

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Diabetes Mellitus Decoded: Classification, Diagnosis, Therapeutics, and Emerging Drug Frontiers

Neelamma Koganuramath*, Mahananda Uppin

SET's College of Pharmacy, Dharwad, Karnataka 580002

ARTICLE INFO

Published: 06 Oct 2025

Keywords:

Diabetes Mellitus (DM), Hyperglycaemia, WHO.

DOI:

10.5281/zenodo.17278455

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder marked by persistent hyperglycaemia, arising from either autoimmune-mediated β-cell destruction or impaired insulin action and secretion. Globally, DM prevalence has escalated, with type 2 diabetes mellitus (T2DM) accounting for 90-95% of cases, while type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM) contribute smaller proportions but with significant health risks. Uncontrolled DM leads to severe microvascular and macrovascular complications, including neuropathy, nephropathy, retinopathy, and cardiovascular disease. Diagnosis is achieved through biochemical markers such as fasting blood glucose, HbA1c, and glucose tolerance tests. Management strategies encompass lifestyle modification, pharmacotherapy with oral hypoglycaemics and insulin, and self-monitoring of blood glucose. Recent therapeutic advances highlight nanotechnology, continuous glucose monitoring, gene therapy, stem cell therapy, and medical nutrition therapy as promising interventions to improve glycaemic control and reduce disease burden. This review provides an integrated overview of DM classification, pathophysiology, clinical presentation, complications, diagnostic approaches, conventional treatment, and emerging frontiers, underscoring the urgent need for early diagnosis and innovative strategies to curb the global diabetes epidemic.

INTRODUCTION

Diabetes is characterized by elevated blood glucose levels, either in the fasting state or after meals. Persistent hyperglycaemia in diabetes mellitus (DM) contributes to progressive damage, dysfunction, and eventual failure of various organs and tissues, notably the retina, kidneys, peripheral nerves, heart, and vascular system¹.

The pathogenesis of diabetes mellitus primarily involves two key mechanisms: autoimmune-mediated destruction of pancreatic β -cells, resulting in inadequate insulin production, and intrinsic cellular resistance to insulin action. These

Address: SET's College of Pharmacy, Dharwad, Karnataka 580002

Email : neelammak217@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

^{*}Corresponding Author: Neelamma Koganuramath

processes collectively contribute to the persistent hyperglycaemia characteristic of the disease².

Diabetes mellitus (DM) is among the most prevalent metabolic disorders globally, with its incidence rising at an alarming pace. Between 1980 and 2014, the number of individuals diagnosed with DM surged from 108 million to 422 million. During the same period, the global prevalence of diabetes among adults aged 18 years and older increased from 4.7% to 8.5%. According to the World Health Organization (WHO), diabetes is projected to become the seventh leading cause of mortality by 2030.

Type 1 diabetes mellitus (T1DM), typically diagnosed during childhood or adolescence, accounts for approximately 5–10% of all diabetes cases and is primarily characterized by autoimmune destruction of pancreatic β -cells. In contrast, Type 2 diabetes mellitus (T2DM) represents the predominant form, comprising 90–95% of cases, and is commonly associated with insulin resistance and relative insulin deficiency.

Gestational diabetes mellitus (GDM) is a distinct subtype that manifests exclusively during pregnancy, affecting approximately 5–15% of pregnant women, with prevalence varying across ethnic groups and geographic regions. Notably, 40–60% of women diagnosed with GDM are at risk of developing overt diabetes within 5–10 years postpartum³.

