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Systems for delivering drugs with controlled release have many benefits over traditional 

dose forms. But because controlled release medication delivery systems are so complex, 

creating them effectively presents significant hurdles. One method that has been used to 

create and construct controlled release dose forms is the traditional statistic response 

surface methodology (RSM). It should be noted that the RSM technique has several 

limitations. In order to create controlled release dosage forms, a different method known 

as artificial neural networks (ANN) has recently become quite popular. The fundamental 

structure of artificial neural networks (ANNs), the creation of ANN models, and an 

explanation of how to apply ANNs to the design and development of controlled release 

medication delivery systems are covered in this overview. Sometimes, it's preferable to 

provide vaccinations. The goal of creating controlled release dosage forms is to keep the 

drug's concentrations in the blood, target organs, or tissues largely constant. Sometimes, 

it's preferable to provide vaccinations. Furthermore, the uses of ANNs. 
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INTRODUCTION 

Overview of medication delivery methods with 

regulated release: 

Advantages over traditional dosage forms are 

numerous for controlled release drug delivery 

systems (CRDDS). Localized drug administration, 

minimal in vivo drug concentration fluctuations 

and preservation of drug concentrations within a 

targeted range, enhanced patient compliance, a 

sharp decline in dose frequency, and fewer adverse 

effects are a few of these benefits. Research has 

been done on and a number of controlled release 

medication delivery methods, including 

intrauterine devices, transdermal, injectable, oral, 

and implanted drug delivery methods. But 

developing controlled release drug delivery 

systems presents a significant difficulty due to the 
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complexity of formulations needed to maintain the 

appropriate in vivo drug release rates (1). 

The goal of creating controlled release dosage 

forms is to keep the drug's concentrations in the 

blood, target organs, or tissues largely constant. 

Sometimes, it's preferable to provide vaccinations. 

The loading dose should be released initially in a 

controlled release drug delivery system, and then 

the drug's maintenance dose should be released 

steadily after that. Drug release rates from various 

delivery systems may fluctuate at different release 

stages, and the majority of controlled release drug 

delivery systems involve multiple mechanisms for 

drug release. To guarantee the absence of dose 

dumping and the maintenance of the intended rate 

of in vivo drug release, the USP mandates that the 

cumulative proportion of from those of traditional 

dosage formulations. A controlled release dosage 

form requires a desired drug release profile, while 

a conventional dosage form must release the 

majority of the drug from the dosage form in a 

brief amount of time, as per the USP in vitro 

dissolution test requirement. In an in vitro 

dissolution test, for instance, the USP states that at 

least 80% of the theophylline must be released 

from a typical capsule within 60 minutes. 

Nevertheless, particular drug dissolving 

requirements apply to theophylline extended-

release capsules, which can sustain in vivo 

therapeutic concentrations for a full day. Table 1 

displays these specifications (2). 

There are numerous varieties of controlled 

medication delivery systems available to treat 

various medical disorders. The makeup of the 

formulation and manufacturing methods has an 

impact on these systems' in vivo performance. 

These systems often include a polymer or mixtures 

of polymers, waxy materials, and other functional 

excipients in addition to the active component. To 

accomplish controlled drug release from these 

systems, numerous strategies and technologies are 

available. Tablets with controlled release, for 

instance, may be matrix or depot formulations. 

One can use either polymer to achieve controlled 

release of medicines from matrix tablet 

formulations and/or materials with wax. There are 

several polymers with different molecular weights 

that can be utilized to create controlled release 

medication delivery systems. as well as several 

grades. It is common knowledge that the molecular 

weights of these polymers affect the properties of 

drug release. 

The performance of the product may be impacted 

by variations in the manufacturing techniques used 

for the various kinds of controlled release 

medication delivery systems. Granules with the 

active components could be granulated using wet, 

hot-melt, fluid-bed, or roller-compaction 

granulation procedures, for instance, during the 

production of controlled release matrix tablets. 

A controlled release drug delivery system's in vitro 

or in vivo drug release profile should be taken into 

account during the development stage, along with 

other performance characteristics like tablet 

hardness (for controlled release tablets) or the 

desired rate of polymer degradation (for 

implantable or injectable parenteral drug delivery 

systems).  

