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BACKGRAOUND:   he integration of artificial intelligence (AI) into natural product 

research represents a rapidly evolving domain with the capacity to transform drug 

discovery. Recognizing AI's promising role in advancing the investigation and 

development of natural compounds, this study seeks to examine how AI technologies 

are being applied to enhance research and innovation in this field. Conventional trial-

and-error methods in herbal drug research are increasingly being replaced by data-

driven strategies through the integration of AR Artificial intelligence has revolutionized 

phytochemical research by streamlining the analysis of complex 'omics' datasets and 

accelerating the identification of new metabolites, structural characterization, and 

comprehensive metabolite profiling in plantstificial intelligence. METHODE   :    "This 

study conducted an extensive analysis of how artificial intelligence is utilized in the 

research and development of natural products." RESULT   :  AI has significantly 

transformed the process of discovering and developing natural products. By 

streamlining the analysis of vast datasets, AI systems can pinpoint promising new 

compounds with greater speed and precision compared to conventional techniques.  
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INTRODUCTION 

Natural compounds sourced from plants, 

microorganisms, and marine life have played a 

foundational role in drug development throughout 

history. These substances have been instrumental 

in creating vital medications such as antibiotics, 

cancer therapies, and drugs that suppress immune 

responses. Their wide-ranging chemical structures 

and distinctive biological effects make them 

essential tools in tackling diverse health issues (1,2) 

Penicillin, sourced from the Penicillium mold, 

transformed how bacterial infections are treated, 

while paclitaxel, obtained from the Pacific yew 

tree, represented a significant advancement in 

cancer treatment. (3) 

Phytochemicals, which are naturally occurring 

compounds in plants, exhibit a wide range of 

https://www.ijpsjournal.com/
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therapeutic effects. Their use in traditional 

medicine over centuries underscores their value 

and suggests strong potential for development into 

innovative pharmaceutical agents (4) Modern 

scientific methods, particularly structural and 

computational biology, provide remarkable new 

avenues for exploring natural products. Through 

structural biology, researchers have uncovered the 

three-dimensional configurations of 

phytochemicals, which are instrumental in 

advancing studies using molecular docking and 

virtual screening to identify novel compounds with 

pharmacological potential. (5) Cancer remains one 

of the leading causes of death worldwide, with 

around 19.3 million new cases and nearly 10 

million fatalities reported in 2020. Although 

advancements have been made in treatments such 

as chemotherapy, radiotherapy, and 

immunotherapy, their overall effectiveness is still 

hindered. This is largely due to challenges like 

multidrug resistance (MDR), widespread toxicity, 

and poor bioavailability of many anticancer 

medications. (6) 

2.TRADITIONAL PHYTOCHEMICAL 

SCREENING APPROCHES: 

"Artificially created compounds have played a 

leading role in medicinal chemistry. (7) 

"Nevertheless, due to their diverse bioactivities, 

phytochemicals are increasingly considered 

promising alternatives for new drug development 
(8) 

Phytochemicals such as alkaloids, terpenes, and 

flavonoids serve as promising sources for lead 

compound development. (9) Their significance in 

drug discovery is underscored by their vast 

chemical diversity, wide-ranging biological 

activities, and longstanding use in traditional 

medicine. (10) Consequently, screening 

phytochemicals plays a crucial role in identifying 

potential drug candidates. 

Modern drug discovery employs advanced 

techniques like high-throughput screening, 

structure-based drug design, and computational 

modeling(11) Phytochemicals can be chemically 

modified to improve therapeutic properties, 

making them valuable assets for creating 

personalized treatment strategies. While synthetic 

compounds have traditionally dominated drug 

development, natural products are increasingly 

being investigated. However, discovering new 

drugs from natural sources remains challenging 

due to their intricate structures and the 

complexities involved in their extraction and 

identification. (12) 

2.1 Traditional vs. Modern Approaches in Drug 

Discovery     

Pharmacological research has long been 

committed to uncovering new compounds that can 

effectively treat a wide range of diseases. 

Historically, this pursuit has involved methods 

such as rational drug design—where synthetic 

molecules are crafted based on existing drugs—

and ethnopharmacology, which draws on 

traditional remedies used by indigenous cultures. 

Another widely used approach involves 

harnessing natural substances derived from plants 

and animals (13). While these strategies have 

yielded beneficial outcomes in some cases, they 

often require extensive time and effort to produce 

results. 

However, with the rise of structural and 

computational biology, the exploration of 

phytochemicals for drug development has reached 

unprecedented potential. These advanced 

technologies offer a level of precision and insight 

into biological mechanisms that surpasses 

conventional lab-based experiments. Such 

innovations are proving invaluable in the quest to 

develop new therapies for the many health 

challenges facing humanity. (14) Nonetheless, the 
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process of identifying, designing, and validating 

effective drug candidates remains a complex and 

demanding endeavor. 

2.2Traditional Drug Discovery and the Role of 

Serendipity                                      

Unplanned discoveries have significantly 

influenced the development of life-saving drugs. 

One of the most iconic examples is Alexander 

Fleming’s accidental identification of penicillin in 

1928, when a bacterial culture became 

unintentionally contaminated. (15) 

Another notable case is the development of 

ivermectin, an antiparasitic medication. This 

breakthrough emerged from a fortuitous 

collaboration between Satoshi Ōmura, who 

isolated the bacterium Streptomyces avermitilis 

from Japanese soil, and William Campbell, who 

recognized its potential to combat parasitic 

infections. Initially intended for veterinary use, 

ivermectin was later approved to treat human 

diseases such as onchocerciasis and lymphatic 

filariasis. This discovery highlights the importance 

of interdisciplinary cooperation and the 

unexpected nature of scientific progress. Ōmura 

and Campbell were honored with the Nobel Prize 

in Physiology or Medicine in 2015 for their 

contributions. (16) 

In another instance of serendipity, researchers in 

1957 reported the antidepressant effects of 

iproniazid, a monoamine oxidase inhibitor, at an 

American Psychiatric Association meeting in 

Syracuse, New York (17). Originally synthesized in 

1951 by Herbert Fox at Roche Laboratories for 

tuberculosis treatment, iproniazid unexpectedly 

induced euphoric behavior in some patients, as 

observed by Orcnstein, Robitzek, and Sclikoff in 

1952. This surprising effect, later validated by 

Zeller, led to its recognition as one of the earliest 

antidepressants. (18) 

