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Exosomes and extracellular vesicles (EVs) have emerged as next-generation drug 

delivery platforms owing to their natural origin, high biocompatibility, and ability to 

cross biological barriers.  Derived from various cell types, these nanosized vesicles play 

vital roles in intercellular communication and can be engineered to carry therapeutic 

molecules such as small drugs, proteins, and nucleic acids with high specificity and 

stability.  Recent advances in isolation, characterization, and surface modification 

techniques have enhanced their potential for targeted therapy in cancer, neurological, 

and inflammatory diseases.  Compared to conventional nanocarriers, exosome-based 

systems offer superior biodistribution, cellular uptake, and reduced immunogenicity. 

Despite their potential, there are still significant obstacles to overcome, such as 

largescale production, standardization, and regulatory barriers.  Exosomes and EVs may 

soon be recognized as a revolutionary and clinically feasible class of biological 

nanocarriers for precise drug delivery thanks to ongoing research into scalable 

manufacturing, functionalization, and clinical validation. 
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INTRODUCTION 

Cells mainly communicate with one another 

through chemical messengers, most notably 

extracellular vesicles (EVs).  In recent years, 

extensive research has focused on the potential of 

EVs in therapeutic medicine development.  Their 

distinct structural characteristics enable them to be 

modified to transport particular biomolecules like 

lipids, proteins, and nucleic acids—including 

messenger RNA (mRNA), microRNA (miRNA), 

other small non-coding  Genomic DNA (gDNA) 

and RNAs are derived from the parent cell.  

Depending on their cellular  EVs are typically 

divided into three primary categories based on 

their size and origin: (a) exosomes (30–150  nm in 

diameter), (b) microvesicles or ectosomes (50 nm–

1 µm), and (c) apoptotic bodies (50  nm–5 µm).[1] 

https://www.ijpsjournal.com/
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Extracellular vesicles (EVs) are membrane-bound 

lipid particles that are released by cells into the 

surrounding extracellular environment[2,3] The 

origin, release mechanisms, size range, molecular 

makeup, and biological functions of the three main 

subtypes of extracellular vesicles (EVs)—

microvesicles (MVs), exosomes, and apoptotic 

bodies—are categorized.  [2,4]  

 1. CLASSIFICATION OF 

EXTRACELLULAR VESICLES   

1.1EXOSOMES:  

 

Figure 1. classification of extracellular vesicles 

Intraluminal vesicles (ILVs), another name for 

exosomes, are membrane-bound structures with a 

single lipid bilayer surrounding them.  They have 

been found in a variety of bodily fluids, including 

plasma, urine, saliva, semen, breast milk, 

cerebrospinal fluid (CSF), bronchial secretions, 

serum, amniotic fluid, synovial fluid, lymph, bile, 

and gastric juice. They are released by almost all 

cell types. [5–19] Early endosomes, which are 

made when the plasma membrane buds inward, 

and multivesicular bodies (MVBs) are very 

important for cellular endocytosis and moving 

materials around.  They are in charge of sorting, 

recycling, storing, moving, and releasing proteins 

inside the cell. [20]  Exosomes are present in 

nearly all body fluids and originate from various 

cell types.  Their molecular contents often reflect 

disease-specific characteristics, including those 

linked to viral infections, neurodegenerative 

disorders (such as prion diseases, Alzheimer’s, and 

Huntington’s), and cancers.  Consequently, 

exosomes are being extensively studied as 

potential sources of novel biomarkers.  Many 

research efforts have aimed to elucidate their roles 

in intercellular communication, immune 

regulation, cellular development and 

differentiation, neuronal activity, signaling 

pathways, tissue regeneration, and different stages 

of viral replication. [21] The formation of 

exosomes starts in the endosomal compartment of 

the cell. [Fig. 1] It begins with early endosomes, 

which gradually mature into late endosomes or 

multivesicular bodies (MVBs). During this 

maturation, the endosomal membrane folds 

inward, creating intraluminal vesicles (ILVs) 

