

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Centella Asiatica In the Modern Therapeutic Landscape

Jyoti Bhagat, Ajay Bhagwat, Pranav Waghmode, Pratiksha Temkar, Sahil Gunjal*, Akanksha Walunj, Pranjal Shinde, Ashlesha Nikam, Sarita Kawad

Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India, 412410.

ARTICLE INFO

Published: 18 Oct 2025

Keywords:

Centella asiatica; Gotu kola;

Asiaticoside;

Madecassoside;

Phytomedicine;

Neuroprotection; Wound

healing; Nanotechnology; Herbal therapeutics; Modern

pharmacology;

Triterpenoids

DOI:

10.5281/zenodo.17384310

ABSTRACT

A traditional medicinal plant in Ayurveda and Traditional Chinese Medicine, Centella asiatica, often known as Gotu kola, has made a comeback as a significant phytotherapeutic agent in contemporary pharmacology. Numerous biological activities, such as neuroprotective, wound-healing, antioxidant, anti-inflammatory, antidiabetic, and cardioprotective properties, are supported by its rich composition of triterpenoids, especially asiaticoside, madecassoside, and Asiatic acid. Its capacity to alter several molecular pathways, including NF-κB, COX-2, and MAPK, has been demonstrated in recent studies to support tissue regeneration and cellular defence. C. asiatica has been successfully added to innovative drug delivery systems like liposomes, Nano emulsions, phytosomes, and hydrogels to improve bioavailability and targeted efficacy thanks to developments in nanotechnology and formulation science. Furthermore, both in vitro and clinical studies are being conducted to investigate its potential use in metabolic syndromes, neurological diseases, and dermatology. Despite encouraging results, issues with large-scale clinical validation, standardisation, and dosage optimization still exist. With a focus on its phytochemical variety, pharmacological mechanisms, novel formulations, clinical potential, and future prospects in evidencebased Phytomedicine, this study critically analyses Centella asiatica's changing significance in the contemporary therapeutic environment.

INTRODUCTION

Herbal remedies have gained popularity all over the world in recent decades as possible therapeutic substitutes for synthetic drugs. *Centella asiatica* (L.) Urban, sometimes referred to as Indian pennywort or Gotu kola, is one of the many medicinal plants that has drawn a lot of scientific and medical interest because of its advantageous safety profile and wide range of pharmacological effects. *C. asiatica* has evolved from traditional folklore into evidence-based contemporary Phytotherapy, after being traditionally regarded in Ayurvedic, Chinese, and Indonesian medical

*Corresponding Author: Sahil Gunjal

Address: Samarth College of Pharmacy, Belhe, Pune, Maharashtra, India, 412410.

Email : sahilgunjal03@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

systems for fostering longevity, improving memory, and mending wounds. It is a viable option for contemporary medication development and integrative medicine due to its exceptional versatility in a variety of pharmacological scenarios¹⁻².

The perennial creeping plant Centella asiatica is a member of the Apiaceae (Umbelliferae) family. The plant, which is known for its distinctive fanshaped leaves and tiny white to pinkish blooms, grows well in tropical and subtropical areas of Asia, such as China, Indonesia, India, and Sri Lanka. The rich phytochemical content of C. asiatica, especially the triterpenoid saponins (asiaticoside, madecassoside, Asiatic acid, and madecassic acid), flavonoids, tannins, alkaloids, phytosterols, and volatile oils, is thought to be responsible for its medicinal potential. The herb's pharmacological qualities, including neuroprotection, wound healing, antiinflammatory, antidiabetic, antioxidant, hepatoprotective, and anti-anxiety effects, are all influenced by these bioactive chemicals used together³⁻⁴. Centella asiatica has become wellknown as a natural neurotherapeutic and dermatological agent in the current therapeutic environment. Because of its capacity to promote neurite outgrowth, lower oxidative stress, and alter neurotransmitter levels, it has been shown in several studies to hold promise in the treatment of neurodegenerative illnesses including Parkinson's and Alzheimer's. With evidence of increased collagen synthesis, angiogenesis, epithelialization, its application in dermatology and wound healing has also grown. As a result, C. asiatica extracts are now essential components of dermatological cosmeceutical several and compositions meant to increase skin suppleness, lessen scarring, and postpone ageing⁵⁻⁶. The molecular mechanisms of action of the herb are closely related to its pharmacological activities.