2.3 Contemporary Approaches to Drug 

Discovery 

The convergence of molecular biology, 

biochemistry, and structural biology has 

revolutionized the field of drug development. (19) 

One of the most advanced strategies is rational 

drug design, which relies on a deep understanding 

of disease mechanisms and the structural and 

functional characteristics of target molecules. This 

detailed insight allows scientists to create highly 

specific and effective therapeutic agents aimed at 

precise molecular interactions. However, this 

process demands thorough investigation into both 

the disease and the target molecule, making it one 

of the most groundbreaking techniques in modern 

medicine. (20) 

High-throughput screening (HTS) has become a 

cornerstone in pharmaceutical research, enabling 

the rapid assessment of vast compound libraries 

for biological activity against defined targets or 

disease models. These libraries may include 

synthetic chemicals, natural extracts, genome-

wide gene knockouts, or RNA interference tools. 

Despite its speed and efficiency, HTS faces 

challenges such as limited availability of suitable 

assay materials and potential inaccuracies in 

results. (21,22) 

To complement these methods, computational 

techniques like molecular modeling and docking 

are employed to predict how candidate molecules 

will interact with their targets. These tools also 

help evaluate the chemical properties of 

compounds, allowing researchers to prioritize 

them for further testing ( 23,24) The effectiveness of 

computational approaches depends largely on the 

quality and relevance of the input data, as well as 

the accuracy and robustness of the algorithms 

used. (25,26) 
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Phytochemical identification 

Thin-layer chromatography, High-Performance Liquid Chromatography (HPLC), Gas 

Chromatography (GC), Mass Spectrometry (MS), Nuclear Magnetic Resonance (NMR) 

Spectroscopy, Ultra-violet visible (UV-Vis) Spectroscopy, Infrared (IR) spectroscopy, 

bioinformatics 

Target prediction/identification 

(Genomics, transcriptomics, proteomics, chemical genetics, phenotypic screening, 

bioinformatics and computational methods, structural biology, CRISPR, known 

phytochemicals from specific plants) 

Target confirmation 

(Gene manipulation, RNA interference-RNAi, analysis, use of modulating compounds, 

patient derived cells and organoids, High Throughput Screening (HTS), pharmacological 

validation, in silico validation, protein interaction analysis-reference proteins can be 

obtained from the PDB) 

Lead identification 

(High-throughput screening (HTS), fragment-based lead discovery (FBLD), structure-based 

drug design (SBDD), phenotypic screening, virtual screening, natural product screening 

biomimetic synthesis, combinational chemistry 

Lead optimisation 

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR) 

modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and 

pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry) 

Lead optimisation 

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR) 

modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and 

pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry) 

Preclinical testing 

(in vitro studies and in vivo studies on appropriate disease models, pharmacokinetic studies, 

pharmacodynamic studies, safety pharmacology, genotoxicity, and carcinogenicity studies, 

reproductive toxicology, immunotoxicology 

Lead optimisation. 

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR) 

modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and 

pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry) 

Preclinical testing 

(In vitro studies and in vivo studies on appropriate disease models, pharmacokinetic studies, 

pharmacodynamic studies, safety pharmacology, genotoxicity, and carcinogenicity studies, 

reproductive toxicology, immunotoxicology 

Clinical trials 

Phase I, II, III and IV trials 

Approval 

(Submission of Marketing Authorisation Application, review by regulatory agencies, 

inspections, advisory committee review, decision 

2.4 Fig 1:  1 sequential stages phytochemical 

drug discovery and development  

 3.Ovarvieww phytochemical screening 

approaches     
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Computational phytochemistry integrates 

advanced mathematical and computational tools to 

enhance phytochemical research, from 

biosynthetic pathways to molecular modeling. 

Techniques like Density Functional Theory (DFT) 

play a pivotal role in predicting molecular 

properties and electronic structures. (27) 

Here's a deeper look into the scope and 

significance of computational phytochemistry 

3.1   What Is Computational Phytochemistry? 

Computational phytochemistry refers to the use of 

computational, mathematical, and statistical 

methods to analyze, predict, and simulate 

phytochemical phenomena. It bridges theoretical 

models with experimental data, enabling 

researchers to explore plant-derived compounds 

more efficiently and accurately. 

3.2   Key Applications 

• Biosynthetic Pathway Modeling: Simulates 

how plants produce secondary metabolites, 

helping identify key enzymes and regulatory 

steps. 

• High-Throughput Screening: Uses 

algorithms to rapidly evaluate thousands of 

phytochemicals for potential bioactivity or 

therapeutic relevance. 

• Structure Prediction & Optimization: 

Employs quantum chemistry tools like DFT to 

determine molecular geometry, electronic 

distribution, and reactivity. (28) 

3.3  Role of DFT in Phytochemical Research 

Density Functional Theory (DFT) has long been a 

cornerstone in computational chemistry, 

especially in phytochemical studies where 

understanding molecular behavior is crucial. 

Before the rise of AI, DFT provided a robust 

framework for: 

• Predicting molecular geometry and electronic 

structure 

• Simulating vibrational frequencies and 

ionization energies 

• Analysing magnetic and electric properties of 

bioactive compounds 

3.4  Ullah et al. (2014) Study Highlights 

In their 2014 study, Ullah and colleagues 

conducted a comparative theoretical and 

experimental analysis of Pistagremic acid, a 

bioactive compound. Key aspects of their work 

include: 

• DFT simulations at the B3LYP/6-31G(d,p) 

level to optimize geometric and electronic 

parameters. 

• Validation against X-ray crystallographic 

data, showing strong agreement with minor 

deviations in bond lengths (0.01–0.15 Å) and 

angles (0.19–1.30°). 

• Spectroscopic predictions that aligned well 

with experimental results, reinforcing the 

reliability of DFT in modeling 

phytochemicals. (29) 

3.5 Why This Matters 

This study exemplifies how DFT bridges 

theoretical chemistry and experimental validation, 

offering insights into molecular behavior that are 

essential for drug discovery, natural product 

analysis, and bioactivity profiling. 

