

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES [ISSN: 0975-4725; CODEN(USA):IJPS00]

Journal Homepage: https://www.ijpsjournal.com

Review Article

Determination Of Etoricoxib By Analytical And Bioanalytical Methods: A Review

Shweta V. Rane^{*1}, Sapan K. Shah², Dinesh R. Chaple³, Mayur A. Lohi⁴, Pooja R. Denge⁵, Sahil D. Gayakwad¹, Bhagyashri S. Patil¹, Vinay V. Sarode⁶

¹Research Scholar, Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-440016, Maharashtra, India.

²Assistant Professor, Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-440016, Maharashtra, India.

³Professor, Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-440016, Maharashtra, India.

⁴*Research Scholar, Department of Pharmacology, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-*440016, Maharashtra, India.

⁵*Research Scholar, Department of Pharmaceutics, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-*440016, Maharashtra, India.

⁶*Research Scholar, Department of Pharmacology, VYWS, Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra, India.*

ARTICLE INFO

Received:04 May 2024Accepted:08 May 2024Published:16 May 2024Keywords:

Etoricoxib, Analytical method, High-performance liquid chromatography, liquid chromatography-mass spectroscopy, Bioanalytical methods. DOI:

10.5281/zenodo.11203913

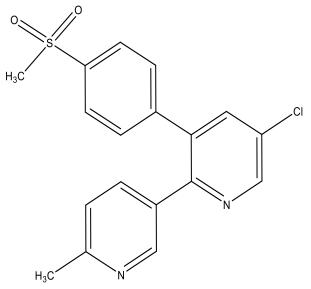
ABSTRACT

Etoricoxib is a selective COX-2 inhibitor. The way non-steroidal anti-inflammatory drugs (NSAIDs) function is by blocking the COX enzyme, which is an inflammatory mediator. Osteoarthritis, rheumatoid arthritis, and primary dysmenorrhea are all treated with etoricoxib. Therefore, the main objective of this work is to examine etoricoxib in pharmaceutical and biological formulations using both qualitative and quantitative methods. In this review paper, we have compiled the methodologies for estimating etoricoxib based on liquid chromatography-mass spectroscopy (LC-MS), high-performance liquid chromatography (HPLC), and UV/Vis spectroscopy. Furthermore, we have discussed the bioanalytical methods for ETX analysis. To sum up, this review article will assist researchers in developing new methods for estimating drug concentrations in biological fluids and pharmaceutical dose forms.

*Corresponding Author: Shweta V. Rane

Address: Research Scholar, Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna, Nagpur-440016, Maharashtra, India.

Email ≥: shwetarane810@gmail.com


Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

INTRODUCTION

Rheumatoid arthritis pain and inflammation are frequently managed using non-steroidal antiinflammatory medications (NSAIDs). Their suppression of cyclooxygenase (COX) enzymes, which convert arachidonic acid into prostaglandins, is responsible for their analgesic and anti-inflammatory properties as well as part of their chemopreventive actions.(1) Etoricoxib, 5chloro-3-(4-methanesulfonylphenyl)-6-methyl-

[2,3]-bipyridinyl is highly selective a cyclooxygenase-2 (COX-2) inhibitor.(2) The two types of the enzyme are cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). COX-1 regulates normal physiological prostaglandinmediated functions such gastric cytoprotection and aggregation. Nonselective NSAIDs' platelet suppression of COX-1 has been connected to both platelet inhibition and gastric injury. It is well known that prostanoid mediators of pain and inflammation are produced in large part by COX-2.(2) Etoricoxib is used to treat osteoarthritis. rheumatoid arthritis, chronic low back pain, acute pain, dysmenorrheal, acute gouty arthritis and ankylosing spondylitis.(3)

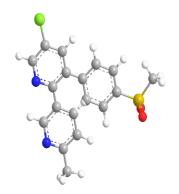


Figure 1: Chemical Structure of Etoricoxib Mechanism of Action :

One possible explanation for the antiinflammatory, analgesic, and antipyretic effects of NSAIDs is the inhibition of prostaglandin synthesis. The exact mechanism of action is yet unknown, but it appears that these effects are produced by blocking the COX-2 isoenzyme at the sites of inflammation, which in turn causes a reduction in the production of several prostaglandins from their precursors, arachidonic acid. Etoricoxib particularly inhibits the COX-2 enzyme, which is essential for the control of pain and inflammation. In contrast to non-selective NSAIDs, it does not stop platelet aggregation. Moreover, affinity for COX-1 is minimal to nonexistent.(4)

Pharmacokinetics :

Absorption :

Bioavailability is 100% following oral administration.(4)

Protein binding :