inside these organelles.[22] The multivesicular 

bodies (MVBs) then merge with the cell’s plasma 

membrane, releasing the intraluminal vesicles 

(ILVs), now called exosomes, into the 

extracellular space through exocytosis. Various 
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cell types can secrete these exosomes under both 

normal and abnormal conditions.[23] The merging 

of MVBs with the plasma membrane and the 

movement of vesicles in time and space are 

managed by Rab GTPases. The endosomal sorting 

complex required for transport, or ESCRT, is the 

main molecular mechanism that plays a role in the 

formation of exosomes within endosomes.[24]  

1.2 MICROVESICLES:   

Microvesicles (MVs) are a type of extracellular 

vesicle (EV) that come from the direct outward 

budding or shedding of the plasma membrane. 

Their diameter typically ranges from 100 

nanometers to 1 micrometer.[2-4] The exact 

mechanism of MV formation is still unknown. It 

likely involves cytoskeletal elements like actin and 

microtubules. Molecular motors, such as kinesins 

and myosins, also play a role, along with fusion-

related proteins like SNAREs and tethering 

factors.[25] The number of MVs released depends 

on the donor cell's condition and the surrounding 

environment.[2] Although the protein makeup of 

MVs varies based on the isolation method used, 

there is a set of proteins called “marker proteins.” 

These proteins are found in MVs regardless of 

where they come from, due to the common 

processes involved in their creation.[26] The 

presence of cytosolic and plasma membrane 

proteins in MVs is due to how they form. In 

comparison, proteins connected to organelles like 

the mitochondria, Golgi apparatus, nucleus, and 

endoplasmic reticulum are usually less common in 

MVs than in the whole-cell lysate. This is because 

these organelles do not take part in MV creation. 

[27,28]  

1.3 APOPTOTIC BODIES:  

Apoptotic bodies are membrane-bound vesicles 

that cells release when they go through 

programmed cell death. Their size usually ranges 

from about 50 nanometers to as large as 5 

micrometers in diameter. Most apoptotic bodies 

tend to be on the larger side of this range.[4] These 

vesicles form when the cell contracts. This leads to 

higher internal pressure, which makes the plasma 

membrane separate from the cytoskeleton.[29] 

The molecular structure of apoptotic bodies is 

quite different from that of exosomes and 

microvesicles. Unlike these vesicles, apoptotic 

bodies usually contain intact cellular organelles, 

pieces of chromatin, and traces of glycosylated 

proteins.[4,30-32]  

2. DRUG LOADING STRATEGIES –  

In contrast, the post-loading technique means 

adding drugs to exosomes that have already been 

isolated. This method can be divided into two main 

strategies: passive loading and active loading.[33] 

Passive loading relies on the natural physical 

properties of the drug, which lets it move into 

exosomes on its own. In contrast, active loading 

uses specific methods, like electroporation, 

sonication, or extrusion, to help and improve the 

process of putting the drug inside the 

exosomes.[34,35]   

2.1 PASSIVE LOADING –  

A simple way to put drugs into exosomes is 

through passive loading, especially with the 

incubation method. In this process, drugs enter 

exosomes because the outside drug concentration 

is higher. This method is easy to do and keeps the 

exosomes' structure intact. However, it mainly 

works with specific types of drugs, particularly 

hydrophobic compounds, which can interact well 

with the lipid membranes of exosomes. Thus, the 

loading efficiency relies heavily on the drug's 

hydrophobicity and how long the incubation 

lasts.[36] For instance, hydrophobic molecules 

like the polyphenolic compound curcumin and the 

anticancer drug paclitaxel can be effectively 
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encapsulated in exosomes using a simple 

incubation process.[37,38] Compared to the pre-

loading technique, the post-loading method offers 

better efficiency. This allows for more control over 

both the encapsulation efficiency and the drug-

loading capacity of the final formulation.[39]  

 

Figure 2. Drug- loading methods for exosome. 