According to studies, C. asiatica and its triterpenoids have a major impact on cellular signalling pathways such PI3K/Akt, COX-2, MAPK, and NF-κB, which in turn affects tissue inflammation, regeneration, and oxidative balance. Furthermore, it is known that asiaticoside and madecassoside promote collagen type I production and fibroblast proliferation, both of which are critical for tissue regeneration and repair. Its therapeutic value in both acute and chronic disorders involving oxidative inflammatory stress is highlighted by its mechanistic plasticity⁷⁻⁸. Despite its potential for therapeutic use, Centella asiatica's metabolism, limited bioavailability, and poor water solubility greatly limit the systemic absorption of its active ingredients pharmaceutical applications. Modern formulation technologies, such as solid lipid nanoparticles, liposomes, phytosomes, Nano emulsions, and polymeric hydrogels, are being investigated to get around these obstacles. The pharmacodynamic potential of C. asiatica drugs is maximised by these innovative drug delivery methods, which improve solubility, stability, and targeted administration. The medicinal potential of this ancient plant is being redefined by the fusion of contemporary nanotechnological innovation and traditional herbal expertise⁹⁻¹⁰. Additionally, the adaptogenic and nootropic qualities of C. asiatica are being studied, especially in relation to enhancing cognitive function, lowering stress levels, and alleviating anxiety disorders. According to recent clinical research, those who take standardised *C. asiatica* extract supplements report advantages in mood control, mental clarity, and memory recall. Its incorporation into modern plans for mental health treatment and neuroprotection is supported by this research¹¹⁻¹². Apart from its neurological and dermatological uses, Centella asiatica also has anti-diabetic, cardioprotective, and anti-cancer qualities. These

are mediated via normalising lipid profiles, inhibiting the growth of tumour cells, and modifying glucose metabolism. In contemporary clinical research, *C. asiatica* is positioned as a multi-target phytotherapeutic agent due to its wide therapeutic range¹³.

Phytochemistry:

Triterpenoid saponins, namely asiaticoside, madecassoside, and their aglycone, Asiatic acid and madecassic acid, are abundant in Centella asiatica and are in charge of the majority of its pharmacological effects. Flavonoids, tannins, polyphenols, sterols, volatile oils, and amino acids are also present in the plant. These substances support its neuroprotective, anti-inflammatory, and antioxidant properties. Techniques such as LC-MS and high-performance liquid chromatography (HPLC) have verified their existence in standardised extracts. Their concentration is influenced by seasonal and environmental factors, so meticulous quality control is required. The wide range of therapeutic benefits of C. asiatica is supported by the synergistic action of various phytoconstituents, which also facilitates their incorporation into contemporary phytopharmaceuticals formulations¹⁴⁻¹⁵.

Fig.1: Leaves of Centella asiatica

Pharmacological Activities:

a wide range of asiatica has Centella pharmacological characteristics, such as antiinflammatory, neuroprotective, hepatoprotective, wound-healing, antidiabetic, and anti-anxiety effects. Asiaticoside and madecassoside promote tissue regeneration by inducing collagen production, angiogenesis, and fibroblast proliferation. Neurotransmitter regulation and oxidative stress reduction are the sources of the plant's neuroprotective benefits. It protects hepatic organs while lowering blood glucose and cholesterol levels in metabolic diseases. It has antiaging and skin healing properties because of its antioxidant activity, which fights reactive oxygen species. These diverse actions support *C. asiatica's* status as a flexible medicinal substance with the ability to prevent and treat a variety of disease conditions¹⁶⁻¹⁷.