Would you like help paraphrasing or expanding 

this into a formal academic paragraph or 

integrating it into a larger literature review?  
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Dynamic techniques can be employed to elucidate 

the molecular structure of phytochemicals 

dissolved in organic solvents, offering 

complementary insights to those obtained from 

NMR spectroscopy. In a theoretical study, the ̂ 1H 

NMR spectrum of 5,4′-Dihydroxy-7,5′,3′-

trimethoxyisoflavone—isolated from Ouratea 

ferruginea tea—was analyzed using the hybrid 

B3LYP density functional theory (DFT) method 

(Hernandes et al., 2020). (30) 

4. Computer-Aided Structure Elucidation 

(CASE) in Phytochemistry 

Computer-assisted methods for predicting and 

determining molecular structures have been in use 

for over five decades, originally developed using 

spectroscopic data. Today, CASE primarily relies 

on one-dimensional (1D) and two-dimensional 

(2D) nuclear magnetic resonance (NMR) data, 

which significantly reduce errors in identifying the 

structures of phytochemicals. 

CASE operates on a set of axioms that link 

molecular fragments to specific spectral features. 

For example, if a molecule contains a certain 

fragment (e.g., AI), its presence can be inferred 

from characteristic spectral regions. However, 

when using 2D-NMR data, a hypothesis based on 

general spectral patterns tends to be more effective 

than rigid axioms. 

The structural backbone of a phytochemical is 

typically derived from key 2D-NMR techniques 

such as COSY and HMBC. Final structure 

elucidation involves assembling: 

• Strict fragments from 1D NMR, 2D COSY, 

and infrared (IR) data 

• Fuzzy fragments from 2D HMBC data 

These fragments are validated against known 

axioms to build a complete molecular structure. 

4.1. CASE Software Tools 

• ACD Structure Elucidator: One of the 

earliest CASE programs, requiring only an 

empirical formula and ^13C chemical shifts 

from HSQC and HMBC data. It generates a list 

of possible structures and a molecular 

connectivity diagram for unusual correlations. 

• Other notable programs include: 

o Bruker CMC-se 

o Mestrelab MNova 

o Nuzillard’s LSD 

These tools enhance the accuracy and efficiency of 

phytochemical structure elucidation (31) 



Mayuri Mohondkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3270-3297| Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 3276 | P a g e  

Fig.  2   Outline of computer-assisted structure elucidation (CASE) of phytochemicals. The data of 

phytochemical col lected from the spectroscopic instruments will be preprocess 

Group assignments were determined using HMBC 

correlations, followed by a comparison with 

predicted ^13C NMR data generated through the 

ACD/Spectrus Processor (Du et al., 2019) (32). 

Another significant computational approach is 

chemometrics, which extracts essential chemical 

insights from experimental data using 

mathematical, statistical, and algorithmic 

techniques. The chemometric workflow typically 

includes experimental design, data preprocessing, 

classification, calibration, knowledge extraction, 

and interpretation (Sarker and Nahar, 2024) (33). 

Notably, chemometrics employs principal 

component analysis (PCA) and hierarchical cluster 

analysis (HCA) to provide both descriptive and 

predictive insights. PCA is an unsupervised 

method used for recognizing patterns in 

multivariate datasets, whereas HCA groups data 

based on similarity measures to derive meaningful 

outcomes (Patras et al., 2011). (34) 

Machine learning-enhanced analytical methods 

are transforming phytochemical (35) research, 

 offering powerful avenues to investigate the 

concealed molecular characteristics of plant-

derived samples. These advanced techniques serve 

as gateways to decode complex phytochemical 

profiles, enabling researchers to identify, classify, 

and predict the bioactivity of natural compounds 

with greater precision and efficiency. 

 4.2   Table 1   :   Representative Tools in 

Current Phytochemical Research (35) 

While the exact contents of Table 1 may vary by 

publication, based on recent literature, it typically 

includes the following categories of tools and 

techniques: 

Tool/Technique Purpose 

Chromatography 

(HPLC, GC) 

Separation and 

quantification of 

phytochemicals 
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Mass Spectrometry 

(MS) 

Molecular weight 

determination and 

structural analysis 

Nuclear Magnetic 

Resonance (NMR) 

Detailed structural 

elucidation of organic 

compounds 

Spectroscopy (UV-Vis, 

IR) 

Detection of functional 

groups and compound 

identification 

Metabolomics 

Platforms 

Comprehensive 

profiling of metabolites 

in plant samples 

AI/ML Algorithms 

Pattern recognition, 

predictive modeling, 

and data integration 

HerbIntel Platform 

AI-powered tool for 

decoding plant-based 

molecular structures 

Omics Data Integration 

Tools 

Combine genomics, 

proteomics, and 

metabolomics for 

holistic analysis 

4.3 Table 2: Plant Databases and Their Applications (36) 

Data base Source Application 

Ensembl plant Ensemble plant Genome annotation 

NCBL taxonomy NCBL Taxonomy  Taxonomy 

5.  Application of Al  phytochemical screening : 

1. Artificial intelligence has revolutionized the 

discovery of herbal medicines by optimizing key 

stages such as target identification, 

deorphanization, metabolome exploration, 

synthesis design, and virtual screening. The 

integration of deep learning (DL) facilitates the 

analysis of biosynthetic gene clusters and 

metabolic pathways. Additionally, techniques like 

pharmacophore modeling, molecular docking, and 

bioactivity fingerprinting enhance the accuracy of 

identifying molecular targets. (37,38) 

2. Through algorithmic prediction of toxicity, 

bioactivity, and pharmacokinetics, artificial 

intelligence reveals hidden patterns within large 

datasets to identify promising bioactive 

compounds. Moreover, AI—especially machine 

learning (ML) and deep learning (DL) 

techniques—facilitates automatic compound 

recognition and comparison with known 

molecules during dereplication. This is achieved 

by leveraging spectroscopic data and 

convolutional neural networks (CNNs). (39) 