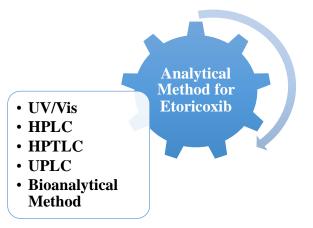
92%(4)

Metabolism :

Hepatic, primarily via CYP3A4. (4)

Pharmacodynamics :

Etoricoxib is a COX-2 selective inhibitor (approximately 106 times more selective for COX-2 inhibition over COX-1). (4)


Analytical Account of ETX

An extensive literature search revealed a variety of analytical methods, including UV/Visible Spectrophotometry, HPLC, HPTLC, UPLC, LC-

MS/MS, and bioanalytical approaches, for the determination of RFX in bulk and pharmaceutical formulations. Celecoxib (CXB), Paracetamol (PCT), Salicylic acid (SCA), Ketoprofen (KPF),

Nimesulide (NMS), Riluzole (RLZ), Drotraverine (DRT), Thiocholchicoside (THC), Pregabalin (PGBN), Tolperisone (TOP) are all evaluated alone as well as in conjunction with ETX.

Figure 2 shows different analytical methods implemented for the estimation of ETX

Bio-analytical method for ETX

A branch of analytical chemistry known as "bioanalysis" deals with the quantitative measurement of biotics (macromolecules, proteins, DNA, largemolecule drugs, metabolites) and xenobiotics (drugs and their metabolites) in biological systems. The summary of the reported bioanalytical methods is shown in Table 1

Sr. No.	Drug	Sample Matrix	Method	Column	Detection	Internal Standard	Ref
1	ETX	Human plasma	HPLC	Hypersil BDS, C18 column	235 nm	Valdecoxib in acetonitrile	5
2	ETX	Human plasma	HPLC	Waters symmetry® C18 column	284 nm	Zaleplon	3
3	ETX	Human plasma	HPLC	Waters symmetry® C18 column	284 nm	Rofecoxib	6
4	ETX	Rat Plasma	HPLC	Novapak-C8 column	245 nm	Flurbiprofen	7
5	ETX	Human plasma	LC- APCI/MS/MS	Luna C18 column	***	Antipyrin	8
6	ETX	Human plasma	LC-MS-MS	Narrow bore RP C column	***	Phenazone	9
7	ETX	Human plasma	LC-MS/MS	Thermo Hypurity, C18 column	***	Etoricoxib D3	10
8	ETX	Spiked Human plasma	LC-MS/MS	C18 analytical column	234 nm	Piroxicam	11
9	ETX and VDX	Human plasma	RP-HPLC	Nucleosil C8 guard column	***	TO FIND IT	12
10	ETX, SCA, VDX,	Human plasma	HPLC	Kromasil KR 100-5C18 column	235 nm	DRF-4367	13

Table 1: Bioanalytical determination of ETX

	KPF, NMS, CXB						
11	ETX	Human plasma	UPLC- MS/MS	ACQUITY UPLC HSS T3 column	***	Etoricoxib- d3	14
12	RLZ and ETX	Rat plasma and brain tissue	LC-MS/MS	ACQUITY UPLC BEH C18 column	***	Etoricoxib D4	15

*** Not Provided

UV-Visible spectroscopy method for ETX The spectrophotometric methods have been accounted for the determination of ETX. The details of Spectrophotometry determination of basic principle, sample matrix, lambda max, solvent linearity range and the correlation coefficient are summarized in Table 2.

Sr. No.	Drug	Matrix	Solvent	Lambda Max (nm)	Linearity (µg/mL)	Correlation coefficient (R2)	Ref.
1	ETX	Bulk and tablet Formulation	0.1N HCl	233 nm	2-24 µg/ml	0.9996	16
2	ETX	Tablet dosage form	0.1 N HCl	271.6 nm	1-25µg/ml	0.9981	17
3	ETX	Bulk and Tablet Formulation	Methanol	234nm	1 to 11 μg/ml	0.9986	18
4	ETX	Pharmaceutical formulations	0.1 M HCl	233 nm	0.1–0.5 μg/ml	0.997	19
5	ETX and DRT	Combined tablet dosage form	Methanol	274nm and 351 nm	4.5-22.5 μg/ml and 4- 20 μg/ml	***	20
6	ETX and THC	Bulk and combined tablet dosage form	0.1N HCl	240 nm and 260 nm	2.5–30 µg/ml	0.9999	21

 Table 2: Spectrophotometric methods used for determination of ETX

*** Not Provided

Liquid-Chromatography-Mass Spectroscopy methods (LC-MS) for ETX:

In recent years, the combination of LC/MS has gained a lot of attention for the analysis of interest analytes in complex samples with improved performance. In brief, after a thorough examination, LC/MS interfaces are divided into two categories namely interfaces for indirect and direct input of column effluent. A mechanical mechanism is employed to transmit the column effluent to the MS vacuum at an indirect introduction interface. A classic example of an indirect introduction type of interface is the transportation system. In the case of the direct introduction system, the column effluent flows directly into the mass spectrometric vacuum system via a tube. Mainly, the most straightforward method of linking LC and MS appears to be the direct introduction. In this section, we have discussed the LC-MS methods for the determination of ETX in a dosage form Table 3.