TYPES OF DIABETES MELLITUS AND THEIR PATHOPHYSIOLOGY

Type 1 diabetes mellitus

Type 1 Diabetes Mellitus (T1DM), also known as autoimmune diabetes, insulin-dependent diabetes mellitus (IDDM), juvenile-onset, or ketosis-prone diabetes, is a chronic condition primarily affecting

children and young adults. It is characterized by the autoimmune destruction of pancreatic β -cells, leading to an absolute deficiency of insulin. This destruction is mediated by CD4+ and CD8+ T cells and macrophages infiltrating the islets, and is often accompanied by the presence of autoantibodies such as anti-glutamic acid decarboxylase (GAD), islet cell antibodies, and insulin autoantibodies, which are detectable in 85-90% of individuals at the onset of fasting hyperglycaemia. The exact cause remains unknown, but strong evidence supports an autoimmune mechanism. Individuals with T1DM may also present with other autoimmune disorders like Graves' disease, Hashimoto's thyroiditis, and Addison's disease. The disease disrupts normal glucose regulation not only due to insulin deficiency but also because of α-cell dysfunction, resulting in excessive glucagon secretion that exacerbates hyperglycaemia and contributes to metabolic imbalances. This dysregulation often leads to diabetic ketoacidosis in the absence of insulin therapy. Furthermore, insulin deficiency impairs peripheral glucose utilization by promoting uncontrolled lipolysis and elevating plasma free fatty acids, which inhibit glucose metabolism in tissues such as skeletal muscle. It also downregulates key insulinresponsive genes like glucokinase in the liver and GLUT4 transporters in adipose tissue, further compromising glucose uptake. Lifelong insulin administration remains cornerstone the treatment manage this life-threatening to condition⁴⁻⁵.

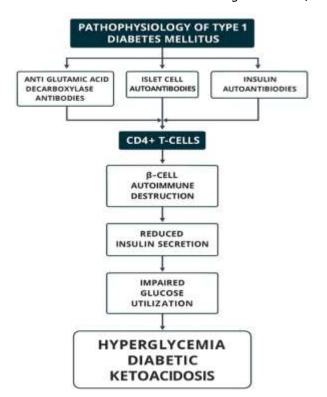


Figure 1. Pathophysiology of T1DM

Type 2 diabetes mellitus

Type 2 Diabetes Mellitus (T2DM) is a prevalent metabolic disorder caused by defective insulin secretion from pancreatic β -cells and impaired insulin response in target tissues. Proper insulin synthesis, release, and action are essential for metabolic balance; disruptions in these mechanisms lead to T2DM.

According to the WHO, diabetes is a chronic condition marked by elevated blood glucose, which over time damages the heart, blood vessels, eyes, kidneys, and nerves. Over 90% of cases are T2DM, characterized by insulin resistance (IR), β -cell dysfunction, and inadequate compensatory insulin secretion, resulting in hyperglycaemia.

T2DM is commonly associated with obesity, especially abdominal fat, which contributes to IR via inflammatory pathways, increased free fatty acids, and adipokine imbalance. Key drivers of the global T2DM epidemic include rising obesity,

sedentary behaviour, high-calorie diets, and aging populations.

Pathogenesis centres on two mechanisms:

- Insulin resistance in muscle, liver, and pancreas due to defects in glucose transport or insulin signalling.
- β -cell dysfunction triggered by oxidative stress and elevated fatty acids⁶.

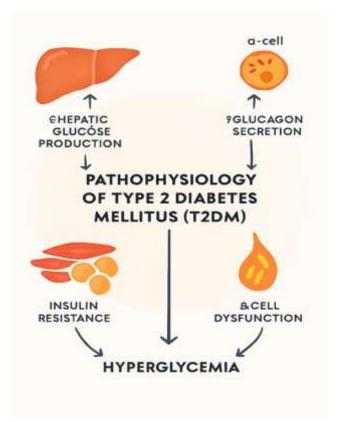


Figure 2. Pathophysiology of T2DM

Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) is a metabolic disorder affecting 14% of pregnancies worldwide, or 18–20 million births annually. It arises from insufficient insulin secretion during pregnancy, leading to hyperglycaemia. Risk factors include obesity, poor diet, sedentary lifestyle, and family history of diabetes. In obese women, GDM results from amplified insulin resistance due to pre-existing metabolic

dysfunction. In lean women, impaired first-phase insulin response plays a larger role. Maternal hyperglycaemia causes excess glucose transfer to the foetus, triggering foetal hyperinsulinemia and resulting in macrosomia (birth weight >4000 g)⁷⁻⁸.