3. AI accelerates de novo drug development by 

leveraging in silico screening techniques and 

reinforcement learning to optimize multiple 

aspects of drug efficacy. It also enhances the 

reliability of natural therapies through robust 

quality control frameworks built on machine 

learning pipelines. These include image-based 

authentication using convolutional neural 

networks (CNNs) such as ResNet101 and 

Inception V3, along with real-time detection of 

adulterants. (40) 

4. Meanwhile, the analysis of synergistic effects in 

polyherbal formulations—such as Diabet and 

Dihar, which act as hypoglycaemic agents—is 

greatly facilitated by deep learning models. Tools 

like DeepSynergy, SynergyFinder, and network 

pharmacology approaches enable the prediction of 

safer and more effective herbal combinations." (41) 

5. By enhancing the pharmacokinetic properties of 

promising bioactive compounds such as quercetin, 

kaempferol, and vancomycin, the integration of 

artificial intelligence with natural product research 

is advancing precision medicine—enabling the 

development of personalized, cost-effective 

therapies for a wide range of diseases (42) 
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6. Advancements in computational omics 

technologies have significantly expanded 

opportunities for drug discovery, particularly by 

uncovering diverse natural product sources. At the 

same time, progress in computational drug 

design—especially through artificial intelligence 

methods like machine learning—has enhanced the 

ability to predict biological activity and design 

novel compounds aimed at specific molecular 

target (43) 

7. Artificial intelligence has significantly impacted 

computer-aided drug discovery, with its influence 

growing due to the widespread adoption of 

machine learning—particularly deep learning—

across various scientific fields. This progress is 

further propelled by continual improvements in 

computing technologies, both hardware and 

software. Despite initial apprehensions that AI 

might supplant traditional pharmaceutical 

innovation, medicinal chemistry has ultimately 

gained from its integration into the drug discovery 

process. (44) 

8. Natural compounds derived from fungi, 

bacteria, plants, animals, and other organisms 

serve as an important foundation for modern drug 

discovery. Their rich structural variety and 

biological significance make them excellent 

candidates for initiating new drug development. In 

this context, computational methods play a crucial 

role, either as a preliminary step or as a 

complement to laboratory-based testing (45) 

9. Machine learning has significantly transformed 

the pharmaceutical industry, with both supervised 

and unsupervised techniques being applied across 

various phases of drug development. Clustering 

methods have been instrumental in tasks such as 

segmenting cell-type images, predicting the 

druggability of protein targets, and designing new 

molecules from scratch. Supervised learning 

models, including regression and classification 

algorithms, have helped identify promising 

therapeutic targets for conditions like Huntington's 

disease. Additionally, these models have been 

used to predict biological activity and assess key 

pharmacokinetic and toxicological properties—

namely absorption, distribution, metabolism, 

excretion, and toxicity (ADME/Tox) 

(Vamathevan et al. (46) 

10. Natural product research, a reliable foundation 

for modern small molecule drug discovery, has 

increasingly embraced computational approaches 

powered by artificial intelligence and machine 

learning. In the early 2000s, techniques like 

principal component analysis and self-organizing 

maps were primarily employed to chart the 

chemical landscape of natural products and 

convert organic molecules into digital formats. 

Over the following decade, machine learning-

based binary classifiers emerged to predict the 

biological functions of these compounds. More 

recently, scientists have started leveraging neural 

network architectures to aid in molecular design 

and genome mining. (47) 
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5.1 Fig:3 Compound  prediction and virtual screening QSAR models: 

5.2 AI has revolutionized QSAR modeling, 

transforming it from a classical predictive tool 

into a dynamic, deep learning-powered engine 

for drug discovery. 

Here's a paraphrased version of your sentence with 

added clarity and flow: 

With the advent of artificial intelligence, 

quantitative structure–activity relationship 

(QSAR) modeling—an established technique in 

computer-aided drug design for over six 

decades—has undergone remarkable 

advancements, evolving into a more powerful and 

versatile approach (Tropsha et al., 2024). 

To expand on this idea: 

• Traditional QSAR relied on linear models 

and handcrafted molecular descriptors to 

predict biological activity based on chemical 

structure. 

• Modern AI-enhanced QSAR, often called 

deep QSAR, integrates deep learning, graph 

neural networks, and large molecular datasets 

to uncover complex, non-linear relationships 

between structure and activity. 

• These innovations have led to greater 

predictive accuracy, broader applicability 

across chemical space, and faster screening 

of drug candidates, significantly accelerating 

the drug discovery pipeline (49) 

5.3   Quantitative Structure–Activity 

Relationship (QSAR) modelling 

is a foundational technique in cheminformatics 

that explores how molecular characteristics 

influence chemical, biological, and toxicological 

behaviors. Traditionally applied in lead 

optimization during drug discovery, QSAR has 

evolved to support broader applications, including 

virtual screening for hit and lead identification, 



Mayuri Mohondkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3270-3297| Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 3280 | P a g e  

prediction of drug-like properties, and chemical 

risk assessment. These advancements have been 

driven by the development of more robust models, 

improved validation protocols, and a greater 

emphasis on external validation (Golbraikh et al., 

20. (50) 

Quantitative Structure–Activity Relationship 

(QSAR) modeling entails the collection and 

refinement of large datasets of natural compounds, 

the computation of molecular descriptors, and the 

use of machine learning techniques to forecast 

biological effects and potential toxicities. With the 

integration of advanced AI methods like deep 

learning, contemporary QSAR models have 

demonstrated significant success in pinpointing 

potential drug candidates with enhanced 

pharmacological characteristics. This approach 

has been validated through various successful case 

studies in the development of improved 

therapeutics derived from natural products (Kar & 

Roy, 2012).  (51) 

In QSAR modeling, the initial phase involves 

preparing the data. This begins with identifying a 

pertinent chemical, biological, or toxicological 

target. Following this, a comprehensive dataset 

must be assembled and refined, with relevant 

molecular descriptors selected and computed. The 

next step is to choose a suitable machine learning 

algorithm for model development. To ensure the 

reliability of the analysis, the dataset is repeatedly 

divided into external validation and modeling 

subsets. During the model-building stage, the 

modeling subset undergoes multiple rounds of 

splitting into training and testing sets to enhance 

robustness (Wang et al., 2024).  (52) 

In combinatorial QSAR (combi-QSAR), models 

are developed using training datasets and assessed 

with test datasets. This modeling process is 

repeated for each combination of descriptor sets 

and computational methods. Models that 

demonstrate strong statistical reliability are chosen 

for further external validation. To avoid overfitting 

and random correlations, a Y-randomization test is 

performed. The validation phase includes 

generating consensus predictions for an external 

test set, ensuring the predictions fall within the 

model's applicability domain (AD). To refine the 

process, optimal Z-score thresholds are established 

based on the accuracy and coverage of the 

consensus predictions. Subsequently, virtual 

screening of chemical libraries is carried out by 

conducting similarity searches using the training 

or modeling datasets filtered by the Z-threshold. 