 
Fig. (1). Conceptual structure of a biological 

neuron 

The intricacy of controlled release formulations 

often makes it difficult to understand the 

relationship between the formulation and process 

factors and the previously described performance 

characteristics of the drug delivery systems under 

control. As a result, it is frequently challenging to 

predict a formulation's performance quantitatively 
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using the drug's and the excipients' fundamental 

physicochemical qualities (3). 

It follows that the design and development of these 

systems is a multivariate optimization process and 

could be highly difficult given the complexity of 

the manufacturing processes and composition of 

the controlled release drug delivery systems stated 

earlier. A statistical technique called response 

surface methodology (RSM), which is based on 

polynomial regression, has been employed in the 

creation and formulation of various controlled 

release medication delivery strategies. These drug 

delivery methods include, for instance, 

iontophoretic transdermal administration of 

thyrotropin-releasing hormone, sustained release 

matrix tablets, and controlled release 

microcapsules and microspheres. RSM is useful 

for estimating simple functions or low 

dimensionality data. This polynomial technique 

does have certain drawbacks, though. Only under 

few situations could RSM be useful, as well as a 

low degree polynomial. First, a suitable response 

surface model for each response variable must be 

constructed in order to optimize issues with 

multiple responses. Next, a collection of 

independent variables must be found in order to 

optimize every answer or maintain them within the 

intended ranges. Because of this, optimizing a 

multiple response model using the RSM technique 

may be very difficult. Furthermore, the polynomial 

equation's coefficient count rapidly grows with the 

number of input variables. Therefore, the use of 

RSM for multi-objective optimization, like the 

creation of controlled release medication delivery 

systems, would be hampered by the limitations of 

the polynomial technique (4). 

Artificial Neural Network (ANN) is an alternative 

to the statistical approach for developing 

controlled release drug delivery systems. The 

ANN's unique characteristics render the model 

highly valuable in scenarios where the functional 

relationship between the inputs and outputs is 

ambiguous. An ANN model can have a number of 

the following features: 

(1) Multiple independent and dependent variables 

can be handled simultaneously by an ANN model 

in a single model (such as a back propagation 

model). 

(2) Since the ANN model is able to learn the latent 

correlations between the causal factors and 

response, it is not necessary to know the functional 

relationship between the independent and 

dependent variables beforehand (5). 

(3) The ANN model, which employs a black box-

like methodology, is successful in simulating 

nonlinear interactions between the independent 

and dependent variables (6). This is due to the fact 

that end users do not need to have a thorough 

understanding of the ANN model's 

implementation or inner workings. 

(4) The ANN model is capable of formulation 

optimization and prediction, and it is updatable 

with fresh data. One can utilize the ANN models 

to forecast the outcome. 

In multi-dimensional situations like formulation 

development, where the ANN models 

demonstrated superior fitting and prediction 

abilities over the RSM approach, the efficacy of 

ANN models in learning the linkages has been 

demonstrated (7). 

A brief overview of artificial neural networks 

(ANN): 

Artificial Neural Networks: What Are They 

Artificial neural networks (ANN) are computer 

programs that use various learning algorithms that 

are capable of experience-based learning to mimic 

some functions of the human brain. The amazing 

information processing characteristics of the 

human brain, such as high parallelism, robustness, 

learning, fault and failure tolerance, nonlinearity, 

and the capacity to handle ambiguous and 

imprecise input, are shared by artificial neural 

networks (ANNs). Consequently, complex real-

world issues including pattern recognition, 
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clustering, function approximation, and 

optimization can be resolved with ANN (8). 

ANN models come in a wide variety and have been 

designed for a wide range of uses. Training an 

ANN model can be either supervised or 

unsupervised depending on the learning (training) 

algorithm. In unsupervised training, the ANN 

model is given input data alone and is trained to 

identify patterns in the data. In supervised training, 

input/output data sets are sent to the ANN model. 

A feedforward or feedback connection between 

ANNs can exist depending on their topology. 