Sr. No	Drug	Matrix	Stationary Phase	Mobile Phase	Internal Standard	Linearity (µg/mL)	Ref.
1	ETX	Pharmaceutical dosage forms	Synergi fusion C18 column	0.01M phosphoric acid – acetonitrile (62 + 38, v/v)	Piroxicam	0.02–150 μg/ml	22

Table 3. Summary of LC-MS methods for the determination of ETX in a dosage form

HPLC method for ETX

The specificity of the HPLC method is excellent and simultaneously sufficient precision is also attainable. However, it has to be stated that the astonishing specificity, precision, and accuracy are attainable only if wide-ranging system suitability tests are carried before the HPLC analysis. For this reason, the expense to be paid for the high specificity, precision, and accuracy is also high. The summary of the reported HPLC methods is shown in Table 4.

Table 4: Summary of HPLC methods for the determination of ETX in a single and combined dosage form

Sr No	Drug name	Column	Mobile phase	a max (nm)	Linearity (µg/mL)	Retention time (min)	(mL/m)	Detector	Ref
1	ETX	Hyper ODS 2 C18 column	Methanol	233 nm	20-55 µg/ml	3.28 min	1 ml/min	UV- Visible	23
2	ETX	Reverse phase C18 column	Acetonitrile : Ammonium Acetate buffer (50:50)	235 nm	20-75 µg/ml	5.337 min	1 ml/min	UV- Visible	24
3	ETX	Inertsil ODS-4 column	0.01M sodium perchlorate monohydrate and acetonitrile (48:52v/v)	235 nm	34.44-63.96 μg/ml	4.299 min	1.5 ml/min	UV detector	25
4	ETX	Reverse phase C18 column	Methanol: phosphate buffer (90:10 v/v)	235 nm	10-200 μg/ml	3.428 min	1ml/min	UV detector	26
5	ETX	Kromasil 100, RP- C18 Column	Acetonitrile : methanol : 10mm potassium dihydrogen phosphate (35:35:30 v/v)	234 nm	25 to 400 ng/injection	***	1 ml/min	UV/VIS detector	27
6	ETX	Phenomene x ODS 2 C18 column	Methanol : 10mM Potassium Dihydrogen Phosphate (75:25 % v/v)	287 nm	4.99–99.70 μg/ml	3.2 min	0.8 ml/min	UV detector	28
7	ETX	BDS- Hypersil C- 8 column	Water : acetonitrile : methanol (50:25:25v/v/v)	284 nm	5 -50 μg/ml	4.8 min	1.25 ml/min	UV detector	29