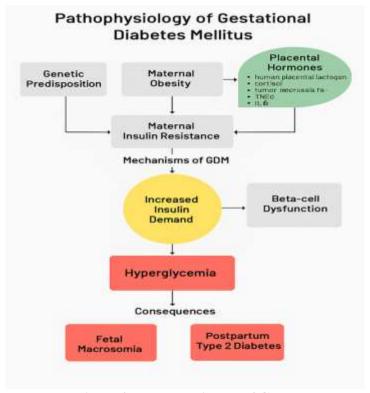


Figure 3. Pathophysiology of GDM

SYMPTOMS OF DM

Diabetes symptoms are caused by rising blood sugar.

Symptoms of type 1 diabetes can include

- extreme hunger
- increased thirst
- unintentional weight loss
- frequent urination
- blurry vision

tiredness

Symptoms of type 2 diabetes can include

- increased hunger
- increased thirst
- increased urination
- blurry vision
- tiredness
- sores that are slow to heal⁹.

Central Polydipsia Polyphagia Lethargy Stupor Breath Smell of acetone Respiratory Kusarraul breathing (hyperventilation) Systemic Weight loss Red : more common in type1 Eye Blumed vision Gastric - Abdominal pain - Nauree - Verniting Urinary - Polyuria - Glycosuria

Main symptoms of Diabetes

Figure 4. Main symptoms of Diabetes Mellitus

COMPLICATIONS OF DM

As diabetes progresses, tissue and vascular damage become more pronounced, leading to severe complications such as diabetic retinopathy, cardiovascular disorders, neuropathy, ulceration. Patients with long-standing Type 1 diabetes mellitus (T1DM) are particularly vulnerable to microvascular complications, including damage to the retina, kidneys, and peripheral nerves. They may also develop macrovascular diseases affecting the coronary arteries, heart, and peripheral vasculature.

Type 2 diabetes mellitus (T2DM), on the other hand, carries a significantly higher risk of large vessel disease. It is commonly associated with comorbid conditions such as hypertension and dyslipidaemia. Consequently, most patients with T2DM are predisposed to cardiovascular complications, which remain the leading cause of morbidity and mortality in this population¹⁰.

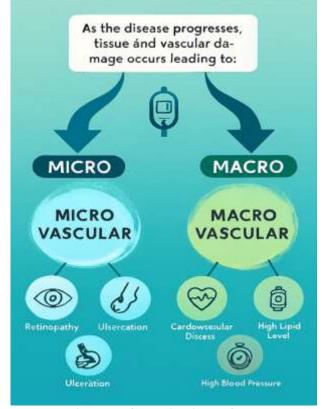


Figure 5. Complications of DM

DIAGNOSIS OF DM

A1C test. This blood test, which doesn't require not eating for a period of time (fasting), shows your average blood sugar level for the past 2 to 3

months. It measures the percentage of blood sugar attached to hemoglobin, the oxygen-carrying protein in red blood cells. It's also called a glycated hemoglobin test. The higher your blood sugar levels, the more hemoglobin you'll have with sugar attached. An A1C level of 6.5% or higher on two separate tests means that you have diabetes. An A1C between 5.7% and 6.4% means that you have prediabetes. Below 5.7% is considered normal.

Random blood sugar test. A blood sample will be taken at a random time. No matter when you last ate, a blood sugar level of 200 milligrams per deciliter (mg/dL), 11.1 millimoles per liter (mmol/L) or higher suggests diabetes.

Fasting blood sugar test. A blood sample will be taken after you haven't eaten anything the night

before (fast). A fasting blood sugar level less than 100 mg/dL (5.6 mmol/L) is normal. A fasting blood sugar level from 100 to 125 mg/dL (5.6 to 6.9 mmol/L) is considered prediabetes. If it's 126 mg/dL (7 mmol/L) or higher on two separate tests, you have diabetes.