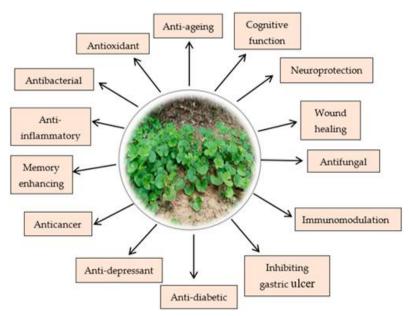


Fig.2: Pharmacological activities of C. asiatica's

Mechanisms of Action:

Centella asiatica has a wide range of pharmacological characteristics, such as antiinflammatory, neuroprotective, hepatoprotective, wound-healing, antidiabetic, and anti-anxiety effects. Asiaticoside and madecassoside promote tissue regeneration by inducing collagen production, angiogenesis, and fibroblast proliferation. Neurotransmitter regulation and oxidative stress reduction are the sources of the plant's neuroprotective benefits. It protects hepatic organs while lowering blood glucose and cholesterol levels in metabolic diseases. It has antiaging and skin healing properties because of its antioxidant activity, which fights reactive oxygen species. These diverse actions support *C. asiatica's* status as a flexible medicinal substance with the ability to prevent and treat a variety of disease conditions¹⁸⁻¹⁹.

ADVANTAGES:

> Centella asiatica, commonly known as Gotu Kola, holds a prominent place in the modern

therapeutic landscape due to its wide range of pharmacological benefits.

- ➤ It exhibits potent antioxidant, antiinflammatory, wound-healing, neuroprotective, and anti-anxiety properties²⁰-²¹.
- The bioactive compounds, mainly asiaticoside, madecassoside, and Asiatic acid, contribute to collagen synthesis and skin regeneration, making it valuable in dermatology and cosmetic formulations²²⁻²³.
- ➤ Additionally, Centella asiatica enhances cognitive function, memory, and mental clarity, supporting neurological health²⁴⁻²⁵.
- ➤ Its adaptogenic and circulatory benefits aid in managing stress, venous insufficiency, and diabetic complications. Overall, it bridges traditional medicine with evidence-based modern therapeutics²⁶⁻²⁷.

Available Marketed formulations –

Table.1: Available Marketed formulations

Sr. No.	Product Name	Type / Form	Image Reference Name
1	SKIN1004 Madagascar Centella	Spot cream	image reference traine
	Spot Cream	Spot Grount	CENTRELLA MOSTROS GREAM ************************************
2	Tatha Firming Cream With Peptides & Centella Asiatic Plant Stem Cells	Firming / anti-aging cream	GREAM Eatha
3	ONE THING Centella Asiatica Extract 95%	Extract / toner-type / base	ONE THING ONE THING ROW- Set or CENTELLA ASIATICA CATTRACT
4	Mystiqare Centella Asiatica (CICA) Overnight Repair Gel	Gel-cream moisturizer	OVERNIGHT REPAIR GEL
5	KOA Herbs Night Restore Cream	Night cream	NIGHT Steature Total Total Total Total Total Al Strategy Doss, or 1 or 1001
6	Serene oil free moisturiser Face	Face cream (for	
	Cream	sensitive skin)	

Novel Formulations and Drug Delivery Systems:

- Researchers have created sophisticated drug delivery methods, including hydrogels, liposomes, phytosomes, Nano emulsions, and polymeric nanoparticles, to get around Centella asiatica's low water solubility and restricted bioavailability²⁸.
- These technologies improve the target-specific distribution, regulated release, and permeability of active substances such as madecassoside and asiaticoside. While topical hydrogels and nanogels offer continuous skin administration for wound healing and antiaging benefits, phytosomal formulations enhance oral absorption²⁹.
- For improved skin regeneration, recent research also investigates transdermal patches and nanofibers filled with *C. asiatica*. These developments bridge the gap between cuttingedge pharmaceutical technology and traditional herbal uses, greatly improving therapeutic effects³⁰⁻³².

