akin to the diversity found in 

orchids within the plant kingdom [1, 2]. This 

review explores the multiple mechanisms 

underlying their primary biological effect: the 

elevation of extracellular levels of catecholamines 

and serotonin. This effect occurs independently of 

the classical mechanisms involved in transmitter 

release via secretory vesicle fusion [3, 4]. We 

discuss current concepts within a historical context 

to provide a framework for future research on this 

class of drugs, which is both rewarding and 

addictive, popular yet despised, and capable of 

both beneficial and destructive effects. Although 

Alexander Shulgin (1978) argued for the singular 

use of the term "amphetamine" to denote a specific 

chemical, linguistic conventions persist in 

referring to these compounds in the plural form 

due to the inclusion of the term in the generic 

names of various compounds sharing the AMPH 

structure[5, 6]. For the purpose of this review, we 

define "the amphetamines" cautiously to 

encompass compounds sharing an α-methyl-

phenethyl-amine motif, as suggested by the 

generic name of the archetypal compound. Biel 

and Bopp (1978) outlined the definitive structural 

features of AMPH, including an unsubstituted 

phenyl ring, a two-carbon side chain between the 

phenyl ring and nitrogen, an α-methyl group, and 

a primary amino group [7, 8, 9]. The focus of this 

article is primarily on AMPH and 

methamphetamine (METH), both exemplary 

catecholamine releasers with minimal affinity for 

neuronal receptors, simplifying our review. 

Although METH deviates from the fourth rule by 

possessing a secondary amine, it remains one of 

the most studied compounds in this class [10]. 

While we do not delve into comparisons of how 

chemical substitutions alter the efficacy of AMPH-

related drugs across various mechanisms, we 

occasionally reference chain-substituted and ring-

substituted amphetamines, as well as non-α-

methylated phenethylamines, for comparison. The 

question often arises regarding the differential 

effects of AMPH and METH. Studies indicate no 

significant differences in terms of dopamine 

release in the striatum, elimination rates, or other 

pharmacokinetic properties [11, 12]. Human 

discrimination studies also fail to distinguish 

between equal doses of the two drugs. However, 

subtle distinctions exist, such as slightly greater 

dopamine release by AMPH in the prefrontal 

cortex, leading to nuanced differences in effects on 

working memory and behavioral tolerance [13, 

14]. AMPH also tends to induce slightly more 

locomotor activity in rodents than METH, 

possibly due to indirect effects [15, 16]. Claims 

suggesting that METH is more addictive, preferred 

by drug addicts, more potent as a psychostimulant, 

or exhibits diminished peripheral activity appear 

unsubstantiated [17, 18]. Traditionally, studies on 

mechanisms of action focus on AMPH, while 

studies on neurodegeneration primarily involve 

METH [19, 20]. This discrepancy may be 

attributed to the greater availability of METH on 

the illicit market due to its simpler synthesis 

methods, which involve either a one-step 

reduction of ephedrine or pseudoephedrine, or a 

condensation of phenylacetone and methylamine. 

The former method yields only the more active 

S(+)-enantiomer due to the stereochemical purity 

of ephedrine, a natural product [21, 22, 23]. 
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Historical Utilization of Natural Plant-Derived 

Amphetamines 

Similar to nicotine, cocaine, opiates, marijuana, 

and alcohol, amphetamines have been utilized in 

their natural plant forms for thousands of years 

[24, 25, 26]. Ephedra species and the Catha edulis 

tree, commonly known as khat, have historically 

been the principal sources of these plant-based 

stimulants [27, 28].  Ephedra sinica, referred to as 

ephedra or Ma huang in China, has been unearthed 

from ancient gravesites in the Middle East and 

Indian Vedic temples, with controversial 

associations to soma, a sacred substance in Vedic 

rituals [29]. Ephedrine, its primary active 



Arnab Roy , Int. J. of Pharm. Sci., 2024, Vol 2, Issue 5, 307-328 |Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                311 | P a g e  

compound, was identified in the late 19th century. 