Compounds that pass this filter are then evaluated 

using the consensus QSAR models (Golbraikh et 

al., 2017). (53) 

6. ROLE OF ARTIFICIAL INTELLIGENCE 

IN NATURAL PRODUCT RESEARC 

6.1 Overview of AI Technologies 

Artificial Intelligence (AI) refers to a collection of 

computational methods designed to process 

intricate datasets, uncover patterns, and support 

decision-making. Within the realm of natural 

product research, AI is revolutionizing the field by 

streamlining labor-intensive processes and 

unlocking new possibilities for identifying and 

developing biologically active compounds. 

Prominent AI technologies include: 

• Machine Learning (ML): A branch of AI that 

utilizes algorithms to detect trends and forecast 

results. ML is especially useful for evaluating 

chemical libraries, anticipating biological 

activities, and refining lead compounds. 

• Deep Learning (DL): An advanced form of 

ML that leverages neural networks to interpret 

complex, high-dimensional data. DL excels in 

tasks such as determining molecular structures 

and predicting compound efficacy. 
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• Natural Language Processing (NLP): A set 

of tools that process and understand textual 

information, including scientific articles and 

patent documents. NLP aids in uncovering 

novel natural products and identifying 

potential uses by extracting valuable insights 

from written sources. (54) 

 6.2 Virtual Screening and Predictive Modeling 

Artificial intelligence has revolutionized drug 

discovery by enabling virtual screening of 

extensive chemical databases to identify 

compounds with promising therapeutic effects. 

Machine learning (ML) and deep learning (DL) 

models are employed to predict key attributes such 

as binding affinity, solubility, and toxicity. These 

advanced computational tools minimize 

dependence on conventional trial-and-error 

approaches, thereby accelerating the drug 

development process and optimizing resource 

utilization. (55) 

6.3   Structure Elucidation and Activity 

Prediction 

Determining the intricate structures of natural 

compounds typically involves sophisticated 

spectroscopic methods. Artificial intelligence 

plays a pivotal role in this process by interpreting 

spectral information and forecasting molecular 

configurations. Among AI approaches, deep 

learning stands out for its ability to link molecular 

characteristics with biological functions, thereby 

supporting the refinement of lead compounds to 

improve their effectiveness and safety. (56) 

6.4   Data Mining and Integration 

Research in natural products produces extensive 

datasets encompassing chemical, biological, and 

genomic information. Artificial intelligence tools 

play a crucial role in extracting valuable insights 

from these datasets to pinpoint potential bioactive 

compounds. Natural 

language processing (NLP) algorithms examine 

scientific literature, patent documents, and 

database records to reveal patterns, connections, 

and innovative prospects. By merging these varied 

data sources, the process of discovering new drug 

candidates becomes significantly faster and more 

efficient. (57) 

6.5 AI in Natural Product Research: 

Transformative Applications 

Artificial Intelligence has significantly 

transformed natural product research by tackling 

major obstacles and boosting productivity across 

multiple domains. 

Would you like me to expand on the specific areas 

where AI is making an impact—like drug 

discovery, compound classification, or 

biosynthetic pathway prediction? (58) 

6.6   Benefits of AI in Natural Product Research 

Integrating artificial intelligence into natural 

product research brings a wide range of 

advantages: 

• Enhanced Efficiency: AI streamlines 

processes like data interpretation, compound 

screening, and modeling, dramatically 

shortening the timeline for discovery and 

development. 

• Greater Scalability: With the ability to handle 

massive datasets, AI enables high-throughput 

analysis that surpasses the limitations of 

manual approaches. 

• Improved Accuracy: Predictive algorithms 

refine assessments of biological activity and 
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toxicity, reducing the likelihood of 

experimental errors. 

• Reduced Costs: By refining workflows and 

minimizing the need for extensive lab 

validation, AI helps cut down research and 

development expenses. 

• Uncovering Hidden Insights: AI identifies 

subtle patterns and relationships within 

complex data, paving the way for novel 

discoveries and research directions. (59) 

7. Computational Strategies for Discovering 

Phytochemical Drug Candidates 

 Modern computational techniques have proven to 

be valuable tools in the discovery and refinement 

of phytochemical-based therapies. Methods such 

as machine learning, virtual screening, molecular 

dynamics simulations, and molecular docking 

have been successfully applied to assess and 

enhance the biological properties of 

phytochemicals.(60) Virtual screening is a widely 

used computational method in drug development 

that enables the swift assessment and ranking of 

chemical compounds for potential experimental 

validation against a particular biological target or 

disease model.(61) Several approaches can be used, 

e.g., molecular descriptors and fingerprint-based 

similarity searching to ligand-based 

pharmacophore models or structure-based 

techniques. (62) Several approaches can be used, 

e.g., molecular descriptors and fingerprint-based 

similarity searching to ligand-based 

pharmacophore models or structure-based 

techniques. (63) Virtual screening methods can be 

applied to large databases containing known 

phytochemicals or in-silico-generated libraries 

mimicking natural products   This   efficient 

technique manages large datasets and can reduce 

the number of compounds evaluated in biological 

assays (64) 

7.1.    Molecular   docking    has revolutionized 

phytochemical drug discovery by providing a 

computational approach to forecast how a 

phytochemical interacts with its target 

protein(s)(65) This tool plays a crucial role in 

identifying phytochemicals with strong potential 

for further experimental validation. A wide array 

of computational tools and algorithms have been 

developed to support this process. Some of the 

most commonly used platforms include AutoDock 

Vina, AutoDock GOLD, Discovery Studio, 

FRED, Glide, ICM, Surflex, MCDock, MOE-

Dock, FlexX, DOCK, LeDock, rDock, Cdcker, 

LigandFit, and UCSF Dock. (66) "Molecular 

docking plays a crucial role in pinpointing the 

molecular targets of nutraceuticals, aiding in the 

treatment of various diseases."(67) 

During the COVID-19 pandemic, molecular 

docking played a pivotal role in identifying 

phytochemicals with potential to inhibit SARS-

CoV-2 replication and pathogenesis. 