Clinical Studies and Therapeutic Efficacy:

- Centella asiatica has shown encouraging therapeutic results in clinical studies for a variety of illnesses.
- Oral extracts enhance cognitive function and lessen anxiety symptoms, while topical

- preparations hasten wound healing and minimise scarring. Patients with chronic venous insufficiency have shown improved venous tone and microcirculation in controlled studies.
- Creams with madecassoside are used in dermatology to increase the moisture and suppleness of the skin. Furthermore, C. asiatica has neuroprotective advantages in diabetic neuropathy and moderate cognitive impairment.
- Larger, standardised clinical trials are required to determine the precise dose, formulation, and long-term treatment effects, even though the majority of research confirm its safety and effectiveness³³⁻³⁵.

Recent Trends and Innovations:

- Integrating *Centella asiatica* into functional foods, cosmeceuticals, and nanomedicine is a recent trend. Green synthesis developments have made it possible to create environmentally friendly nanoparticles with increased bioactivity by employing *C. asiatica* extracts.
- Triterpenoids' biosynthesis routes are being uncovered by genomic and metabolomic research in order to produce them biotechnologically.

- Targeted delivery and tissue regeneration have been enhanced by novel formulations such 3D biopolymer scaffolds, Nano-hydrogels, and microneedle patches.
- The herb is being used in cosmetics to make skin repair and anti-aging serums. These developments signal a move in the current therapeutic and economic environments towards technology-driven, evidence-based uses of *C. asiatica*³⁶⁻³⁷.

Challenges:

- Despite its potential for medicinal use, *Centella asiatica* has issues with stability, standardisation, and clinical validation. Batch-to-batch uniformity is hampered by seasonal and regional variations in phytochemical composition³⁸⁻⁴⁰.
- Systemic effectiveness is limited by fast metabolism and limited oral absorption. Dose optimization is made more difficult by inadequate pharmacokinetic data and a lack of well identified biomarkers. Moreover, regulatory approval is restricted by differences in extraction techniques and a dearth of extensive, randomized clinical studies.
- Obstacles also arise from conventional knowledge's intellectual property concerns.
 For *C. asiatica* to be accepted as a pharmaceutical worldwide, these issues must be resolved by sophisticated analytical methods, formulations based on nanotechnology, and reliable clinical testing⁴¹-

CONCLUSION:

One outstanding illustration of how conventional herbal medicine and contemporary science may coexist to produce therapeutically treatments is Centella asiatica. Its bioactive triterpenoids, Asiatic acid, madecassoside, and asiaticoside, have a variety of pharmacological such anti-inflammatory, activities. as neuroprotective, wound-healing, and antioxidant properties. Developments in formulation technologies, including hydrogels, liposomes, and nanoparticles, have greatly increased therapeutic potential and bioavailability. Clinical research supports its effectiveness and safety in vascular. neurological, treating and dermatological conditions. But there are still issues with large-scale clinical validation, dose optimization, and standardisation. The creation of internationally standardised formulations. sustainable cultivation, and the clarification of molecular mechanisms should be the main areas of future study. Centella asiatica continues to develop as a promising natural agent in the contemporary therapeutic environment by fusing cutting-edge pharmaceutical technology with traditional knowledge, providing enormous potential for evidence-based Phytomedicine and customised healthcare applications.

REFERENCES

- 1. Aguiar, S., & Borowski, T. (2013). Neuropharmacological review of the nootropic herb Centella asiatica (Gotu kola). Phytotherapy Research, 27(7), 1072–1077.
- 2. Alqahtani, A., et al. (2015). Chemical composition and antioxidant activity of Centella asiatica. Pharmacognosy Journal, 7(5), 298–303.
- 3. Bylka, W., Znajdek-Awiżeń, P., Studzińska-Sroka, E., & Dańczak-Pazdrowska, A. (2013). Centella asiatica in dermatology: An overview. Pharmacological Reports, 65(5), 1059–1066.
- 4. Brinkhaus, B., et al. (2000). Chemical, pharmacological and clinical profile of