Glucose tolerance test. For this test, you fast overnight. Then, the fasting blood sugar level is measured. Then you drink a sugary liquid, and blood sugar levels are tested regularly for the next two hours. A blood sugar level less than 140 mg/dL (7.8 mmol/L) is normal. A reading of more than 200 mg/dL (11.1 mmol/L) after two hours means you have diabetes. A reading between 140 and 199 mg/dL (7.8 mmol/L and 11.0 mmol/L) means you have prediabetes¹¹.

WHO DIABETES DETAILS					
Condition	2 hour glucose	Fasting glucose	HbAic		
Unit	mmol/l(mg/dl	mmol/l(mg/dl)	%		
Normal	<7.8 (<140)	<6.1 (<110)	<6.0		
Impaired fasting glycaemia	<7.8 (<140)	≥ 6.1(≥110) & <7.0(<126)	6.0-6.4		
Impaired glucose tolerance	≥7.8 (≥140)	<7.0 (<126)	6.0-6.4		
Diabetes mellitus	≥11.1 (≥200)	≥7.0 (≥126)	≥6.5		

Figure 6. WHO Diabetes information chart of DM

TREATMENT OF DIABETES MELLITUS

Self-monitoring of blood glucose (SMBG) is a critical component in the management of type 1 diabetes mellitus (DM) and insulin-dependent type 2 DM. It enables patients to adjust insulin doses effectively, thereby minimizing the risk of both hypoglycaemia and hyperglycaemia.

According to the American Diabetes Association (ADA) guidelines, individuals with type 1 DM should monitor their blood glucose levels at the following times:

- Before meals
- At bedtime
- Prior to physical activity

- When hypoglycaemia is suspected
- Until hypoglycaemia is resolved
- Occasionally after meals

Patients must be educated on interpreting real-time glucose readings to make informed decisions about dietary intake and medication adjustments.

While SMBG is commonly advised for patients with type 2 DM, especially those on insulin therapy, its standalone effectiveness remains uncertain. Although early studies indicated improvements in HbA1c levels, confounding factors such as concurrent lifestyle modifications

(e.g., diet and exercise) complicate the evaluation of SMBG's direct impact.

The ADA recommends the following glycaemic targets:

Nonpregnant adults

o Pre-prandial: 80–130 mg/dL

o Postprandial: less than 180 mg/dL

• Gestational diabetes

o Pre-prandial: ≤95 mg/dL

o 1-hour postprandial: ≤140 mg/dL

○ 2-hour postprandial: $\leq 120 \text{ mg/dL}^{12}$.

Table 1. Oral Agents with Mechanism of Action and Side Effects¹³

Table 1. Of al Agents with Mechanism of Action and Side Effects					
Oral Antidiabetics	Mechanism of Action	Side Effects			
Sulfonylureas	Stimulate first-phase insulin	Late hyperinsulinemia			
Glimiperide(Amaryl)	secretion by blocking K+	and hypoglycemia			
Glipizide (Glucotrol)	channel in β- cells.	Weight gain.			
Glipizide-gits (GlucotrolXL)					
Glibenclamide					
Glyburide					
(Diabeta, Micronase)					
Glyburide-micronized					
(Glynase)					
Tolbutamide (Orinase)					
Chlorpropamide (Diabinese)					
Tolazamide (Tolinase)					
Acetoheximide (Dymelor)					
Meglitinides	Stimulate first- phase insulin	Hypoglycemia Weight			
Repaglinide (Prandin)	secretion by blocking K+	gain.			
Nateglinide (Starlix)	channel in β-cells				
Biguanides	Decrease hepatic glucose	Nausea, Diarrhea			
Metformin	production Increase muscle	Anorexia, Lactic			
(Glucophage,Riomet)	glucose uptake and utilization	acidosis.			
Metformin-					
XR(Glucophage-XR)					
Thiazolidinedinediones	Increase insulin sensitivity via	Fluid retention and			
Rosiglitazone (Avandia)	Activation of PPAR-g	weight gain.			
Pioglitazone (Actos)	receptors				
α-Glucoside Inhibitors	Decrease hepatic glucose	Flatulence Abdominal			
Acarbose (Precose)	production Delays glucose	bloating			
Miglitol (Glyset)	absorption				

RECENT THERAPIES FOR TREATMENT OF DIABETES MELLITUS¹⁴

Here are several modern approaches involved in the management of diabetes. However, early

diagnosis is central to achieving any targets set in DM management:

• Internet Intervention for Lifestyle Modification in Diabetes

Lifestyle modification is a cornerstone of diabetes management, recommended for both pre-diabetic and diabetic individuals. Key changes include increasing physical activity, and adopting a healthy diet rich in vegetables, fruits, whole grains, lean meats, and non-fat dairy, while limiting sugary and fatty foods. Patients are also encouraged to quit smoking and reduce alcohol consumption.