Cycles in the connections between nodes do not 

occur in a feedforward artificial neural network 

model. There are cycles in the connections of a 

feedback or recurrent artificial neural network 

model. Some feedback artificial neural network 

(ANN) models need the ANN model to iterate at 

each presentation of an input (9). 

Different ANN model types: 

According to their functions, ANN models fall into 

one of three categories : 

1.  Joining networks together. 

2. Networks that extract features. 

3. Networks that are not adaptable. 

Associating networks require input (independent 

variable) and correlated output (dependent 

variable) values to execute supervised learning. 

Associating networks are used for data 

classification and prediction. For unsupervised or 

competitive learning, feature-extracting networks. 

which are employed in data dimension reduction 

only require input values. When nonadaptive 

networks are given an incomplete data set, they 

require input values in order to learn the pattern of 

the inputs and rebuild them. Out of these three 

ANN model types, associating networks can be 

used to create controlled release formulations 

because the relationship between formulation and 

process factors and the drug release profiles of the 

controlled release drug delivery systems is not 

well understood and is nonlinear. It is possible to 

map the relationship between the formulation and 

process variables by associating ANN models 

(10). 

Therefore, the purpose of this review is to 

determine whether associating network models is 

a valuable tool for designing and developing 

controlled release drug delivery systems. First 

presented by Rumelhart et al. the associated ANN 

relies on delta rule back-propagation of mistakes. 

Since then, numerous back-propagation-based 

learning algorithms have been created. The most 

often used algorithms in ANN for process and 

composition optimization are these ones (11, 12). 

Basic transmission backward Structure of the 

ANN model: 

Replication in reverse, ANN models feature a 

multi-layered design. There is no computer 

activity in the first layer, which is referred to as the 

input layer. It only serves as an input method for 

the first hidden layer, where independent variables 

such different important formulation and process 

elements are sent in. As the output layer, which is 

the final layer, is used to process the results for the 

dependent variables, like the outputs (in vitro drug 

release profiles). hidden levels. remain between 

the output and input layers and act as the link 

between the input and cutout layers. It is possible 

for the connection to be partially or fully 

connected. Every node in the first layer is 

connected to every other node in the second layer 

of a fully connected artificial neural network 

(ANN). A first layer node does not need to be 

connected to every second-layer node in partially 

connected ANN models. There are two possible 

connection directions: feed forward and bi-

directional. The nodes in the first layer transmit 

their output for a feed forward connection. The 

problem's complexity dictates how many hidden 

layers there are. Due to the fact that one hidden 

layer is typically sufficient to produce an accurate 

forecast, many ANN models only have one hidden 

layer. It is possible to simulate complex problems 



Prasanth Yerramsetti, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 7, 404-417 |Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                408 | P a g e  

with multiple hidden layers. The structural 

elements of an ANN are its processing elements, 

also referred to as artificial nodes or neurons. 

Using their transfer function, these artificial nodes 

process data based on weighted inputs and output 

the results. Weighted linkages connect the nodes 

in neighbouring layers completely or partially. The 

weighted outputs from the previous layer added 

together comprise the net input into the layer node 

(13, 14). During the learning process of the ANN 

model, the weight factors of the links between the 

processing nodes are crucial. The ANN model's 

memory capacity is comprised of the weight 

components, whose numerical values vary based 

on the training data sets. This allows the model to 

minimize the discrepancy between the expected 

and actual outputs. Therefore, throughout the 

learning process, the relationship between the 

causative elements and the response is mapped. 

The output value of the node is calculated using 

the transfer function of the processing nodes, 

taking into account the total net input from nodes 

in the previous layer. As may be seen in the 

following equation, the sigmoid function is the 

most commonly employed transfer function. 

1. Results obtained from a node 

2. The function or categorization that needs to be 

taught is difficult. 

3. the architectural 

4. The kind of function that activates hidden nodes 

5. A training algorithm 

Overfitting or memorizing of the training data set 

might result from having too many hidden nodes 

or layers, which would impair the ANN model's 

capacity to learn. A number of investigators have 

presented heuristics to choose the number of 

hidden nodes in an ANN model. According to 

Kolmogorov's theorem, one hidden node is needed 

for every arbitrary continuous function to be 

computed, multiplied by the number of input 

variables. 