8	ETX	ODS Hypersil C18 column	Acetonitrile: water (55:45v/v)	269 nm	10 to 60 μg/ml	5.03 min	0.9ml/mi n	UV/VIS detector	30
9	ETX	Hypersil ODS C-18 column	Acetonitrile and potassium dihydrogen phosphate buffer (46:54% v/v)	280 nm	0.5-85.0 μg/ml	3.083 min	1.2 ml/min	UV detector	31
10	ETX	Zorbax SB CN column	Disodium hydrogen orthophosphate (0.02 M) : acetonitrile (60:40)	235 nm	***	11.510 min	0.8 ml / min	***	32
11	THC and ETX	BDS Hypersil C18 column	Acetonitrile : Buffer (75:25)	220nm	***	3.97 min and 7.46 min	1.5 ml/min	***	33
12	THC and ETX	Zorbax C- 18 analytical column	Methanol and water (60:40)	283 nm	2 to 20 μg/ml and 10 to 200 μg/ml	3.523 min and 9.627 min	0.7 ml/min	UV detector	34
13	PCT and ETX	Kromasil C18 column	Buffer : Acetonitirile	220 nm	48 to 146 μg/ml and 6 to 19 μg/ml	8.34 min and 18.45 min	1.0 ml/min	UV- VIS detector	35
14	THC and ETX	BDS Hypersil C- 18 column	Trifluoroacetic acid buffer and acetonitrile (75:25, v/v)	220 nm	2 to 16 ppm and 20 to 160 ppm	3.1 min and 6.6 min	1.5 ml/min	UV detector	36
15	PCT and ETX	Phenomene x Luna C18 column	Methanol : water (70:30 v/v)	235 nm	5-30 µg/ml	3.07 min and 5.72 min	1.0 ml/min	UV detector	37
16	PGBN and ETX	Thermo C18 column	Orthophosphori c acid (0.1%) : methanol (60:40 v/v)	236 nm	37.5 to 112.5 μg/ml and 30 to 90 μg/ml	2.636 min and 5.607 min	1.0 ml/min	Waters photodi ode detector	38
17	THC and ETX	Hypersil BDS C18 column	Phosphate buffer(ph-3.4) and acetonitrile (35:65v/v)	260nm	2.5-15 μg/ml and 5.0-30 μg/ml	2.83 min And 6.92min	1.0 ml/min	UV detector	39
18	PGBN and ETX	Hypersil ODS, C18 column	Methanol: acetonitrile: phosphate buffer (pH5) (40:20:20)	215 nm	12.5–37.5 μg/ml and 150–450 μg/ml	3.523 min and 4.702 min	1.0 ml/min	UV- VIS detector	40
19	ETX and PCT	Hypersil ODS, C18 column	0.05 M sodium dihydrogen phosphate buffer : acetonitrile (35:65 v/v)	235nm	50-150% of the working standard solution concentration	1.889 min and 2.460 min	1.0 ml/min	UV- VIS detector	41

Shweta V. Rane, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 5, 743-754 |Review

20	KPF,	C18	50% Cetrimide	254	0.03- 0.50	9.41 min,	1.0	UV	42
20	ETX	column	and 50%	254 nm,	mg/ml,	7.34 min,	nl/min	detector	74
	and	Corumn	acetonitrile for	234	0.007-0.11	and 6.66			
	DIC		KPF and ETX	nm,	mg/ml and	min			
	Die		30% Cetrimide	and	0.016 - 0.250				
			and 70%	254	mg/ml				
			acetonitrile for	nm	6				
			DIC						
21	PCT	Inertsil	Methanol:	242	50 to 150	3.27min,	1.0	***	43
	and	ODS, C8-3	acetonitrile:	nm	μg/ml and	6.12 min	ml/min		
	ETX	column	phosphate buffer		6-18µg/ml				
			(40:20:40 v/v)						
22	THC	Inertsil	Acetonitrile: ph	254nm	25-125	2.325 min	1.0	UV	44
	and	C18	3 phosphate		$\mu g/ml$ and	and 4.296	ml/min	detector	
	ETX	column	buffer (70:30%		15-75 μg/ml	min			
23	ETX	PURITAS	v/v) Acetonitrile and	235nm	20.120	4.2 min	1.0	PDA	45
23	and		0.1 percent	255mm	20-120ppm and 20-	4.2 min and 2.1	nl/min	detector	45
	PCT	EXIMIUS	acetic acid in		200ppm	min 2.1	1111/11111	delector	
	101	C18	water		200ppin	111111			
		analytical	(70:30V/V)						
		column	(/0.201/1)						
24	ETX	Phenomene	Acetonitrile,	236	8.3-41.5	5.472	1.0	UV	46
	and	x® C18	methanol and	nm	μg/ml and 1-	min,	ml/min	detector	
	PCT	column	water 60:15:25		5 μg/ml	7.650 min			
			(v/v/v)						
25	TOP	Eclips plus	0.035M	290nm	5-15 µg/ml	2.826 min	1.0	PDA	47
	and	C18	triethylamine			and 7.566	ml/min	detector	
	ETX	column	and acetonitrile			min			
			(70:30 v/v)						
26	PGBN	Ascentis	Acetonitrile and	228nm	***	2.313 min	0.8	PDA	48
	and	C18	0.01N			and 2.840	ml/min	detector	
	ETX	column	potassium			min			
			dihydrogen						
			phosphate (50:						
			50)						

HPTLC method for ETX

Thin-layer chromatography is a popular technique for the analysis of a wide variety of organic and inorganic materials, because of its distinctive advantages such as minimal sample clean-up, a wide choice of mobile phases, flexibility in sample distinction, high sample loading capacity and low cost. The summary of the reported HPTLC methods is shown in Table 5.

|--|

Sr. No.	Drug	Stationary Phase	Mobile Phase	Detection	Linearity	Ref.
1	ETX	Precoated silica gel 60F ₂₅₄	Chloroform: methanol: toluene (4:2:4 v/v)	289 nm	100 to 600 ng/spot	49