In Western regions, a stimulant tea brewed from a 

different Ephedra species, Mormon Tea (E. 

nevadensis), gained popularity, particularly as it 

was not restricted by the Church of Jesus Christ of 

Latter-day Saints [30, 31]. However, recent studies 

suggest that New World Ephedra lacks the 

alkaloids found in the original ephedrine-

containing species [32, 33]. Ephedrine became 

widely used as an over-the-counter appetite 

suppressant and performance enhancer, although 

its dangers were underscored by incidents such as 

the death of Baltimore Orioles pitcher Steve 

Bechler in 2003 [34, 35]. Its usage as a dietary 

supplement was subsequently banned by the FDA 

in 2004, primarily due to its role as a precursor in 

the illicit production of methamphetamine [36, 

37]. Khat, derived from the leaves of Catha edulis, 

contains the amphetamines cathinone and cathine 

[38, 39]. Its use dates back to the 11th century and 

is prevalent in regions such as Yemen, Kenya, and 

Somalia [40]. Khat consumption is associated with 

sociability, euphoria, and appetite suppression 

[41]. Despite its widespread use, khat is habit-

forming and can lead to paranoia and other 

psychological disturbances [42]. However, 

withdrawal symptoms are reported to be relatively 

mild. Khat chewing is deeply embedded in social 

customs, particularly in Yemen, where dedicated 

rooms are often set aside for communal khat 

sessions [43]. While other plant species contain 

natural amphetamines, including certain Acacia 

species and Egyptian jasmine, they are not 

commonly used for administration of these drugs 

[44, 45]. However, there are plants containing 

components similar to amphetamines, such as 

synephrine found in citrus plants and arecoline in 

the betel nut palm [46, 47]. Mescaline, a 

phenethylamine analog found in the peyote cactus, 

has a distinct mechanism of action compared to 

amphetamines, but has inspired the synthesis of 

numerous amphetamine derivatives. It has been 

historically used in Native American rituals and is 

protected by law for religious purposes [48, 49, 

50]. 

Role of Trace Amines in Affective Modulation 

and Potential Endogenous Amphetamine 

Action 

It has been long established that decarboxylated 

metabolites of aromatic amino acids, such as β-

phenethylamine from phenylalanine, 

phenylethanolamine, tyramine from tyrosine, and 

tryptamine from tryptophan, are synthesized in 

both the peripheral nervous system and the brain 

[51, 52, 53]. These compounds have been 

implicated in modulating affective behaviors such 

as excitement and alertness. Interestingly, 

decreased levels of these "trace amines" have been 

observed in the urine of depressed patients, while 

their levels are elevated by marijuana     

[54].Although trace amines share some 

mechanisms of action with amphetamines and may 

potentially act as endogenous amphetamines, they 

are not stored in substantial quantities in either the 

central nervous system or the periphery. 

Exogenous administration of high levels of β-

phenethylamine or its accumulation due to 

monoamine oxidase (MAO) inhibition can induce 

psychostimulant responses similar to 

amphetamines [55, 56]. Like amphetamines, β-

phenethylamine releases dopamine in a manner 

dependent on the presence of an intact dopamine 

transporter (DAT) [57]. However, certain 

behavioral responses to β-phenethylamine appear 

to be independent of DAT. The neurotransmitter 

status of β-phenethylamine remains uncertain. 

When present in high concentrations, it is likely to 

be transported into synaptic vesicles by the 

vesicular monoamine transporter [58, 59]. 