Conventionally, heuristic criteria are used to 

define the number of nodes in the hidden layer. A 

method that is widely used to determine the ideal 

number. 

In what ways does an ANN model learn:  

ANN models are trained to gain experience, which 

is what they use to learn. Data fitting to a neural 

network model is a step in the training process. 

When training an associating ANN model, 

input/output data sets are given to the model under 

supervision. When the ANN model is given 

training data sets (called input/output data sets) or 

data, it adjusts the weighting factors of the 

linkages among the processing nodes. This process 

is known as training or learning. The training data 

set can be fed to the network model in two 

different ways: as a whole batch (batch training) or 

as an example-by-example (called incremental 

training) After processing each sample in the 

incremental training process, or after processing 

the training data as a whole, the weights are 

changed (15, 16). 

 
Fig. (2). A schematic of four-layered artificial 

network 

The training data set is given to the model in the 

feedforward phase. It shows how the processing 

nodes in the hidden layer combine the inputs 

depending on the randomly given weight values. It 

shows how the output is computed using the 

sigmoid transfer function. At the output layer, the 

anticipated output or outputs) for this input are 

available. The output error is estimated initially in 

the back-propagation step. The process of doing 

this involves comparing the predicted and actual 

output numbers. Weight adjustments are then 



Prasanth Yerramsetti, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 7, 404-417 |Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                409 | P a g e  

computed for each interconnection after errors for 

each processing node are determined. The model 

receives the weight adjustment and is then sent 

back for a small weight correction need definition 

in order to train the back-propagation ANN model. 

The variable known as the learning rate (n) 

regulates the rate at which knowledge is acquired. 

ANN model will learn faster with a higher learning 

rate. On the other hand, an excessively high 

learning rate may cause the weight change 

oscillation to surpass a near-optimal weight factor 

w and hinder the convergence of the error surface. 

However, the ANN model might encounter a local 

error minimum rather than the global minimum if 

the learning rate is too slow. Commencing at a 

high learning rate and gradually lowering it over 

time can help to facilitate the learning process. 

Learning at a steady pace of 0.1–10%.  

To prevent local minima and lessen weight change 

oscillation, the momentum coefficient (u) is 

employed in the weight updating process for back-

propagation ANNs. A smooth effect is achieved by 

relating the weight change to the preceding weight 

change in order to achieve faster learning without 

oscillation. How much of the previous weight 

change is added to the new weight change is 

determined by the momentum coefficient. 

Searching for a set of weight factors for the ANN 

model in order to minimize prediction errors is 

known as convergence. The most widely used 

convergence criterion is based on the sum of 

squared errors. Oversaw ANN networks calculate 

the error, or difference, between the expected and 

actual output values during training. 

An increase in the number of hidden nodes or 

training iterations results in an infinite decrease in 

training error, such as SSE, for the training data 

set. Learning is the cause of the SSE's initial rapid 

decline (17, !8). 

subsequent slow reduction of SSE could be 

attributed to memorization or over-fitting because 

of the excessively large number of training cycles 

or excessive number of hidden nodes. On the other 

hand, the test error decreases initially, but 

subsequently increases due to memorization and 

over-fitting of the ANN model. Thus, the training 

should be stopped when the test error starts to 

increase, and the optimal number of hidden nodes 

should be picked when the test error is the 

minimum. 

Functions of the ANN model for prediction and 

optimization: 

If a trained artificial neural network (ANN) is 

given a set of input values, it may be used to 

anticipate responses such as drug release patterns. 

Processing variables and formulation parameters 

like polymer concentration and medication 

loading are examples of these inputs. A well-

trained artificial neural network (ANN) model's 

prediction function can provide answers to 

hypothetical inquiries like, "What kind of drug 

release profile can we get if we decrease the 

polymer concentration in the controlled release 

matrix tablet formulations?" To get a desired 

formulation, it might be necessary to optimize the 

formulation and process parameters by examining 

all potential combinations of the two. This could 

be a laborious and time-consuming operation. 