• Nanotechnology and Its Role in Diabetes Management

Nanotechnology involves the use of nanoparticles (<100 nm). This has opened new frontiers in diabetes care. In medicine, this approach—known as nanomedicine—enhances the delivery and targeting of drugs and diagnostic agents. In diabetes, nanotechnology has enabled development of advanced glucose monitoring systems and non-invasive insulin delivery methods. It also supports innovative therapies like cell-based and gene-based treatments for type 1 diabetes. Importantly, nanotech tools can detect immune cell activity, monitor beta-cell mass, and improve early diagnosis, which is crucial for preventing disease progression. Alternative noninvasive delivery routes, including transdermal, and inhalation methods, are also under exploration to improve patient compliance and therapeutic outcomes.

• Continuous Glucose Monitoring (CGM)

Traditional glucose monitoring methods, involving frequent finger pricks, often suffer from poor compliance and limited temporal coverage

(e.g., during sleep or driving). This can lead to dangerous glycaemic fluctuations and increased risk of complications. CGM systems, especially those using subcutaneous biosensors like amperometric sensors, offer a more consistent monitoring approach.

• Medical Nutrition Therapy (MNT) in Diabetes

Medical Nutrition Therapy (MNT), delivered by registered dietitian nutritionists, is a cornerstone of diabetes management. It involves personalized nutrition diagnosis and counselling aimed at achieving glycaemic control and preventing complications. MNT is especially vital in gestational diabetes mellitus (GDM), where carbohydrate intake plays a central role. While low-carbohydrate diets have traditionally been used, emerging evidence supports the efficacy of low-glycaemic index diets in managing GDM.

• Gene Therapy and Diabetes Mellitus

Gene therapy is an innovative technique aimed at correcting disease symptoms caused by defective genes through the introduction or manipulation of functional genetic material.

Types of gene therapy:

- Somatic gene therapy,
- o Germline gene therapy

In diabetes mellitus (DM), particularly type 1 diabetes mellitus (T1DM), gene therapy is emerging as a promising alternative to conventional treatments. T1DM is an autoimmune condition characterized by T-cell-mediated destruction of insulin-producing beta cells. Its multifactorial etiology involves both genetic and environmental factors. Recent research has identified several genes implicated in T1DM

pathogenesis, making them potential targets for gene-based interventions.

In type 2 diabetes mellitus (T2DM) One notable target is NLRP3, a gene whose inhibition reduces inflammation and protects beta cells from apoptosis, thereby preventing T2DM onset in animal models.

• Stem Cell Therapy in Diabetes Mellitus

Conventional diabetes treatments often fail to address the root causes and may carry adverse effects. Stem cell therapy offers a regenerative alternative by aiming to restore insulin-producing beta cells. While pancreas or islet-cell transplantation has shown promise, it's limited by donor organ scarcity. Stem cells, with their unique ability to differentiate and regenerate, present a viable solution to this challenge.