However, some studies suggest that β-

phenethylamine may also be released by diffusion 

across membranes, rather than through reverse 

transport via catecholamine transporters, and may 

exhibit insensitivity to reserpine, an inhibitor of 



Arnab Roy , Int. J. of Pharm. Sci., 2024, Vol 2, Issue 5, 307-328 |Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                312 | P a g e  

vesicular catecholamine uptake [60, 61]. In 

contrast to amphetamines, trace amines lack the α-

methyl group that inhibits MAO, making them 

rapidly metabolized in the brain [62]. It is unclear 

whether local concentrations of β-phenethylamine 

in the brain are sufficient to elicit endogenous 

amphetamine-like effects or activate receptors 

significantly, although some trace amine 

compounds show high affinity for recently 

identified trace amine receptors [63, 64, 65]. 

The Evolution and Impact of Synthetic 

Amphetamine: From Invention to Epidemics 

and Clinical Applications 

Synthetic amphetamine (AMPH) was first 

synthesized in 1887 by Lazar Edeleanu, a 

Romanian chemist who described its production in 

his doctoral dissertation under A.W. Hofmann at 

the University of Berlin [66, 67]. Edeleanu later 

gained recognition for inventing the method to 

distill petroleum using sulfur dioxide, which 

imparted the distinctive odor to gasoline 

distilleries [68, 69]. AMPH derives its generic 

name from a contraction of "α-methyl-phenethyl-

amine." The rich history of this compound is 

evident from the 1989 Merck Index, which listed 

17 trade names, excluding well-known brands like 

Adderall, Benzedrine, and Dexedrine, along with 

numerous nicknames used by drug abusers. Over 

time, chemists have developed an extensive array 

of synthetic AMPH derivatives [70, 71]. The 

concept of sympathomimetic amines, introduced 

by Barger and Dale, spurred research into various 

catecholamine-like derivatives for their ability to 

raise blood pressure and relieve nasal and 

bronchial congestion [72, 73]. Independently, 

Gordon Alles resynthesized AMPH in 1927 as part 

of efforts to develop synthetic sympathomimetics 

[74]. Walter Hartung and James Munch identified 

AMPH as a potent sympathomimetic and 

particularly effective when administered orally. 

Commercially introduced in 1932 as Benzedrine 

by the pharmaceutical firm Smith, Kline and 

French, AMPH gained popularity rapidly. Its first 

clinical use, for narcolepsy, was reported by 

Myron Prinzmetal in 1935 [75, 76]. By 1936, 

Benzedrine tablets became available without 

prescription, leading to widespread usage, notably 

among students, artists, musicians, and truck 

drivers. Initially promoted for over 30 uses, 

including schizophrenia treatment and seasickness 

relief, by 1946, AMPH's annual pharmaceutical 

production reached 10 billion tablets, with a 

significant portion diverted to the black market 

[77, 78]. In 1971, legal quotas on AMPH 

production were imposed by the United States 

Justice Department. Despite this, AMPH, 

methamphetamine, and methylphenidate remain 

widely prescribed for weight control, narcolepsy, 

and attention deficit disorder [79, 80]. Military use 

of AMPH for promoting alertness dates back to the 

Spanish Civil War, with ongoing usage, 

particularly among fighter pilots [81]. Reports of 

AMPH abuse and psychosis emerged soon after its 

introduction, with concerns over addiction 

becoming more prominent in the mid-1960s. 

Similar to cocaine, AMPH use tends to occur in 

epidemic waves, as seen in Japan and Sweden 

during the mid-20th century [82, 83]. Currently, 

methamphetamine is the most prevalent illicitly 

manufactured controlled substance in the United 

States, with widespread local epidemics reported. 

MDMA, originally developed for clinical use, 

remains popular illicitly, despite being assigned 

Schedule I status in 1985 [84, 85]. 

Efforts to synthesize AMPH derivatives have led 

to the exploration of various compounds for 

clinical applications, including appetite 

suppression and treatment of Parkinson's Disease 

[86]. 

Exploring Multifaceted Sites of Action: A 

Comprehensive Overview 

Early Interplay Between Amphetamine Action 

and Adrenal Medulla Secretion 
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Early scientific exploration into the action of 

amphetamines (AMPH) is intricately tied to the 

study of the adrenal medulla and its secretion of 

catecholamines. Catechol, originating from 

catechu, a plant extract, was traditionally used for 

dyeing fabric and medicinal purposes [87, 88, 89]. 