Genetic algorithms (GAS) with trained neural 

network model integration may be one of the 

solutions for optimization of such controlled 

release formulations. 

Adaptive heuristic search algorithms, or "survival 

of the fittest," are the foundation of evolutionary 

theory of natural selection and constitute genetic 

algorithms. They offer a clever use of a random 

search inside a predefined search area to find 

effective solutions (such formulation 

compositions) for challenging high-dimensional 

issues quickly. Based on the generalized distance 

function method or the desirability function 

method, the ANN software uses optimization to 

find solutions that provide the least amount of 

error between the expected and desired answer. 
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The fitness function, or connection between inputs 

and outputs, may be found by training neural 

networks. This information can then be utilized for 

optimization utilizing genetic algorithms or other 

search techniques.  

Combining ANN with GAs creates a loop-based 

on the ANN prediction function and the GA 

exploitation function. When comparing the 

projected output responses of the ANN with the 

desired outputs, the new inputs produced by GAs 

are taken into consideration. This procedure is 

repeated until the intended output is achieved with 

optimum or nearly optimal input combinations 

(optimal formulation or process variables). Thus, 

this loop offers a strong tool for optimizing the 

controlled release formalization. For instance, if 

the ideal or intended drug release profiles are 

known, an ANN model trained on GA software 

may be used to extract the ideal formulation and 

process variables. Recently, standalone software 

packages containing both the ANN and GA for 

prediction/optimization applications have been 

made available by certain commercial computer 

programmers. CAD/Chem is one instance of a 

commercially available software suite. 

How can I develop controlled release 

medication delivery systems using artificial 

neural networks (ANN) and other similar 

techniques: 

Starting with a desired in vivo plasma 

concentration profile, controlled release drug 

delivery devices are designed. Developing and 

refining a controlled release formulation only via 

study might be expensive and impractical. If a 

level A in vitro/in vivo correlation (IVIVC) is 

present, in vitro release studies might take the 

place of in vivo drug release investigations. But for 

many controlled release formulations, poor IVIVC 

is a regular occurrence. An ANN might be used to 

create IVIVC. If there is any connection between 

the in vitro Once in vitro release properties are 

known, the job of creating a controlled release 

formulation would be to determine the relationship 

between the formulation factors (or process 

variables) and in vitro release properties. A latent 

link between the response (in vitro release 

characteristics) and the causative causes 

(formulation variables) may be learned using an 

ANN model. Deconvoluting the appropriate in 

vivo plasma concentration profiles yields the in 

vivo absorption pro files, which can then be linked 

with the in vitro release profiles (19). 

The technique of obtaining the in vivo absorption 

profile of a dosage form provided based on the 

drug's pharmacokinetic properties using 

mathematical methods is known as deconvolution 

of a plasma concentration profile. The Wagner-

Nelson approach for a one compartmental model, 

the Loo-Riegelman method for a two 

compartmental model, or a model agnostic 

computer software like PCDCON may all be used 

to deconstruct the target or ideal in vivo release 

profile. 

When developing formulations, it is common to 

compare two dissolving profiles. When the 

similarity factor is between 50 and 100 and the 

difference factor (f) is between 0 and 15, the US 

Food and Drug Administration considers two 

dissolving profiles to be comparable. The 

following two equations determine the difference 

factor (f) and the similarity factor (f), respectively. 

Gathering information to train the ANN model: 

For any trained ANN model to produce accurate 

results, data are the most crucial component as the 

data that these models are exposed to is used to 

train them. Information sent into the ANN 

software in pairs as a cause-and-effect connection 

for back-propagation ANNs and other associated 

networks. The data must be interpolated using 

ANN models as they are required to generalize for 

unknown situations (data not supplied during the 

training process). A trained artificial neural 

network (ANN) model's prediction capacity is 

typically measured within the input/output data 
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space limit that the model is given during training. 

It may be criticized to extrapolate outside of this 

data space. As a result, the training dataset should 

have enough size to include all potential known 

variations in the issue area. In general, stronger 

and more dependable prediction and optimization 

outcomes come from a solid data set that 

investigates Since employing an experimental 

design guarantees the independence among the 

formulation components, statistical experimental 

designs model formulations to minimize the 

number of trials for data gathering. Subsequently, 

information may be gathered from tests conducted 

using the DOE. Obtaining trustworthy data to train 

the ANN model, carefully regulated experimental 

conditions are required (20).  