- Centella asiatica (L.) Urban. Phytomedicine, 7(5), 427–448.
- 5. Chatterjee, T., & Chakraborty, S. (2018). Phytochemical and pharmacological evaluation of Centella asiatica. Asian Pacific Journal of Tropical Medicine, 11(6), 360–368.
- 6. Chivapat, S., et al. (2011). Wound healing activity of Centella asiatica extract in rats. Phytotherapy Research, 25(11), 1721–1727.
- 7. Dash, B., & Banerjee, R. (2018). Centella asiatica: A potential herb for anti-aging and skin rejuvenation. Journal of Ethnopharmacology, 222, 111–124.
- 8. Devkota, S., et al. (2022). Emerging applications of Centella asiatica in nanomedicine. Frontiers in Pharmacology, 13, 889342.
- 9. Dhanasekaran, M., & Rajesh, N. (2019). Neuroprotective effect of Centella asiatica on oxidative stress in brain. Neurochemical Research, 44(7), 1672–1680.
- 10. Gohil, K. J., Patel, J. A., & Gajjar, A. K. (2010). Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian Journal of Pharmaceutical Sciences, 72(5), 546–556.
- 11. Gupta, S., et al. (2020). Antioxidant and antiinflammatory activities of triterpenoids from Centella asiatica. Molecules, 25(22), 5092.
- 12. Hashim, P. (2011). The effect of Centella asiatica extract on skin aging. Cosmetics & Toiletries Science Applied, 126(8), 1–7.
- 13. Hussin, M., et al. (2019). Wound healing properties of Centella asiatica-loaded hydrogel. Biomedical Research International, 2019, 9142806.
- 14. James, J. T., & Dubery, I. A. (2009). Pentacyclic triterpenoids from Centella asiatica: Biochemical and pharmacological significance. Journal of Ethnopharmacology, 121(2), 300–308.

- 15. Jamil, S. S., Nizami, Q., & Salam, M. (2007). Centella asiatica (Linn.) Urban: A review. Natural Product Radiance, 6(2), 158–170.
- 16. Jayashree, S., et al. (2021). Nanoformulations of Centella asiatica: A novel approach for enhanced wound healing. International Journal of Nanomedicine, 16, 5203–5215.
- 17. Joshi, R., et al. (2023). Role of Centella asiatica in neurodegenerative disorders: A systematic review. Frontiers in Neuroscience, 17, 1112469.
- 18. Khatun, M., et al. (2020). Centella asiatica as a source of neuroprotective agents: A review. Journal of Traditional and Complementary Medicine, 10(5), 476–485.
- 19. Kim, M. H., et al. (2014). Anti-inflammatory activity of madecassoside in LPS-stimulated macrophages. European Journal of Pharmacology, 740, 431–438.
- 20. Arribas-López, E., et al. (2022). A systematic review of the effect of Centella asiatica on wound healing. International Journal of Environmental Research and Public Health, 19(6), 3266.
- 21. Krzyżostan, M., et al. (2024). Controlled release of madecassoside and asiaticoside in topical emulsions and gels. Molecules, 29(23), 5583.
- 22. Ebau, F., et al. (2022). Centella asiatica extract–SiO₂ nanocomposite: Preparation and characterization. Open Access Journal.
- 23. Bansal, K., Bhati, H., et al. (2024). Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: An evidence-based review. Pharmacological Research Modern Chinese Medicine, 10, 100403.
- 24. Seo, J., et al. (2024). Giant Centella asiatica, a novel cultivar rich in madecassoside and asiaticoside, suppresses α-MSH-induced melanogenesis via MC1R binding.