George Oliver, a British physician, observed 

increased blood pressure upon injecting adrenal 

gland extract into his son [90, 91]. By 1894, Oliver 

and Edward Albert Schafer confirmed this effect 

in dogs [92]. Epinephrine, the active compound, 

was identified independently by three laboratories 

in 1897. Its structure was elucidated by Ernst 

Joseph Friedman in 1906. These discoveries laid 

the groundwork for the hypothesis of secretory 

transmission, suggesting that nerves communicate 

through chemical release [93, 94, 95]. 

 
Fig no 2. Mechanism of Action of Amphetamine in 

Adrenal medulla 

Thomas Renton Elliott proposed this idea in 1904 

after confirming epinephrine's effects. He also 

suggested nerve accumulation of epinephrine, 

though this was demonstrated much later.  

Pharmacological exploration began with George 

Barger and Henry H. Dale in 1910, who 

investigated compounds mimicking epinephrine's 

effects [96, 97, 98]. They coined the term 

"sympathomimetic" to describe such compounds. 

Later research by J.H. Burn and colleagues 

distinguished between directly and indirectly 

acting sympathomimetics [99]. Cocaine, derived 

from Erythoxylon coca, provided insights into 

physiological mechanisms, particularly as a 

monoamine uptake transporter inhibitor. Its 

effects, including its association with Coca-Cola 

and initial medical enthusiasm, were noted [101, 

102]. Alfred Fröhlich and Otto Loewi's work in 

1910 on cocaine's interaction with epinephrine 

added to this understanding [103, 104]. Reserpine, 

derived from Rauwolfia serpentina, was pivotal in 

unraveling the actions of sympathomimetics. Its 

introduction to the West led to significant 

therapeutic applications, albeit with notable side 

effects [105, 106]. Arvid Carlsson and others in 

1957 showed reserpine's interaction with 

tyramine, shedding light on sympathomimetic 

actions [107, 108]. Burn and Rand's 1958 study 

clarified amphetamines' mechanism by showing 

their ability to release catecholamines. This 

explained differences in their actions compared to 

uptake blockers like cocaine [109, 110]. Later 

research confirmed amphetamines' role in central 

dopamine release, emphasizing release over 

reuptake blockade as the primary mechanism. 

Overall, these early investigations laid the 

foundation for understanding amphetamine action, 

with subsequent studies refining our knowledge of 

its physiological effects [111]. 

Exploring the Role of Plasma Membrane 

Uptake Transporters and Monoamine 

Secretory/Synaptic Vesicles in Amphetamine 
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(AMPH) Action: Insights from Reserpine 

Studies and Genetic Manipulations 

Fig no 3 Role of Plasma Membrane Uptake Transporters and Monoamine Secretory/Synaptic Vesicles in 

Amphetamine (AMPH) Action. 

Initial studies using reserpine suggested a role for 

secretory vesicles in AMPH action. However, 

subsequent literature presented conflicting 

findings due to variations in experimental design 

[112].  Most studies, focusing on dopamine and 

norepinephrine systems, administered in vivo 

reserpine injections prior to AMPH 

administration. These studies generally found that 

reserpine blocked AMPH-mediated release of 

norepinephrine, suggesting involvement of 

vesicular catecholamine [113 ,114, 115]. 

However, the synthesis of norepinephrine from 

dopamine within vesicles may affect the 

interpretation of these results. Combinatorial 

studies on reserpine and AMPH effects on 

dopamine release yielded mixed results, with some 

experiments showing no effect of reserpine on 

AMPH, while others reported blockade. Attempts 

to resolve these discrepancies using synaptosomes 

also produced contradictory results [116, 117]. 