The following are some instances of formulation 

optimization using DOE in conjunction with 

ANN. Takayama et al. used a two-factor spherical 

second-order composite experimental design to 

create model formulations for transdermal 

medication delivery devices. Takayama et al. 

created model formulations for prolonged release 

matrix tablets using a three-factor, two-level 

composite experimental approach. Hussain et al. 

designed model-controlled release matrix tablet 

formulations of chlorpheniramine maleate using a 

four-component simplex centroid mixture design. 

Vaithiyalingam et al. used a three-factor, three-

level central composite face-cantered design to 

create model-controlled bead formulations. 

Development of ANN models for optimization 

and prediction: 

Creation of models: 

In order to construct an ANN model, the 

architecture must first be determined. This 

includes defining the number of nodes in the input 

and output layers, the number of hidden layers, and 

the number of hidden nodes. The problem to be 

researched determines the number of inputs and 

outputs. There should be as few inputs as possible. 

adding additional factors may skew the results and 

cause confusion. How many hidden nodes should 

be used is the most crucial question in the 

construction of the ANN model. The number of 

hidden nodes cannot be determined by a magic 

formula, as was stated in the section on ANN basic 

architecture. There are just a few guidelines for 

Determining the smooth factor, learning rate, and 

kind of transfer function may also be necessary 

when building an ANN model. While some 

software programs allow the end user to pick some 

of these parameters for modelling, others may 

already specify some of these aspects and leave it 

up to the user to establish the ANN architecture. 

The ANN model architecture arc development 

examples for controlled release formulation 

optimization are as follows (21). An ANN model 

was created. the work of Hussain et al. Four 

formulation variables corresponded to four inputs 

in the ANN model. These variables included the 

concentrations of polymers like 

carboxymethylcellulose (CMC), hydroxypropyl 

cellulose (HPC), hydroxyethyl cellulose (HBC), 

and hydroxypropyl methylcellulose (HPMC). Two 

outputs, release exponent (N) and the amount of 

time needed for 50% of the drug to be released, 

corresponded to the two response variables. There 

were 4, 6, 8, 10, 12, and 14 hidden nodes that were 

used in the different training models. Since the 

training set's residual sum of squared errors was 

found to be the lowest, eight hidden nodes were 

selected for the trained model's hidden layer. The 

moment factor and scarming rate, respectively. 0.9 

and 0.25.  

Training of ANN model: 

An ANN model was created by Hussain et al. in a 

different study place for experimentation. This 

means that a wide range of data from various 

experimental settings, such as varied formulation 

composition and process parameters, must be 

included in the training data set, which must be 

reasonably big to contain all the necessary 

information. 
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The test data set is a separate collection of data that 

the back propagation algorithm saves for later use 

rather than using it for training. It is used to 

monitor the ANN model's training progress and is 

sent to it on a regular basis. Put differently, serves 

as a third-party monitor for the algorithm's 

development. The training and the exam both first 

decline, as was previously described. However, it 

indicates that the ANN model is beginning to 

overfit the data when the test energy starts to 

decline or when it naturally begins to rise. At this 

point, the training needs to be stopped. Reducing 

the number of hidden layers and units is typically 

advised when over-learning occurs during the 

training phase. The purpose of the validation set is 

to confirm that the input-output connection found 

in the training and test sets is genuine and not the 

result of process artifacts. Data that fall within the 

training data set's bounds but are not included in 

the other data sets should be included in the 

validation data. Before the final model is trained 

for deployment, it is verified for correctness using 

the validation data set (22,23).  

The quantity of data needed in each set to train the 

ANN models is not determined by any 

mathematical formula. To separate the gathered 

data into training, test, and validation sets, there 

are only a few general guidelines available. Baum 

et al. suggested that the training subset should be 

at least equal to the product of the inverse of the 

minimal goal error and the number of weights in 

the models. It is recommended by Dowla et al. that 

the ratio of the training subset sample to the 

number of weight components be more than 10.  