- International Journal of Molecular Medicine, 55(1), 13.
- 25. Retnaningtyas, E., et al. (2024). Centella asiatica transfersomes combined with bergamot essential oil gel prevent UVB-induced wrinkle formation. Journal of Cosmetic Dermatology / Pharmaceutics. (Advance online publication).
- 26. Witkowska, K., et al. (2024). Topical application of Centella asiatica in wound healing: A clinical evidence review. Public Medical Central Review (PMC).
- 27. Xiao, F., et al. (2025). Centella asiatica enhances diabetic wound healing via AKT/MAPK/NF-κB modulation. Frontiers in Pharmacology.
- 28. Rosyidi, R. M., et al. (2024). Centella asiatica in traumatic brain injury: Review of animal studies. Journal of Neurotrauma Research
- 29. Ansari, S., et al. (2025). Neuroprotective effects of Centella asiatica against LPS-induced neuroinflammation and protein aggregation. Brain Research / Neuroscience.
- 30. Paul, R., & Saha, D. (2017). Role of Centella asiatica in wound healing: Mechanistic insights. Phytomedicine, 25, 50–59.
- 31. Patwardhan, B., & Mashelkar, R. A. (2009). Traditional medicine-inspired approaches to drug discovery. Drug Discovery Today, 14(15–16), 804–811.
- 32. Qureshi, M., et al. (2015). Pharmacognostical and phytochemical study of Centella asiatica. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(4), 320–326.
- 33. Raina, R., et al. (2022). Role of Centella asiatica in diabetes and metabolic disorders. Phytotherapy Research, 36(1), 57–71.
- 34. Rao, R. V., et al. (2017). Neuroprotective and cognitive effects of Centella asiatica. Frontiers in Aging Neuroscience, 9, 252.

- 35. Roy, A., et al. (2021). Antioxidant potential of Centella asiatica in oxidative stress-related disorders. Free Radical Biology and Medicine, 171, 120–131.
- 36. Saini, N., et al. (2021). Advances in herbal nanocarriers: Applications of Centella asiatica. Current Nanoscience, 17(5), 750–759.
- 37. Sharma, P., et al. (2020). Phytochemical variability in Centella asiatica and its correlation with biological activities. Industrial Crops and Products, 150, 112412.
- 38. Singh, A., et al. (2019). Standardization and HPLC analysis of Centella asiatica extract. Journal of Applied Pharmaceutical Science, 9(2), 36–42.
- 39. Singh, R. H., et al. (2015). Traditional use of Centella asiatica and its modern validation. Ayu, 36(2), 121–127.
- 40. Sridevi, G., et al. (2021). Green synthesis of nanoparticles using Centella asiatica for biomedical applications. Journal of Nanobiotechnology, 19(1), 68.
- 41. Badhe, N., Maniyar, S., Kadale, P., Kale, R., Bhagwat, A. and Doke, R.R., Advancements in nanotechnology for glaucoma detection and treatment: A focus on biosensors, IOP monitoring, and nano-drug delivery systems.
- 42. Gandhi, B., Bhagwat, A., Matkar, S., Kuchik, A., Wale, T., Kokane, O. and Rode, N., 2025. Formulation and Evaluation of Bilayer Tablets of Atenolol and Amlodipine for the Treatment of Hypertension. Research Journal of Pharmacy and Technology, 18(5), pp.2037-2042.
- 43. Bhagwat A, Lokhande A, Pingat M, Doke R, Ghule S. Strategies and Mechanisms for Enhancing Drug Bioavailability through Co-Amorphous Mixtures-A Comprehensive Review. Research Journal of Pharmacy and Technology. 2025;18(1):409-14.
- 44. Bhagwat A, Tambe P, Vare P, More S, Nagare S, Shinde A, Doke R. Advances in

- neurotransmitter detection and modulation: Implications for neurological disorders. IP Int J Comprehensive Adv Pharmacol. 2024;9(4):236-47.
- 45. BHAGWAT, Ajay, et al. Development of Nanoparticles for the Novel Anticancer Therapeutic Agents for Acute Myeloid Leukemia. Int J Pharm Sci Nanotechnol, 2023, 16.4: 6894-906.

HOW TO CITE: Jyoti Bhagat, Ajay Bhagwat, Pranav Waghmode, Pratiksha Temkar, Sahil Gunjal*, Akanksha Walunj, Pranjal Shinde, Ashlesha Nikam, Sarita Kawad, Centella Asiatica In the Modern Therapeutic Landscape, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 10, 1973-1982 https://doi.org/10.5281/zenodo.17384310