One explanation for these inconsistencies is that 

reserpine may upregulate tyrosine hydroxylase 

activity, leading to increased cytosolic dopamine 

levels. Shorter exposure to reserpine depleted 

exocytic dopamine release but did not increase 

tyrosine hydroxylase activity [118, 119]. This 

suggests that vesicular catecholamines contribute 

significantly to AMPH-mediated efflux under 

typical conditions [120]. Recent studies using 

genetic manipulations have shed light on the role 

of synaptic vesicles in AMPH action. Experiments 

with transfected cell lines and mouse mutants 

indicate the involvement of both dopamine 

transporter (DAT) and vesicular monoamine 

transporter (VMAT) in AMPH-mediated 

dopamine release [121, 122, 123]. Further 

investigations using electrochemical detection 

techniques and mutated transporters support the 

idea that AMPH acts on both vesicular and plasma 

membrane transporters, affecting monoamine 

pools in both synaptic vesicles and the cytosol. 

Additionally, AMPH-induced de novo dopamine 

synthesis may contribute to its effects [124, 125, 

126]. Furthermore, AMPH affects both vesicular 

and cytosolic catecholamine pools, with 

implications for neurotransmitter release and 

cellular signaling. Its multifaceted actions 

highlight the complexity of its mechanism of 

action and its potential therapeutic implications 

[127, 128]. Amphetamines, including 
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amphetamine and methamphetamine derivatives, 

exert their pharmacological effects through 

interactions with monoamine transporters and 

vesicular monoamine transporters (VMATs) 

within presynaptic neurons [129, 130]. This 

review delves into the intricate mechanisms by 

which amphetamines impact synaptic vesicle 

dynamics, focusing on neurotransmitter storage, 

release, and reuptake modulation [131, 132]. 

The impact on Amphetamines in Synaptic 

vesicles 

Amphetamines are recognized psychostimulants 

that enhance monoaminergic neurotransmission 

by modulating monoamine transporters and 

VMATs. A comprehensive understanding of the 

interplay between amphetamines and synaptic 

vesicles is vital for comprehending their 

pharmacological implications and therapeutic 

potentiall [133, 134, 135]. 

Fig.4.  Mechanisms of Amphetamines in Synaptic vesicles 

Monoamine Transporter Inhibition 

Amphetamines function as substrates for 

monoamine transporters, such as the dopamine 

transporter (DAT), norepinephrine transporter 

(NET), and serotonin transporter (SERT) [136, 

137]. By binding to and inhibiting these 

transporters, amphetamines impede the reuptake 

of monoamine neurotransmitters from the synaptic 

cleft into presynaptic neurons, thereby elevating 

extracellular monoamine levels, notably dopamine 

and norepinephrine [138, 139, 140]. 

Vesicular Monoamine Transporter (VMAT) 

Activation 

In addition to monoamine transporter inhibition, 

amphetamines induce the reverse transport of 

monoamines by activating VMATs. VMATs play 

a pivotal role in packaging monoamine 

neurotransmitters into synaptic vesicles for storage 

and subsequent release. By facilitating the release 

of monoamines from synaptic vesicles into the 

presynaptic neuron's cytoplasm, amphetamines 

further augment extracellular monoamine 

concentrations [141, 142 , 143]. 

Disruption of Vesicular Storage 

Extended exposure to high amphetamine 

concentrations can deplete monoamine stores 

within synaptic vesicles. This depletion results 

from VMAT reversal, which prompts the efflux of 

monoamines from synaptic vesicles into the 

cytoplasm, leading to a decline in vesicular 
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monoamine content over time. Consequently, 

neurotransmitter release becomes less reliant on 

vesicular exocytosis and increasingly dependent 

on cytoplasmic reserves [144, 145, 146]. 