Shweta V. Rane, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 5, 743-754 |Review

2	ETX	Precoated silica gel 60F ₂₅₄	Toluene–1,4-dioxane–methanol 8.5:1.0:0.5 (v/v)	235 nm	100 to 1500 ng/spot	50
3	PCT and ETX	Precoated silica gel 60F ₂₅₄	Toluene: ethyl acetate: methanol in the ratio of 6: 4: 1 $(v/v/v)$	263 nm	60-360 ng/spot 50-300 ng/spot	51

UPLC methods for ETX

Ultra-performance liquid chromatography (UPLC) is a new category of separation based on well-established principles of liquid which chromatography, utilizes sub-2-mm particles for the stationary phase. The developed UPLC method is validated and therefore could be further used for quantitative analysis of Etoricoxib. Sanjay Shesha Shetgar, Ramadevi Dharmasoth, Bandlamudi Mallikarjuna Rao, Basavaiah Keloth established UPLC method development and validation for simultaneous estimation of Etoricoxib and Thiocolchicoside in tablets. UPLC was carried out in Hibar, C18 column of dimension 100 × 2.1 mm, 1.8 µm,at 30°C, mobile phase by using 0.1% orthophosphoric acid (pH 2.5) and acetonitrile in a ratio of 90:10 (v/v). The column effluents were monitored at 256 nm using a Acquity Tunable UV detector at a flow rate of 0.3 ml/minute. The linearity of the calibration curve ranged from 1–6 µg/ml of Thiocolchicoside and 15-90µg/ml of Etoricoxib and the regression coefficient (r2) was 0.999 for both Etoricoxib and Thiocolchicoside drugs.(53)

CONCLUSION

The current review article offers a thorough understanding of the many analytical and bioanalytical techniques both singular and combined developed for etoricoxib. Numerous novel analytical techniques, including as UV spectroscopy, UPLC, HPLC, and HPTLC, have been published for analysis purposes. The method has been tabulated and includes information regarding the mobile phase, stationary phase, retention time, etc. for the researchers' convenience. Future analytical techniques for the bio-analysis of etoricoxib in pharmacological and biological formulations can be developed using the information acquired. In conclusion, it offers an opportunity to gain additional insight into past achievements and prospective future initiatives and modifications aimed at expanding our understanding of etoricoxib.

CONFLICT OF INTEREST

The authors declare that no conflict of interest **ABBREVIATIONS**

- 1. UV/VIS Ultra violet/visible spectroscopy
- 2. HPLC High-performance liquid chromatography
- 3. HPTLC High-performance thin layer chromatography
- 4. LC-MS/MS Liquid chromatography-mass spectroscopy-mass spectroscopy
- 5. UPLC Ultra performance liquid chromatograpy
- 6. RP Reverse phase
- 7. nm Nanometer
- 8. $\mu g/mL Micro gram per Milliliter$
- 9. PDA Photo diode array
- 10. VDX Valdecoxib
- 11. SCA Salicylic acid
- 12. KPF Ketoprofen
- 13. NMS Nimesulide
- 14. CXB Celecoxib
- 15. RLZ Riluzole
- 16. DRT Drotraverine
- 17. THC Thiocholchicoside
- 18. PCT Paracetamol
- 19. PGBN Pregabalin

20. TOP – Tolperisone

REFERENCE:

- Niederberger, E., Manderscheid, C., Grösch, S., Schmidt, H., Ehnert, C. and Geisslinger, G., 2004. Effects of the selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochemical pharmacology, 68(2), pp.341-350.
- Starek, M., Krzek, J. and Dechnik, J., 2009. Separation and determination of rofecoxib and its degradation products by TLC chromatography. Journal of Analytical Chemistry, 64, pp.623-631.
- Ramakrishna, N.V.S., Vishwottam, K.N., Wishu, S. and Koteshwara, M., 2005. Validated liquid chromatographic ultraviolet method for the quantitation of etoricoxib in human plasma using liquid–liquid extraction. Journal of Chromatography B, 816(1-2), pp.215-221.
- 4. https://go.drugbank.com/drugs/DB01628
- Rajan, D.S., Bose, A., Gowda, K.V., Ghosh, A. and Pal, T.K., 2006. Development and validation of an HPLC method for analysis of etoricoxib in human plasma. Indian journal of pharmaceutical sciences, 68(4).
- 6. Shakya, A.K. and Khalaf, N.A., 2007. High performance liquid chromatographic determination of Etoricoxib in human plasma. Asian Journal of Chemistry, 19(7), p.5241.
- Radwan, M.A., Zaghloul, I.Y. and Abd Elbaky, N.A., 2009. Stability indicating high performance liquid chromatographic assay for the pharmacokinetics of cyclooxygenase (COX-2) inhibitor etoricoxib in rats. African Journal of Pharmacy and Pharmacology, 3(7), pp.339-346.
- Dalmora, S.L., Brum Junior, L., Ferretto, R.M., Oliveira, P.R.D., Barth, T. and Sangoi, M.D.S., 2008. Determination of etoricoxib in human plasma using automated on-line solidphase extraction coupled with LC-

APCI/MS/MS. Química Nova, 31, pp.574-578.