Molecular docking emerged as a powerful 

computational tool to screen and evaluate 

bioactive compounds from medicinal plants 

against key SARS-CoV-2 proteins, especially the 

main protease (Mpro), which is essential for viral 

replication. Here's how it contributed (68) 

7.2   Role of Molecular Docking in COVID-19 

Phytochemical Research (69) 

• Target Identification: Researchers focused 

on druggable viral proteins such as Mpro, 

spike protein, and RNA-dependent RNA 

polymerase (RdRp), which are crucial for 

SARS-CoV-2 replication and infection. 

• Phytochemical Screening: Docking studies 

evaluated compounds from plants like 

Azadirachta indica (neem), Curcuma longa 
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(turmeric), Barleria prionitis, and 

Bougainvillea for their binding affinity to viral 

targets. 

• Binding Affinity and Stability: These 

simulations predicted how well 

phytochemicals fit into the active sites of viral 

proteins, estimating their potential to inhibit 

viral function. 

• Lead Identification: Compounds showing 

strong binding interactions were flagged as 

promising leads for further in vitro and in vivo 

testing. 

7.3 Examples of Promising Phytochemicals (70) 

• Curcumin from turmeric showed strong 

interaction with Mpro and spike protein. 

• Quercetin, a flavonoid found in many plants, 

demonstrated potential inhibition of viral entry 

and replication. 

• Azadirachtin from neem exhibited high 

docking scores against Mpro. 

 7.4 Significance and Impact (71) 

• Accelerated Drug Discovery: Docking 

allowed rapid virtual screening of hundreds of 

compounds, saving time and resources. 

• Natural Compound Libraries: It highlighted 

the therapeutic potential of traditional 

medicine and plant-based compounds. 

• Preclinical Validation: Docking results 

guided laboratory experiments, helping 

prioritize compounds for antiviral testing. 

This approach not only advanced the search for 

COVID-19 therapeutics but also reinforced the 

value of integrating computational biology with 

ethnopharmacology. 
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Fig  : 4   :  Apigenin (72), Luteolin (73), Cyanidin (74), Naeingenin(75) , Andrograpgolide(76) 

Andrographolide 

"Additionally, other phytochemicals, such as 

phenolics and terpenoids, have shown potential as 

leads, including quercetin (23), luteolin (24), and 

neoandrographolide (25) (Figure 10), that were 

identified as potential inhibitors of SARS-CoV-2 

druggable protein targets. It was shown that their 

interaction could disrupt viral replication and 

pathogenesis [13]."(77) 

7.5   Molecular Docking in Phytochemical-

Based Anticancer Drug Discovery 

Molecular docking has played a pivotal role in 

identifying potential anticancer agents derived 

from phytochemicals. For example, a study by 

Swargiary and Mani (2021) identified bayogenin, 

asiatic acid, and andrographolide as promising 

lead compounds for targeting Hexokinase 2 

(HK2), a key enzyme involved in cancer 

metabolism. Among these, bayogenin and 

andrographolide demonstrated the strongest 

binding affinities to HK2, while asiatic acid also 

showed interaction, albeit to a lesser extent. These 

findings suggest that these compounds could serve 

as novel anticancer agents targeting HK2, pending 

further validation through in vitro and in vivo 

studies. (78) 

In another investigation focusing on Sauropus 

androgynus, researchers employed a combination 

of molecular docking and network pharmacology 

to uncover key target genes and underlying 

mechanisms. The study identified AKT1, mTOR, 

AR, PPID, FKBP5, and NR3C1 as primary targets.  

(79)  Notably, the PI3K-Akt signaling pathway—a 

crucial regulatory axis in various pathological 

conditions—was significantly influenced. This 

integrative approach, combining network 

pharmacology, molecular docking, and in vitro 

experiments, provided deeper insights into the 

anticancer and anti-inflammatory molecular 

activities of S. androgynus.(80) 

 8. Case study   :  

 8.1   AI-Driven Approaches and Case Studies 

Virtual screening   : 

Virtual screening (VS) is a key computational 

technique in drug discovery that facilitates the 

automated analysis of large molecular libraries to 

pinpoint promising therapeutic candidates. 

Serving as an initial filtering step, VS efficiently 
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discards compounds with unfavorable 

characteristics, thereby refining the selection to 

molecules with a greater potential for biological 

efficacy (Oliveira et al., 2023) (81) 

During the virtual screening process, candidate 

ligands may be modified in terms of their chemical 

composition and structural features to enhance 

their pharmacokinetic properties—specifically 

absorption, distribution, metabolism, excretion, 

and toxicity (ADMET). A typical virtual screening 

pipeline involves two key computational stages. 

The initial phase focuses on library preparation, 

which encompasses the collection of compound 

structures and the conversion of these data into 

standardized formats suitable for computational 

analysis, such as SDF, SMILES, and MOL2 ( 82) 

The process begins with generating molecular 

conformers and correcting any stereochemical or 

valence-related inaccuracies. To identify 

promising chemical candidates, computational 

tools are employed in the next phase. Final 

validation is carried out through experimental 

methods, including in vitro and in vivo assays such 

as enzyme inhibition or cell line testing. Over time, 

artificial intelligence-driven virtual screening has 

incorporated a wide range of computational 

strategies. Integrating these digital approaches 

with laboratory techniques significantly enhances 

the chances of discovering novel bioactive 

compounds (Santana et al., 2021(83) 

 Ligand   -based virtual screening (LBVS) and 

structure-based virtual screening (SBVS) are two 

computational approaches commonly employed in 

compound screening. To identify new bioactive 

molecules targeting specific biological systems or 

molecular targets, these methods are often 

integrated into comprehensive virtual screening 

strategies. LBVS, in particular, predicts molecular 

activity by analyzing a collection of known 

bioactive compounds. This technique evaluates 

various intrinsic properties of the compounds, 

such as their electronic characteristics, topological 

features, physicochemical parameters, and 

structural attributes (Berenger et al., 2017; Garcia-

Hernandez et al., 2019). (85) 

Computational tools encompass a range of 

techniques such as machine learning, 

cheminformatics filters, pharmacophore 

modeling, similarity-based searches, and 

quantitative structure–activity relationship 

(QSAR) analysis. In contrast, structure-based 

virtual screening (SBVS) utilizes the three-

dimensional configuration of a bioreceptor to 

explore how ligands interact with its binding site. 