2.1.1 co- incubation (pre – passive loading)  

Co-incubation involves putting the desired cargo 

into donor cells. These cells then release the cargo 

in exosomes. Later, researchers collect these 

exosomes from the coculture medium using 

ultracentrifugation. While this method is simple, it 

often leads to low drug-loading efficiency and 

limited control over encapsulation. This can 

change based on the physical and chemical 

properties of the drug and the type of donor cell 

used. To improve this efficiency, researchers have 

explored alternative strategies like mild electrical 

stimulation and ultraviolet exposure.[40, 41]  

2.2 Active loading –  

Physical Induction  

To tackle the issues linked to passive loading, 

researchers have created various active loading 

methods. Physical induction uses external physical 

prompts to help therapeutic cargo enter exosomes. 

Techniques such as electroporation, sonication, 

freeze-thaw cycles, and extrusion are commonly 

used. These methods create temporary pores or 

apply mechanical stress to the exosomal 

membrane, allowing more efficient incorporation 

of drug molecules into the vesicles.[42]  

2.2.1 Electroporation  

Electroporation is a common and effective 

technique for getting large biomolecules, like 

miRNA and siRNA, into exosomes. In this 

method, an external electric field is applied to the 

exosomes. This generates a voltage strong enough 

to disrupt their phospholipid bilayer. As a result, 

transient pores form in the exosomal membrane. 

This temporarily increases permeability and 

allows the target molecules to enter. When 

exosomes and drug molecules experience a strong 

electric field, temporary pores form in the 

exosomal membrane. This allows the drug 

molecules to diffuse or pass through these 

openings and get encapsulated within the 

exosomes.[43]  

3. Therapeutic applications –  

3.1 Cardiovascular  disease 
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miRNA-21 is important for preventing cell death 

(apoptosis) and for promoting the growth of new 

blood vessels (angiogenesis) in heart-related 

issues.[44] miRNA-21 modulates apoptosis by 

targeting PDCD4 and AP-1 in cardiomyocytes. It 

also improves angiogenesis by activating the 

PTEN/Akt signaling pathway in endothelial cells. 

Recently, scientists encapsulated miR-21 within 

extracellular vesicles (EVs) from HEK293T cells. 

Almost 47.2% of these miR-21-loaded EVs 

measured between 30 and 150 nm. This size aligns 

with the known range for exosomes and is 

confirmed by markers like CD9, CD63, and CD81. 

These miR-21-enriched EVs effectively reduced 

PDCD4 protein expression, which is a known 

target of miR-21. They also decreased apoptosis in 

both cardiomyocytes and endothelial cells. This 

outcome was different from liposome-based 

systems, which did not show similar results. 

Additionally, delivering these miR-21 EVs 

directly into the heart tissue resulted in their 

presence in the damaged areas. This delivery 

helped improve cardiac repair and functional 

recovery.[45]  

3.2 Cancer therapy:  

Paclitaxel is a chemotherapy drug from the taxane 

family. It works against cancer by binding to and 

stabilizing microtubules. This stabilization stops 

microtubules from breaking down, which halts cell 

division and eventually leads to the death of cancer 

cells.[46-47] Paclitaxel is used to treat various 

cancers, including glioblastoma multiforme, 

breast cancer, ovarian cancer, lung cancer, and 

pancreatic cancer. However, its low solubility and 

dose-related toxicity limit its use in clinical 

settings. Early research on exosome-mediated 

delivery of paclitaxel involved mesenchymal 

stromal cells  (MSCs). When these cells were 

treated with paclitaxel, they released exosomes 

containing the drug. This method showed better 

anti-tumor activity than free paclitaxel.[48]  

Curcumin is a natural compound that can help 

prevent the onset and spread of various cancers. 