Table 2. Stem cells drugs in the Pipeline

Drug Candidate	Developer	Mechanism Of Action	Target Condition
LY3502970	Eli Lilly	Partial GLP-1R agonist (G-protein	Type 2 Diabetes (T2DM)
		biased)	, , ,
SCO-094	SCOHIA	Dual GIP and GLP-1receptor agonist	Type 2 diabetes (T2DM)
Ladarixin (LD)	Dompé	CXCR1/ CXCR2 inhibitor	New-onset Type 1 Diabetes
, , ,	Farmacei		(TIDM)

CONCLUSION

Diabetes mellitus continues to pose a significant global health challenge, driven by lifestyle transitions. genetic susceptibility, and environmental factors. Despite advances in diagnosis and treatment, the burden complications such as cardiovascular disease, neuropathy, nephropathy, and retinopathy remains high, highlighting the importance of early detection and effective management strategies. therapies, including lifestyle Conventional modification, insulin, and oral hypoglycaemics, form the cornerstone of treatment, yet emerging approaches—such as nanotechnology, continuous glucose monitoring, gene therapy, and stem cellbased interventions—offer promising avenues for precise and personalized more care. multidisciplinary strategy integrating prevention, patient education, pharmacological innovations, and cutting-edge biomedical technologies is essential to reduce morbidity and mortality associated with diabetes. Ultimately, ongoing research and innovation hold the key to transforming diabetes management and mitigating its impact on individuals and healthcare systems worldwide.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to SET's College of Pharmacy, Dharwad for providing the necessary infrastructure and academic support throughout the course. I am deeply thankful to my guide—her expertise and mentorship have been instrumental in shaping the direction and quality of this work. I also extend my appreciation to the faculty and staff for offering excellent facilities and fostering a stimulating academic environment. Finally, I am immensely grateful to my family, friends and Amrut Khavi for their constant encouragement and patience, which kept me motivated during the most challenging phases of this journey.

REFERENCES

1. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus.

- Handbook of clinical neurology. 2014 Jan 1; 126:211-22.
- Lovic, D., Piperidou, A., Zografou, I., Grassos, H., Pittaras, A., & Manolis, A. (2019). The Growing Epidemic of Diabetes Mellitus. Current Vascular Pharmacology, 17. doi:10.2174/1570161117666190405165911.
- 3. Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology. 2021 Apr 16;2(2):36-50.
- 4. Singh N, Kesherwani R, Tiwari AK, Patel DK. A review on diabetes mellitus. The Pharma Innovation. 2016 Jul 1;5(7, Part A):36.]
- 5. Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013 Sep 30;4(4):46-57.
- 6. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC. Type 2 diabetes mellitus. Nature reviews Disease primers. 2015 Jul 23;1(1):1-22.
- 7. Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, Kumar B, Kumar D, Kumar S, Jena MK. Deep insight of the pathophysiology of gestational diabetes mellitus. Cells. 2022 Aug 28;11(17):2672.
- 8. Kampmann U, Madsen LR, Skajaa GO, Iversen DS, Moeller N, Ovesen P. Gestational diabetes: A clinical update. World J Diabetes.

- 2015 Jul 25;6(8):1065-72. doi: 10.4239/wjd. v6.i8.1065. PMID: 26240703; PMCID: PMC4515446.
- 9. Dwivedi M, Pandey AR. Diabetes mellitus and its treatment: an overview. J Adv Pharmacol. 2020;1(1):48-58.
- 10. Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of diabetes 2016. Journal of diabetes research. 2016 Oct 16;2016:6989453.
- 11. Petersmann A, Müller-Wieland D, Müller UA, Landgraf R, Nauck M, Freckmann G, Heinemann L, Schleicher E. Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes. 2019 Dec;127(S 01):S1-7.
- 12. Modi P. Diabetes beyond insulin: review of new drugs for treatment of diabetes mellitus. Current drug discovery technologies. 2007 Jun 1;4(1):39-47.
- 13. M. Muhamed Shanoof, "Study of Antidiabetic Activity on Averrhoa Carambola Leaves," Thesis, p. 15, 2018.
- 14. Aloke C, Egwu CO, Aja PM, Obasi NA, Chukwu J, Akumadu BO, Ogbu PN, Achilonu I. Current advances in the management of diabetes mellitus. Biomedicines. 2022 Sep 29;10(10):2436.

HOW TO CITE: Neelamma Koganuramath, Mahananda Uppin, Diabetes Mellitus Decoded: Classification, Diagnosis, Therapeutics, and Emerging Drug Frontiers, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 10, 528-537. https://doi.org/10.5281/zenodo.17278455