The success of this method hinges on a thorough 

understanding of intermolecular forces, the 

makeup of binding site residues, ligand affinity, 

and the conformational dynamics of the 

bioreceptor (Maia et al., 2020(87) 

Structure-based virtual screening (SBVS) employs 

several key strategies to enhance ligand binding to 

bioreceptors. These include molecular docking to 

predict optimal binding orientations, molecular 

dynamics simulations to assess the stability and 

flexibility of ligand-receptor interactions, and 

structure-based pharmacophore modeling to 

identify essential features for binding affinity 

(Wang et al., 2020) (88) 

Visual systems (VS) are fundamentally dependent 

on a robust foundation of knowledge, drawing 

heavily on both the depth and breadth of available 

information about the subject being examined. 

Their effectiveness hinges on the meticulous 

curation and refinement of this data to ensure 

accurate and meaningful analysis (Kirchweger & 

Rollinger, 2018) (89) 

Limited availability of 3D libraries for natural 

products (NPs) has posed a challenge to 

conducting extensive virtual screening for 
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bioactive compounds. Despite this, several 

impactful studies have emerged. Liu and Zhou 

explored marine and traditional Chinese medicine 

metabolites to identify potential inhibitors of the 

SARS-CoV protease. Toney et al. discovered 

sabadinine, a terpenoid alkaloid, as a promising 

anti-SARS candidate. Moro highlighted ellagic 

acid as a strong inhibitor of protein kinase CK2. 

Furthermore, Zhao and Brinton demonstrated the 

utility of receptor-based molecular docking in 

pinpointing flavonoid compounds with high 

affinity for estrogen receptors, showcasing its 

value in selective ligand identification (Rollinger 

et al., 200 These instances highlight the critical 

role of virtual screening (VS) in propelling drug 

discovery forward, particularly through the use of 

robust datasets and advanced screening 

methodologies."(90) 

 8.2   Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations have been 

widely applied to investigate biomacromolecules 

such as proteins and nucleic acids. Advances in 

this field now enable researchers to simulate entire 

cells, offering deeper insights into the fundamental 

molecular mechanisms of life. These simulations 

are instrumental in exploring structural changes 

under varying conditions, analyzing drug 

interactions with biological targets, and 

characterizing protein behavior (Heidari et al., 

2016b). Moreover, MD techniques allow the 

observation of rapid molecular events at atomic-

level detail within sub-millisecond timescales in 

many biologically relevant systems (Borhani & 

Shaw, 2012) (91) 

8.2   Table: 1 Computational Methods in Virtual Screening (92) 

Ethos Category Description Examples/ Tools 

Cheminformatics 

Filters 

Applies empirical rules (e.g., Lipinski's Rule of 

Five, Veber's Rule) to evaluate drug-likeness and 

pharmacokinetics based on physicochemical traits. 

Lipinski's Rule, 

Veber's Rule 

Molecular 

Fingerprint-

Based Methods 

Uses binary encodings of molecular structures to 

assess compound similarity. Facilitates rapid 

screening using structural and pharmacophore 

features. 

SMILES (SMIfp      

SIFt, Jeffrey's 

fingerprint 

Similarity 

Distance Metrics 

Quantifies molecular similarity using mathematical 

metrics applied to fingerprints. 

Tanimoto, Dice, 

Cosine 

coefficients 

Pharmacophore 

Modeling 

Identifies active compounds by matching chemical 

features (ligand-based) or spatial 

LigandScout, 

MOE, Pharmer 

3D 

Shape-Similarity 

Search 

Compares 3D molecular shapes to predict binding SHAFTS, 

OptiPharm, 

Shape-it 

Machine 

Learning 

Algorithms 

Employs AI models to forecast bioactivity, QSAR models, 

deep 

 

  

9. Challenges and limitations   :  

A large volume of data is essential for training AI 

systems effectively, making data accessibility a 

key factor in their success. However, obtaining 

information from multiple database providers can 

increase costs for companies seeking accurate 

predictive outcomes. In addition, the data used 

must be reliable and of high quality. Other 

challenges hindering the widespread adoption of 
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AI in the pharmaceutical industry include a 

shortage of skilled professionals capable of 

managing AI-driven platforms, limited financial 

resources—particularly among smaller firms—

concerns over potential job displacement, doubts 

about the reliability of AI-generated results, and 

the “black box” issue, referring to the lack of 

transparency in how AI systems reach their 

conclusion ( 93) 

Although some pharmaceutical companies have 

already adopted artificial intelligence (AI), the 

industry was expected to generate approximately 

US$2.199 billion in revenue from AI-driven 

solutions by 2022. Between 2013 and 2018, the 

sector invested more than US$7.2 billion across 

over 300 deals. To maximize the benefits of AI, 

pharmaceutical firms must clearly communicate 

the realistic objectives and problem-solving 

capabilities that AI can offer. Cultivating a 

workforce of software engineers and data 

scientists who possess both robust AI expertise 

and a deep understanding of the company’s 

research and development priorities, as well as its 

commercial goals, is essential for leveraging AI 

platforms effectively (Research & Markets, 2019). 
(94) 

Through advances in total synthesis, semi-

synthetic methods, and biosynthetic engineering, 

scientists are actively exploring new classes of 

natural products (NPs) with antimicrobial 

potential, while also enhancing and refining 

existing ones. Moreover, antivirulence strategies 

present an alternative approach to infection 

control, with NPs that interfere with bacterial 

quorum sensing emerging as promising tools in 

this context (Atanasov et al., 2021; Merit et al., 20 
(95) 

One of the key hurdles in applying AI to the 

development of natural product-based medications 

is maintaining high data quality. The effectiveness 

of machine learning (ML) and deep learning 

models heavily relies on the accuracy and 

uniformity of the training data. Variations in 

format, precision, and measurement standards 

across different data sources can pose significant 

challenges. Incomplete datasets may introduce 

bias into models, necessitating the use of 

imputation methods to address missing 

information. To ensure that AI models deliver 

reliable predictions and can be generalized across 

different scenarios, rigorous validation is essential. 