However, its use in medicine is limited due to poor 

absorption and quick breakdown in the body. To 

overcome these issues and ensure it gets delivered 

effectively, scientists have created systems using 

exosomes to transport curcumin. Because 

curcumin is hydrophobic, it shows nearly a 

fivefold increase in solubility when encapsulated 

in exosomes that contain PBS, compared to PBS 

on its own. Additionally, exosome-loaded 

curcumin keeps over 80% of its stability after 150 

minutes in PBS at pH 7.4, while free curcumin 

breaks down rapidly, retaining only about 25% of 

its initial concentration. When given either by 

injection into the body or orally, exosomal 

curcumin reaches 5 to 10 times higher levels in 

peripheral blood than curcumin given without 

exosomes.[37]  

3.3 Neurodegenerative Disorders:  

Alzheimer’s disease (AD) is a common 

neurodegenerative condition marked by the 

buildup of amyloid-β (Aβ) plaques, unusual 

phosphorylation of tau proteins, and the loss of 

neurons and synaptic connections. These harmful 

changes lead to a gradual and ongoing decline in 

cognitive abilities.[49] Alzheimer's disease (AD) 

has many aspects, so there are only a few drugs 

available for its treatment. This creates an urgent 

need for targeted and more effective treatment 

strategies. In AD, high levels of β-site amyloid 

precursor protein (APP)-cleaving enzyme 1 

(BACE1) increase the breakdown of APP. This 

results in more amyloid plaques and the buildup of 

Aβ peptides, which are crucial in forming senile 

plaques.[50]  In one investigation, miR-29, which 

targets BACE1, was assessed as a potential 

treatment for Alzheimer’s disease. Researchers 

transfected HEK-293T cells and rat bone marrow-
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derived mesenchymal stem cells with recombinant 

expression vectors containing precursor sequences 

of miR-29a or miR-29b. They found that 

administering miR-29-enriched exosomes to an 

amyloid-β-induced Alzheimer’s model 

successfully prevented problems with spatial 

learning and memory. Supporting studies showed 

that miR-29b-loaded exosomes effectively 

reduced BACE1 expression in U87 glioblastoma 

cells. Moreover, another study found that 

exosomes loaded with curcumin had therapeutic 

effects by decreasing Tau hyperphosphorylation 

through modulation of the AKT/GSK-3β signaling 

pathway.[51] 

 4.ADVANTAGES OF EXOSOMES/EVS:  

4.1 natural targeting ability-  

Exosomes come from different types of cells and 

are found in almost all biological fluids. They have 

attracted a lot of interest because they can help 

track disease progression and may be useful in 

immunotherapy. Of the various sources, exosomes 

taken from human mesenchymal stem cells are 

relatively simple to isolate and have important 

therapeutic benefits. [52] Studies have shown that 

exosomes from bone marrow mesenchymal stem 

cells show good tolerance even after multiple 

doses and do not cause significant side effects. 

This suggests they could be a promising and safe 

treatment option for refractory graft-versus-host 

disease and other inflammation-related 

disorders.[53]  

4.2 Natural Origin & Biocompatibility:  

EVs are made from cells. They have high 

compatibility and low toxicity compared to 

synthetic nanoparticles. [54]  

4.3 Enhanced Targeting & Uptake:  

Surface proteins such as integrins and tetraspanins 

help with both homotypic and receptor-mediated 

uptake. This improves specificity. [55]  

4.4 Barrier Penetration:  

Exosomes can cross biological barriers, including 

the blood-brain barrier. This ability allows for the 

treatment of neurological diseases. [56]  

4.5 Stability & Circulation:  

Their natural membranes resist breaking down. 

This allows for longer circulation in the body.[55]  

4.6 Immune Evasion:   

EVs show self-markers like CD47. This reduces 

immune clearance and inflammation.[57]   

4.7 Engineering Flexibility:  

EVs can be modified to improve drug loading, 

targeting, and tracking. [57]  

5. CHALLENGES AND LIMITATIONS –  

Although significant progress has been made in 

new methods for isolating exosomes, some 

limitations still remain.  