- Bräutigam, L., Nefflen, J.U. and Geisslinger, G., 2003. Determination of etoricoxib in human plasma by liquid chromatography– tandem mass spectrometry with electrospray ionisation. Journal of Chromatography B, 788(2), pp.309-315.
- Jalakam, S.P., Waghmode, J., Pawar, P. and Mane, G., 2016. Development of Simple and Rapid LC-MS/MS Method for Determination of Etoricoxib in Human Plasma and its Application to Bioequivalence Study. Biomirror, 7.
- Brum Junior, L., Cátia Ceni, D., Fronza, M., Renato de Oliveira, P. and Luiz Dalmora, S., 2006. Validation of an LC-tandem MS/MS method for the determination of etoricoxib in human plasma and pharmaceutical formulations. Journal of liquid chromatography & related technologies, 29(1), pp.123-135.
- Werner, U., Werner, D., Hinz, B., Lambrecht, C. and Brune, K., 2005. A liquid chromatography–mass spectrometry method for the quantification of both etoricoxib and valdecoxib in human plasma. Biomedical Chromatography, 19(2), pp.113-118.
- Pavan Kumar, V.V., Vinu, M.C., Ramani, A.V., Mullangi, R. and Srinivas, N.R., 2006. Simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in plasma by highperformance liquid chromatography with UV detection. Biomedical Chromatography, 20(1), pp.125-132.
- 14. Zhang, X., Guo, N., Ji, W. and Wen, Q., 2019. Rapid quantitative analysis of etoricoxib in human plasma by UPLC-MS/MS and application to a pharmacokinetic study in Chinese healthy volunteers. Biomedical chromatography, 33(2), p.e4414.

- 15. Eure, W.D., Grossman, R.G., Horner, P.J. and Chow, D.S.L., 2021. LC-MS/MS assay of riluzole and etoricoxib in rat plasma and brain tissue with applications for sampling and evaluation in pre-clinical rat model of traumatic brain injury. Talanta Open, 4, p.100052.
- 16. Shahi, S.R., Agrawal, G.R., Rathi, P.B., Shinde, N.V., Somani, V.G., Mahamuni, S.B. and Padalkar, A.N., 2008. Development and validation of UV spectrophotometric method for the determination of etoricoxib in bulk and tablet formulation. Rasayan J Chem, 1(2), pp.390-394.
- 17. Chaple, D.R. and Bhusari, K.P., 2009.
 Spectrophotometric Methods for the Determination of Etoricoxib in Pharmaceutical Formulations. Research Journal of Pharmacy and Technology, 2(3), pp.597-8.
- 18. Manideep, G., Shane, N.L.J., Pai, G. and Sathyanarayana, M.B., 2018. Development and validation of a UV spectroscopic method to estimate Etoricoxib in bulk and tablet formulation. Research Journal of pharmacy and Technology, 11(2), pp.758-760.
- 19. Singh, S., Mishra, A., Verma, A., Ghosh, A.K. and Mishra, A.K., 2012. A simple Ultraviolet spectrophotometric method for the determination of etoricoxib in dosage formulations. Journal of advanced pharmaceutical technology & research, 3(4), p.237.
- 20. Choudhari, V.P., Parekar, S.R., Chate, S.G., Bharande, P.D. and Kuchekar, B.S., 2011. Development and validation of UV-Visible spectrophotometric baseline manipulation methodology for simultaneous analysis of drotraverine and etoricoxib in pharmaceutical dosage forms. Pharmaceutical methods, 2(4), pp.247-252.