ANN applications in the development of 

medicine delivery systems with controlled 

release:  

Though still small, ANN is being more and more 

used in the design of controlled release medication 

delivery systems. Applications of artificial neural 

networks (ANN) have been used in the 

development of controlled release formulations, 

including formulation and manufacturing process 

optimization. Most of these applications have been 

concentrated on medication delivery systems with 

controlled release for oral usage (24,25).   

Preformulation  

In order to create oral controlled release dosage 

forms, ANN models have been employed during 

the preformulation phase. Ebube et al. developed 

an ANN model to forecast the physicochemical 

features of hydrophilic polymers and blends of 

hydrophilic polymers, which are frequently 

utilized to manufacture controlled released the 

relationships between the composition of polymer 

blends and the viscosity of polymer solutions; the 

positions of the blend and the water uptake 

profiles; and the relationships between the 

moisture contents of the polymers and their glass 

transition temperatures were all learned by the 

trained artificial neural network (ANN) model, 

which was constructed using CAD/Chem software 

(version 5.0). The study's findings showed that the 

ANN model accurately predicted, with a low 

prediction error of 0-8%, the viscosities, glass 

transition temperatures, and water absorption of 

several hydrophilic polymers and their physical 

blends. In order to create sustained release 

formulations that necessitate the use of a quick 

hydrating polymer matrix, a trained artificial 

neural network (ANN) model can be helpful in 

gathering information during the preformulation 

step (26,27). 

Forecasting and Enhancement of Controlled 

Release Drug Administration Methods: 

To anticipate and optimize various kinds of 

controlled release formulations, researchers have 

employed several ANN models and learning 

algorithms (28).  

Tablets with regulated release: 

Chen and colleagues employed pharmacokinetic 

and artificial neural network (ANN) simulations 

for the design of controlled-release formulations. 

The 22 tablet formulations of a model 
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sympathomimetic medication were utilized as the 

inputs for the ANN model, together with seven 

formulation variables and three additional tablet 

variables (moisture, particle size, and hardness). 

The results were the cumulative in vitro 

percentage of medication released at ten distinct 

sampling times. CAD/Chem software (version 

4.6) was used to design and train the ANN model 

utilizing the input and output data sets. The ANN 

model after training the similarity coefficient f 

(29). 

 An ANN model was created by Zupančič Božič et 

al. to improve the use of diclofenac sodium 

sustained release tablets The concentrations of 

ceryl alcohol, polyvinylpyrrolidone K-30, and 

magnesium Meurate, as well as the duration of the 

sample, were selected as formulation factors (30). 

The hidden layer had twelve hidden nodes. The 

output was the proportion of drug released at each 

sample time point. To forecast release profile and 

improve formulation composition depending on 

the proportion of drug released, a trained artificial 

neural network (ANN) model was utilized. An 

ANN model was utilized in Takayama et al.'s 

simultaneous optimization approach to optimize 

controlled release theophylline tablets made using 

Controse, a combination of lactose, cornstarch, 

and hydroxy propyl methyl cellulose. The 

anticipated release parameters came from the 

Peppas equation, namely (release order) and log & 

release constant. a collection of causative variables 

and release parameters for training The GRNN 

model that was developed was employed to 

forecast the formulation and process variables for 

the optimized formulations. This might result in 

the intended in vitro drug release profiles. Then, 

two improved formulations were made and put 

through an in vitro evaluation. A comparison of 

the in vitro profiles observed and predicted by 

GRNN and my computed coefficients showed no 

difference between the experimental and 

anticipated profiles. Based on the similarity factor, 

f, and difference factor, observed drug release 

patterns for the two tested formulations.  

To maximize salbutamol sulphate osmotic 

absorption, a formulation optimization algorithm 

built on the ANN model was created. utilized as 

inputs, and the output was determined by 

calculating the proportion of medication released 

at every sample point. The ANN models were 

trained using the leave-one-out cross-validation 

method. Based on the forecast of every point, a 

comprehensive release profile was acquired. The 

similarity factor f2, f, was used to calculate the 

degree of similarity between the dissolution profile 

that the ANN predicted and the real one. High 

scores above 60 indicate that the dissolution 

patterns predicted by the ANN were Comparable 

to the dissolution profiles seen in the actual testing. 