5.1 Cost and scalability:  Techniques like 

EXODUS and magnetic-based separation require 

significant initial investment and a complicated 

setup. This limits their ability to be used widely in 

regular clinical or industrial environments.[58]  

5.2 Standardization and reproducibility:  A 

major concern in exosome research is the lack of 

consistency in experimental protocols, including 

isolation, purification, and characterization 

methods. This variation across laboratories results 

in poor reproducibility and restricts the ability to 

directly compare results from different studies. 
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This, in turn, hampers the development of 

standardized analytical frameworks.[59]  

5.3 Sample compatibility:  Many of the new 

isolation techniques show limited effectiveness 

when used with specific biological fluids, such as 

emulsified samples or cerebrospinal fluid. This 

limitation creates challenges in using these 

methods for different clinical or diagnostic 

applications, where the sample composition 

changes significantly.[58]  

6. FUTURE PERSPECTIVES OF EXOSOME 

/ EVS-  

6.1 PRECISION MODIFICATION 

TECHNOLOGY:    

Advances in gene-editing tools are opening new 

possibilities for controlled engineering of 

exosomes. In the future, these technologies may 

allow precise genetic changes. This could help 

regulate the content and function of exosomes to 

improve their therapeutic and targeting abilities. A 

recent study pointed out how precision gene-

editing technologies can modify exosomes for 

targeted therapeutic effects in Parkinson’s disease. 

By using genetic engineering, therapeutic 

molecules can be added to exosomal vectors and 

then delivered into target cells. The study also 

looked at the promising uses and challenges of 

using exosomes in neurological therapies.[60]  

6.2 CELL ENGINEERING TECHNOLOGY:    

By manipulating the source cells using cellular 

engineering methods, we can control both the 

amount and quality of the exosomes they release. 

This control allows us to produce exosomes with 

desired traits for specific therapeutic or diagnostic 

uses. [61]  

Nanotechnology:  

Nanotechnology offers many chances to improve 

our understanding of cell functions and diseases. It 

also allows us to affect these processes at the 

molecular and cellular levels for better diagnosis 

and treatment. Recent research shows that we can 

use nanotechnology to change the size, shape, and 

surface features of exosomes, which in turn affects 

their biological roles and interactions in both 

healthy and unhealthy systems. The study 

emphasizes how nanotechnology-based methods 

can customize exosomal properties for targeted 

cancer treatment.[62] 

CONCLUSION 

Because they come from a natural source, are 

compatible with living tissues, and can carry 

different biomolecules, like proteins, nucleic 

acids, and small drugs, across biological barriers, 

exosomes and extracellular vesicles (EVs) have 

gained significant interest as new drug delivery 

systems [54–56]. They are better than many 

synthetic nanocarriers because of their natural 

targeting ability, stable circulation, and ability to 

avoid the immune system [55,57]. Despite these 

benefits, there are several drawbacks. These 

include high production costs, inconsistent 

isolation and characterization procedures, and 

limited compatibility with certain biological 

samples [58,59].  Recent developments in 

nanotechnology, cell engineering, and precision 

gene editing provide new ways to improve the 

therapeutic potential of exosomes. Cell 

engineering allows us to control exosome yield 

and composition [61], While gene-editing 

technologies allow precise manipulation of 

exosomal contents to improve targeting and 

therapeutic efficacy[60]. Additionally, 

nanotechnology enables us to change the surface 

and physical features of exosomes for better 

delivery in diseases such as cancer [62].  Future 

research should focus on developing production 
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techniques that are affordable, repeatable, and 

scalable. It should also aim to establish widely 

recognized qualitycontrol standards. Exosome- 

and EV-based technologies are expected to play a 

crucial role in next-generation tailored and 

targeted treatments with further development [54– 

62].  
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