- 21. Acharjya, S.K., Rajesh, Y., Panda, P., Mallick, P. and Annapurna, M.M., 2010. Spectrophotometric methods for simultaneous estimation of etoricoxib and thiocolchicoside in bulk and combined pharmaceutical dosage form. Journal of Pharmaceutical Education and Research, 1(1), p.75.
- 22. Brum Jr, L., Fronza, M., Ceni, D.C., Barth, T. and Dalmora, S.L., 2006. Validation of liquid chromatography and liquid chromatography/tandem mass spectrometry methods for the determination of etoricoxib in pharmaceutical formulations. Journal of AOAC International, 89(5), pp.1268-1275.
- 23. Gangane, P.S., Bagde, S.M., Mujbaile, S.G., Niranjane, K.D. and Gangane, P., 2014.
 Development and Validation of HPLC assay method for etoricoxib in bulk drug and tablet formulation. Indian J Nat Sci, 4(24), pp.1565-1625.
- 24. Haque, M., Nasrin, S., Monir, M.M., Rahman, M.M. and Chowdhury, S., 2012. Method development and validation of RP-HPLC method of etoricoxib in bulk and its tablet dosage forms. American Journal of PharmTech Research, 2(6), pp.275-283.
- 25. Singh, B., Santhakumar, R., Bala, I., Prasad, S.B. and Verma, S., 2014. Development and validation of RP-HPLC method for the dissolution and assay of etoricoxib in pharmaceutical dosage forms. International Journal of Pharmaceutical Quality Assurance, 6(1), pp.1-7.
- 26. Bhattacharyya, I., Bhattacharyya, S.P., Sen, S. and Laha, T.K., 2009. Reverse Phase High Performance Liquid Chromatographic Method for the Analysis of Etoricoxib in Pharmaceutical Dosage Form. Asian Journal of Research in Chemistry, 2(3), pp.297-299.
- 27. Patel, H.M., Suhagia, B.N., Shah, S.A. and Rathod, I.S., 2007. Determination of etoricoxib in pharmaceutical formulations by

HPLC method. Indian Journal of Pharmaceutical Sciences, 69(5), p.703.

- 28. Rao, B.S. and Nagaraju, K.S., development, validation & stress degradation studies of etoricoxib using diclofenac as an internal standard by hplc.
- 29. Shakya, A.K. and Khalaf, N.A., 2007. High Performance Liquid Chromatographic and Ultra Violet Spectroscopic Determination of Etoricoxib in Pharmaceutical Formulations. Asian Journal of Chemistry, 19(3), p.2059.
- 30. Bagade, S.B., Meshram, D.B. and Tajne, M.R., 2011. Estimation of Etoricoxib in tablet Dosage form by RP-HPLC using Internal Standard with Emphasize on Specificity parameter Method. Oriental Journal of Chemistry, 27(2), p.697.
- 31. Topalli, S., Chandrashekhar, T.G. and Annapurna, M.M., 2012. Validated RP-HPLC method for the assay of etoricoxib (a nonsteroidal anti-inflammatory drug) in pharmaceutical dosage forms. E-Journal of chemistry, 9(2), pp.832-838.
- Venugopal, S., Tripathi, U.M. and Devanna, N., 2011. Validated Reverse Phase HPLC Method for the Determination of Impurities in Etoricoxib. E-Journal of Chemistry, 8(S1), pp.S119-S126.
- 33. Palte, D. and Kondalkar, A., 2015. Stability studies in combine dosage form of Etoricoxib and Thiocolchicoside using RP-HPLC. Int J Res Stud Biosci, 3(9), pp.163-70.
- 34. Singh, B., Chaudhary, A. and Sharma, A., 2022. RP HPLC Method Development for Simultaneous Estimation of Etoricoxib and Thiocolchicoside. Journal of Pharmaceutical Research International, pp.39-44.
- 35. Zaveri, M. and Khandhar, A., 2010. Quantitative determination of Etoricoxib and Paracetamol in pharmaceutical dosage form and in-vitro comparison by reversed-phase high performance liquid chromatography

(RP-HPLC). Asian Journal of Pharmaceutical Research and Health Care, 2(4).

- 36. Kumar, S., Joshi, A., Thakur, R.S., Pathak, A.K. and Shah, K., 2011. Simultaneous estimation of etoricoxib and thiocolchicoside by RP-HPLC method in combined dosage forms. Acta Poloniae Pharmaceutica, 68(6), pp.839-843.
- 37. Narajji, C. and Karvekar, M.D., 2011. Method development and validation for simultaneous estimation of Paracetamol and Etoricoxib in pharmaceutical dosage form by RP-HPLC method. Der Pharma Chem, 3(4), pp.7-12.
- 38. Yeluri, R.R., Reddy, B.S. and Kumari, R.R., 2022. Quantification of pregabalin and etoricoxib combo in tablets and bulk with developed rp-hplc method: stability indicating feature assessment. Journal of Advanced Scientific Research, 13(04), pp.31-36.
- 39. Padmavathi, K. and Rao, M.S., 2016. Development and validation of a new stability indicating liquid chromatographic method for the simultaneous determination of thiocholchicoside and etoricoxib in combined dosage form. World Journal of Pharmaceutical Sciences, pp.76-84.
- 40. Chaudhary, A. and Singh, B.K., 2021. Simultaneous Estimation of Pregabalin and Etoricoxib using Novel HPLC Method: An Application in Quantitative Analysis of Pharmaceutical Dosage Forms. Indian Journal Of Pharmaceutical Education And Research, 55(3), pp.S837-S843.
- 41. Rao, K.P. and Ramana, G.V., 2014. Cost effective isocratic RP-HPLC method for simultaneous determination of Etoricoxib and Paracetamol in pure and in tablet formulation. J Advan Stud Agric Biol Environ Sci, 1(2), pp.201-209.
- 42. Andraws, G. and Trefi, S., 2020. Ionisable substances chromatography: A new approach for the determination of Ketoprofen,