Techniques such as cross-validation, which assess 

model performance across multiple data subsets, 

are instrumental in identifying issues like 

overfitting or underfitting (Saldívar González et 

al., 2022). (96) 

Integrating artificial intelligence into drug 

research presents notable regulatory hurdles. It is 

essential for regulatory authorities to grasp the 

reasoning behind AI-driven decisions. To facilitate 

this, AI models must be designed with 

interpretability in mind, and the entire 

development process should be meticulously 

documented (Okibe & Samuel, 2024). 

The effectiveness of AI in drug discovery can be 

significantly enhanced through its integration with 

omics technologies such as genomics, proteomics, 

and metabolomics. This synergy enables a deeper 

comprehension of biological systems and drug 

interactions. By merging data across various omics 

layers, researchers can achieve a holistic view of 

disease pathways and therapeutic mechanisms. AI 

plays a pivotal role in constructing and analyzing 

biological networks, pinpointing critical 

pathways, and predicting how alterations in these 

pathways might influence disease progression and 

treatment outcomes (Egwuatu et al., 2024; Paul et 

al., 2021; Ekpan et al., 2024). (97) 

10. LIMITATION    



Mayuri Mohondkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3270-3297| Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 3288 | P a g e  

While the review offers valuable insights, it is not 

without limitations. To begin with, the diversity in 

experimental models and cancer types investigated 

makes direct comparisons challenging. 

Additionally, the majority of the included studies 

are preclinical, leading to a limited number of 

clinical trials that assess the therapeutic efficacy of 

Peganum harmala and Nigella sativa compounds, 

especially within frameworks involving artificial 

intelligence. Furthermore, several studies lacked 

detailed methodologies and reproducibility 

information, increasing the risk of publication and 

selection biase(98) 

While phytochemicals offer numerous benefits in 

drug development, several limitations can hinder 

their effectiveness, safety, and feasibility. One 

major challenge is the intricate and diverse nature 

of phytochemical profiles found in plants. This 

complexity often results in difficulties with 

consistent identification and extraction of specific 

compounds (99) 

Environmental conditions—including climate, 

geographic region, and soil characteristics—

significantly influence a plant's phytochemical 

composition, which poses challenges for achieving 

consistent standardizatio (100) 

"Finally, potential safety and toxicity issues 

represent a significant constraint, as certain 

phytochemicals may elicit harmful effects. 

Therefore, thorough toxicological assessments are 

essential to ensure their safe application."(101) 

 11.Future pespectives  

To fully harness the capabilities of AI-assisted 

phytochemical therapy, a number of strategic 

initiatives are essential. 

1. One key step involves developing AI-curated 

databases of phytochemicals specifically 

targeted for anticancer applications. These 

libraries should integrate comprehensive 

molecular descriptors, detailed 

pharmacokinetic profiles, and thorough 

toxicity evaluations to support effective and 

safe therapeutic design 

2. Initiating clinical trials that leverage AI-driven 

synergy prediction platforms to guide 

combination therapies incorporating bioactive 

compounds from Peganum harmala or Nigella 

sativa. 

3. Developing robust, publicly accessible 

databases that integrate natural product 

profiles with AI models and pharmacological 

outcomes to promote data transparency and 

reproducibility (102). 

To successfully bridge the gap between laboratory 

discoveries and clinical implementation, 

collaborative efforts are essential—bringing 

together oncologists, computational biologists, 

pharmacognosists, and AI specialists. This 

interdisciplinary approach fosters a seamless 

integration of traditional medical practices with 

cutting-edge therapeutic innovations (refer to 

Figure 6 and Table 3 for synergy  

11. 1 .   The convergence of artificial intelligence 

with natural product databases is set to evolve 

in transformative ways: 

1. Federated Learning: This technique allows 

AI models to be trained across multiple 

decentralized databases without exchanging 

raw data, thereby preserving data privacy and 

enhancing security. 

2. Semantic Search: By leveraging semantic 

search capabilities, AI systems will 

significantly improve the accuracy and 
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relevance of information retrieval from natural 

product repositories. 

3. Real-Time Data Integration: AI-powered 

platforms will enable the seamless 

incorporation of newly generated data in real 

time, ensuring that databases remain current 

with the latest scientific findings (103) 

12.CONCLUSION: 

Although challenges remain, the integration of AI 

into natural product research offers immense 

potential for advancing the development of 

therapeutic compounds. By harnessing cutting-

edge innovations in artificial intelligence and 

machine learning, scientists are able to expand the 

frontiers of discovery, uncovering novel natural 

products with promising medicinal properties (104) 

AI has revolutionized the development of herbal 

medicines by overcoming traditional limitations 

and streamlining key processes such as identifying 

bioactive compounds, verifying plant species, 

designing formulations, and predicting toxicity. 

This advancement has led to reduced costs, 

accelerated drug research, and enhanced 

reliability. When integrated into areas like 

pharmacovigilance, quality control, and synergy 

modeling, AI ensures that natural remedies remain 

consistently effective and trustworthy. 

Additionally, real-time technologies and deep 

learning-powered mobile applications have 

empowered non-specialists to participate in 

quality assurance and detect adulteration with 

greater ease (105) 

Harnessing phytochemicals for drug discovery 

presents a compelling strategy for developing 

innovative therapeutic agents. When integrated 

with modern technologies, these natural 

compounds can be effectively utilized in the drug 

development pipeline. For instance, advancements 

in high-throughput screening and computational 

methods can greatly accelerate the identification 

and optimization of phytochemical-based 

treatments, enhancing the efficiency of therapeutic 

discovery (106) 
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