Increased Neurotransmitter Release 

The cumulative effects of monoamine transporter 

inhibition and VMAT activation culminate in 

heightened release of monoamine 

neurotransmitters, particularly dopamine, into the 

synaptic cleft. This excessive neurotransmitter 

release intensifies monoaminergic signaling and 

contributes to the psychostimulant effects of 

amphetamines, including heightened arousal, 

euphoria, and enhanced cognitive function [147, 

148, 149]. Lastly, Amphetamines intricately 

modulate synaptic vesicle function by influencing 

the dynamics of monoamine neurotransmitter 

storage, release, and reuptake. A nuanced 

comprehension of these mechanisms offers 

valuable insights into the pharmacological effects 

of amphetamines and holds promise for the 

development of innovative therapeutic strategies 

targeting monoaminergic neurotransmission [150, 

151]. 

The impact on Amphetamines in Plasma 

membrane vesicles 

Amphetamines (AMPH) are psychostimulant 

drugs that exert their pharmacological effects by 

interacting with plasma membrane transporters 

involved in the reuptake of monoamine 

neurotransmitters [152, 153]. This article aims to 

provide a comprehensive overview of AMPH 

actions on monoamine transporters, focusing on 

the dopamine transporter (DAT), norepinephrine 

transporter (NET), and serotonin transporter 

(SERT) [154]. 

Fig.5.  Mechanisms of Amphetamines in Plasma membrane vesicles 

Substrate for Monoamine Transporters 

AMPH compounds, including amphetamine and 

methamphetamine, serve as substrates for 

monoamine transporters. Structurally similar to 

endogenous neurotransmitters like dopamine, 

norepinephrine, and serotonin, AMPH molecules 

are recognized and actively transported by these 

transporters [155]. 

Reuptake Inhibition 

Upon entering the presynaptic neuron, AMPH 

competitively inhibits the reuptake of monoamine 

neurotransmitters from the synaptic cleft into the 

presynaptic neuron. By binding to and blocking 

the activity of monoamine transporters, AMPH 

disrupts the normal reuptake process, leading to an 

accumulation of neurotransmitters in the synaptic 

cleft [156]. 

Enhanced Monoaminergic Signaling 

The inhibition of monoamine reuptake by AMPH 

results in prolonged presence of neurotransmitters 

in the synaptic cleft, leading to enhanced 

monoaminergic signaling. This augmentation of 

neurotransmission contributes to the 

psychostimulant effects of AMPH, including 
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increased arousal, euphoria, and improved 

cognitive function [157, 158, 159]. 

Dopamine Transporter (DAT) Interaction 

AMPH exhibits high affinity for DAT, the primary 

transporter responsible for dopamine reuptake. 

Binding to DAT, AMPH inhibits dopamine 

reuptake, leading to elevated extracellular 

dopamine levels. This increase in dopamine 

neurotransmission is associated with the 

rewarding and reinforcing effects of AMPH [160, 

161]. 

Norepinephrine Transporter (NET) 

Interaction 

Similarly, AMPH interacts with NET, the 

transporter responsible for norepinephrine 

reuptake. By inhibiting NET activity, AMPH 

increases extracellular norepinephrine levels, 

contributing to its stimulant effects on arousal and 

attention [162]. 

Serotonin Transporter (SERT) Interaction 

While less potent compared to its effects on DAT 

and NET, AMPH also interacts with SERT, 

leading to increased extracellular serotonin levels. 

This modulation of serotonin neurotransmission 

may contribute to the mood-elevating effects of 

AMPH [163, 164]. 

Additional Mechanisms Influencing 

Extracellular Catecholamine Levels 

While amphetamine (AMPH) primarily interacts 

with plasma membrane transporters, it also 

influences extracellular catecholamine levels 

through alternative mechanisms. This section 

explores these additional pathways, offering 

insight into the broader regulatory network 

governing catecholamine neurotransmission [165, 

166]. 

Vesicular Exocytosis and Secretory Vesicles 

AMPH's impact extends beyond plasma 

membrane transporters to include vesicular 

exocytosis and secretory vesicles. By activating 

vesicular monoamine transporters (VMATs), 

AMPH facilitates the release of catecholamines 

stored within synaptic vesicles into the cytoplasm, 

a process known as reverse transport, thereby 

elevating extracellular catecholamine levels [167, 

168, 169, 170]. 