The impact of process and formulation factors, 

including weight gain, curing time, and plasticizer 

concentration, on the in vitro release profile of 

verapamil HCI from multi-particulate beads 

formulated with a new aqueous based pseudo latex 

was studied by Vaithiyalingam et al. using the an 

ANN model (31,32). 

Microspheres, beads and pellets - particulates 

with controlled release: 

Peh et al. created many artificial neural network 

(ANN) models to forecast the dissolution profiles 

of matrix-controlled release theophylline pellets 

made using glyceryl monostearate (GMS) and 

microcrystalline cellulose (MCC). The Neural 

software was used to construct the multi-layered 

perceptron (MLP) neural network, which has four 

inputs and one output. For the purpose of training 

the ANN model, the conjugate gradient and 

simulated annealing techniques were employed. 

The amounts of GMS and MCC in the 

formulations, the sampling period, and the 

variation in release rates between the two previous 

time points were as inputs, and the output, or 

proportion of medication released at each sample 

point, was calculated. To train the ANN models, 
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the leave-one-out cross-validation method was 

employed. Based on the estimation of every time 

point, a comprehensive release profile was 

acquired. Using the similarity factor, f., the degree 

of similarity between the dissolution profile that 

the ANN predicted and the real one was 

ascertained. High values (above 60) in the ANN 

projected dissolution profiles showed that they 

were similar to the dissolution profiles from the 

physical testing (33,34). 

Using artificial neural networks (ANNs), 

Vaithiyalingam et al. modelled the impact of 

process and formulation factors, such as weight 

increase, curing time, and plasticizer 

concentration, on the in vitro release profile of 

verapamil HCI from multi-particulate beads 

formed with model.  

To verify that the trained ANN model could 

predict and generalize, four further formulations 

were created and assessed. The findings indicated 

that the analysis of process and formulation 

parameters may be accomplished with flexibility 

and accuracy using the ANN approach. 

Formulation Trans dermally: 

Takayama et al. designed an artificial neural 

network (ANN) to improve a transdermal 

ketoprofen hydrogel containing O-ethyl menthol 

(MET) as percutaneous absorption on enhancer. 

For optimization, the generalized distance function 

approach was used. The ethanol and MET contents 

were chosen. The essential irritation score, lag 

time, and penetration rate (R). We choose to use 

them as response factors. The ANN model was 

trained using a collection of data that included 

response variables and causative components. The 

gel composition was optimized by calculating the 

best values of each response variable. After that, 

the ideal Formulation was created and assessed. 

The observed outcomes for each of the optimal 

formulation's answers matched each other rather 

well (35). 

 

ANNs Limitations: 

The mechanical nature of the link seen between the 

variables cannot be explained by ANN models. A 

formulator may require a large amount of training 

data and computer time in order to produce a 

trustworthy and trained ANN model. The first 

stages of work, such designing experiments and 

gathering data, could take longer than the 

conventional method employed by skilled 

formulation scientists (36). Furthermore, it's 

critical for formulators to understand that no one 

piece of software or modelling technique is 

capable of solving every issue. 

CONCLUSION:  

Two different methods can be used to create and 

produce controlled die compositions. 

Understanding the impact of the formulation and 

process parameters is one strategy. effectiveness 

of the formulations with controlled release. The 

alternative strategy is to create the formulation 

using ANN and traditional modelling techniques, 

such statistics. The first method helps a formulator 

comprehend how process parameters and 

formulation ingredients impact controlled release 

medication delivery systems. But in the end, this 

method takes longer for a formulator to design and 

create an ideal controlled release medication 

delivery system. However, the second method 

simplifies the formulation optimization process by 

utilizing suitable conventional and artificial neural 

network models to optimize a controlled release 

drug delivery system. Furthermore, this 

methodology may also be utilized for the basic 

research about the impact of formulation and 

process factors on the delivery system. 
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