Etoricoxib, and Diclofenac sodium in pharmaceuticals using ion-pair HPLC. Heliyon, 6(8), p.e04613.

- 43. Pattan, S.R., Jamdar, S.G., Godge, R.K., Dighe, N.S., Daithankar, A.V., Nirmal, S.A. and Pai, M.G., 2009. RP-HPLC method for simultaneous estimation of paracetamol and etoricoxib from bulk and tablets. Journal of Chemical and Pharmaceutical Research, 1(1), pp.329-335.
- 44. Rani, K.S. and Parameshwar, P., 2021. Method development for simultaneous estimation of etoricoxib and thiocolchicoside in tablet formulation by rp-hplc.
- 45. Goudar, N., Tejas, B., Badamane, M., Sathyanarayana, A.P. and Pai, V., 2022. Quantitative determination and validation of etoricoxib and paracetamol combined tablet dosage form by reverse phase-hplc. Rasayan Journal of Chemistry, 15(3), pp.1702-1708.
- 46. Gupta, K.R., Likhar, A. and Wadodkar, S.G., 2010. Application of stability indicating HPLC Method for quantitative determination of etoricoxib and paracetamol in pharmaceutical dosage form. Eurasian J. Anal. Chem, 5(3), pp.218-226.
- 47. Solanki, R.V., Patel, R.B., Patel, R.K. and R.A., 2022. Development Sheth. and Validation of Fast and Robust Stability Indicating **RP-HPLC** Method for Simultaneous Estimation of Tolperisone Etoricoxib Hydrochloride and in Pharmaceutical Dosage Form. International Journal of Pharmaceutical Investigation, 12(1), pp.56-61.
- 48. Sumithranandan, E.S.N. and Ajitha, M., 2022. A new validated method for the estimation of pregabalin and etoricoxib an using high performance liquid chromatography and of its degradation: https://doi. org/10.54037/WJPS. 2022.101001. World Journal of Pharmaceutical Sciences, pp.1-11.

- 49. Shah, N.J., Shah, S.J., Patel, D.M. and Patel, N.M., 2006. Development and validation of HPTLC method for the estimation of etoricoxib. Indian journal of pharmaceutical sciences, 68(6), p.788.
- 50. Maheshwari, G., Subramanian, G.S., Karthik, A., Ranjithkumar, A., Ginjupalli, P.M.K. and Udupa, N., 2007. High-performance thinlayer chromatographic determination of etoricoxib in the bulk drug and in pharmaceutical dosage form. JPC–Journal of Planar Chromatography–Modern TLC, 20(5), pp.335-339.
- 51. Dhaneshwar, S.R., Raut, K.O. and Bhusari, V.K., 2011. Validated HPTLC Method for Simultaneous Estimation of Paracetamol and Etoricoxib in Bulk Drug and Formulation. Asian Journal of Pharmaceutical & Biological Research (AJPBR), 1(2).
- 52. Rajmane, V.S., Gandhi, S.V., Patil, U.P. and Sengar, M.R., 2010. High-performance thinlayer chromatographic determination of etoricoxib and thiocolchicoside in combined tablet dosage form. Journal of AOAC International, 93(3), pp.783-786.
- 53. Shetgar, S.S., Dharmasoth, R., Rao, B.M. and Keloth, B., 2022. RP-UPLC method development and validation for simultaneous estimation of Etoricoxib and Thiocolchicoside in tablets. Journal of Applied Pharmaceutical Science, 12(2), pp.144-151.

HOW TO CITE: Shweta V. Rane, Sapan K. Shah, Dinesh R. Chaple, Mayur A. Lohi, Pooja R. Denge, Sahil D. Gayakwad, Bhagyashri S. Patil, Vinay V. Sarode, Determination Of Etoricoxib By Analytical And Bioanalytical Methods: A Review, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 5, 743-754. https://doi.org/10.5281/zenodo.11203913