Tyrosine Hydroxylase Activity 

AMPH may modulate extracellular catecholamine 

levels by affecting tyrosine hydroxylase activity, 

the enzyme critical for catecholamine synthesis. 

Through enhanced tyrosine hydroxylase activity, 

AMPH promotes the conversion of tyrosine to L-

DOPA, increasing substrate availability for 

catecholamine synthesis and subsequent release 

[171]. 

8Monoamine Oxidase Inhibition 

Inhibition of monoamine oxidase (MAO), 

responsible for catecholamine degradation, 

represents another potential mechanism. By 

inhibiting MAO activity, AMPH extends the 

lifespan of extracellular catecholamines, leading to 

their accumulation in the synaptic cleft and 

amplifying neurotransmission [172, 173]. 

Neuronal Firing and Action Potential 

Generation 

AMPH's stimulatory effects on neuronal firing and 

action potential generation indirectly influence 

extracellular catecholamine levels. Increased 

neuronal excitability promotes neurotransmitter 

release, including catecholamines, into the 

synaptic cleft, thereby augmenting extracellular 

concentrations [174, 175]. 

Glial Cell Interactions 

Evidence suggests that glial cells, particularly 

astrocytes, play a role in regulating extracellular 

neurotransmitter levels. AMPH-induced 

alterations in glial cell function, such as calcium 

signaling and glutamate release, may indirectly 

impact catecholamine neurotransmission and 

contribute to changes in extracellular 

catecholamine levels [176, 177, 178]. In summary, 

AMPH's influence on extracellular catecholamine 

levels encompasses various mechanisms beyond 

plasma membrane transporters. Through 
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modulation of vesicular exocytosis, tyrosine 

hydroxylase activity, MAO inhibition, neuronal 

firing, and glial cell interactions, AMPH exerts 

complex effects on catecholamine 

neurotransmission. Understanding these 

alternative mechanisms provides a comprehensive 

perspective on AMPH's pharmacological actions 

and offers potential insights for therapeutic 

interventions targeting catecholamine 

dysregulation [179, 180, 181]. 

CONCLUSION 

This article provides a comprehensive exploration 

of the multifaceted mechanisms underlying the 

actions of amphetamines, focusing primarily on 

their impact on neurotransmission. By delving into 

the historical context, current research, and future 

directions, it sheds light on the intricate interplay 

between amphetamines and the central nervous 

system. The review carefully examines the 

structural diversity of amphetamines and their 

psychoactive effects, drawing parallels with the 

botanical diversity of orchids. It navigates through 

the elevation of extracellular catecholamines and 

serotonin levels, elucidating the mechanisms 

underlying these effects independently of classical 

transmitter release pathways. The cautious 

definition of "the amphetamines" encompasses 

compounds sharing a common structural motif, 

allowing for a focused discussion primarily on 

AMPH and methamphetamine. Subtle distinctions 

between these compounds are explored, alongside 

their historical utilization from natural plant-

derived sources to contemporary clinical 

applications. Furthermore, the review investigates 

the role of trace amines in affective modulation 

and their potential as endogenous amphetamines, 

providing insights into the broader neurobiological 

landscape. It also traces the evolution and impact 

of synthetic amphetamines, from their inception to 

contemporary epidemics and clinical uses. 

Through a comprehensive exploration of 

amphetamine actions on synaptic vesicles and 

plasma membrane transporters, the article unravels 

their complex pharmacological effects and 

therapeutic implications. By dissecting the 

mechanisms underlying amphetamine-mediated 

neurotransmission, it offers valuable insights into 

both the rewarding and addictive nature of these 

compounds, as well as their potential therapeutic 

applications. Overall, this review contributes to 

our understanding of the multifaceted mechanisms 

of amphetamines and their impact on 

neurotransmission, paving the way for future 

research and clinical interventions in this field. 
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