Mayuri Mohondkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3270-3297 | Review

INTERNATIONAL JOURNAL OF ™

PHARMACEUTICAL SCIENCES
[ISSN: 0975-4725; CODEN(USA): 1JPS00]
Journal Homepage: https://www.ijpsjournal.com

OPEN ACCESS

Review Article

Artificial Intelligence in Phytochemical Screening: Emerging Trends

and Future Directions

Mayuri Mohondkar*, Shivprasad Dhage, Dr. Sonali Uppalwar

Ideal Institute of Pharmacy Posheri, Wada, Tel -Wada, Dist. - Palghar, State - Maharashtra.

ARTICLE INFO ABSTRACT
Published: 21 Nov 2025 BACKGRAOUND: he integration of artificial intelligence (AI) into natural product
Keywords: research represents a rapidly evolving domain with the capacity to transform drug

artificial intelligence;
Application; Review;
Natural products
phytochemicals; traditional
medicine

DOI:
10.5281/zenodo.17671254

discovery. Recognizing Al's promising role in advancing the investigation and
development of natural compounds, this study seeks to examine how Al technologies
are being applied to enhance research and innovation in this field. Conventional trial-
and-error methods in herbal drug research are increasingly being replaced by data-
driven strategies through the integration of AR Artificial intelligence has revolutionized
phytochemical research by streamlining the analysis of complex 'omics' datasets and
accelerating the identification of new metabolites, structural characterization, and
comprehensive metabolite profiling in plantstificial intelligence. METHODE :

"This

study conducted an extensive analysis of how artificial intelligence is utilized in the

research and development of natural products." RESULT

Al has significantly

transformed the process of discovering and developing natural products. By
streamlining the analysis of vast datasets, Al systems can pinpoint promising new

compounds with greater speed and precision compared to conventional techniques.

INTRODUCTION

Natural compounds sourced from plants,
microorganisms, and marine life have played a
foundational role in drug development throughout
history. These substances have been instrumental
in creating vital medications such as antibiotics,
cancer therapies, and drugs that suppress immune
responses. Their wide-ranging chemical structures

and distinctive biological effects make them
essential tools in tackling diverse health issues ()
Penicillin, sourced from the Penicillium mold,
transformed how bacterial infections are treated,
while paclitaxel, obtained from the Pacific yew
tree, represented a significant advancement in
cancer treatment ®

Phytochemicals, which are naturally occurring
compounds in plants, exhibit a wide range of
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therapeutic effects. Their use in traditional
medicine over centuries underscores their value
and suggests strong potential for development into
innovative pharmaceutical agents ® Modern
scientific methods, particularly structural and
computational biology, provide remarkable new
avenues for exploring natural products. Through
structural biology, researchers have uncovered the
three-dimensional configurations of
phytochemicals, which are instrumental in
advancing studies using molecular docking and
virtual screening to identify novel compounds with
pharmacological potential. © Cancer remains one
of the leading causes of death worldwide, with
around 19.3 million new cases and nearly 10
million fatalities reported in 2020. Although
advancements have been made in treatments such
as chemotherapy, radiotherapy, and
immunotherapy, their overall effectiveness is still
hindered. This is largely due to challenges like
multidrug resistance (MDR), widespread toxicity,
and poor bioavailability of many anticancer
medications ©

2.TRADITIONAL PHYTOCHEMICAL
SCREENING APPROCHES:

"Artificially created compounds have played a
leading role in medicinal chemistry. @
"Nevertheless, due to their diverse bioactivities,
phytochemicals are considered

promising alternatives for new drug development
®

increasingly

Phytochemicals such as alkaloids, terpenes, and
flavonoids serve as promising sources for lead
compound development. ) Their significance in
drug discovery is underscored by their vast
chemical wide-ranging biological
activities, and longstanding use in traditional
medicine. 1”9 Consequently,  screening
phytochemicals plays a crucial role in identifying
potential drug candidates.

diversity,
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Modern drug discovery employs advanced
techniques like  high-throughput
structure-based drug design, and computational
modeling!) Phytochemicals can be chemically
modified to improve therapeutic properties,
making creating
personalized treatment strategies. While synthetic

compounds have traditionally dominated drug

screening,

them valuable assets for

development, natural products are increasingly
being investigated. However, discovering new
drugs from natural sources remains challenging
due to their intricate structures and the
complexities involved in their extraction and
identification (1

2.1 Traditional vs. Modern Approaches in Drug
Discovery

Pharmacological research has long been
committed to uncovering new compounds that can
effectively treat a wide range of diseases.
Historically, this pursuit has involved methods
such as rational drug design—where synthetic
molecules are crafted based on existing drugs—

and ethnopharmacology, which draws on
traditional remedies used by indigenous cultures.
Another widely wused approach involves

harnessing natural substances derived from plants
and animals ¥ While these strategies have
yielded beneficial outcomes in some cases, they
often require extensive time and effort to produce
results.

with the rise of structural and
computational biology, the exploration of
phytochemicals for drug development has reached
unprecedented  potential.  These advanced
technologies offer a level of precision and insight
into biological mechanisms that surpasses
conventional lab-based experiments. Such
innovations are proving invaluable in the quest to

However,

develop new therapies for the many health
challenges facing humanity. ' Nonetheless, the
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process of identifying, designing, and validating
effective drug candidates remains a complex and
demanding endeavor.

2.2Traditional Drug Discovery and the Role of
Serendipity

Unplanned  discoveries have  significantly
influenced the development of life-saving drugs.
One of the most iconic examples is Alexander
Fleming’s accidental identification of penicillin in
1928, when a Dbacterial became

unintentionally contaminated. >

culture

Another notable case is the development of
ivermectin, an antiparasitic medication. This
breakthrough emerged from a fortuitous
collaboration between Satoshi Omura, who
isolated the bacterium Streptomyces avermitilis
from Japanese soil, and William Campbell, who
recognized its potential to combat parasitic
infections. Initially intended for veterinary use,
ivermectin was later approved to treat human
diseases such as onchocerciasis and lymphatic
filariasis. This discovery highlights the importance
of interdisciplinary  cooperation and the
unexpected nature of scientific progress. Omura
and Campbell were honored with the Nobel Prize
in Physiology or Medicine in 2015 for their
contributions. (¢

In another instance of serendipity, researchers in
1957 reported the antidepressant effects of
iproniazid, a monoamine oxidase inhibitor, at an
American Psychiatric Association meeting in
Syracuse, New York (7 Originally synthesized in
1951 by Herbert Fox at Roche Laboratories for
tuberculosis treatment, iproniazid unexpectedly
induced euphoric behavior in some patients, as
observed by Orcnstein, Robitzek, and Sclikoff in
1952. This surprising effect, later validated by
Zeller, led to its recognition as one of the earliest
antidepressants. (¥
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2.3 Contemporary Approaches to Drug
Discovery

The convergence of molecular biology,
biochemistry, and structural biology has

revolutionized the field of drug development ¥
One of the most advanced strategies is rational
drug design, which relies on a deep understanding
of disease mechanisms and the structural and
functional characteristics of target molecules. This
detailed insight allows scientists to create highly
specific and effective therapeutic agents aimed at
precise molecular interactions. However, this
process demands thorough investigation into both
the disease and the target molecule, making it one
of the most groundbreaking techniques in modern
medicine. 20

High-throughput screening (HTS) has become a
cornerstone in pharmaceutical research, enabling
the rapid assessment of vast compound libraries
for biological activity against defined targets or
disease models. These libraries may include
synthetic chemicals, natural extracts, genome-
wide gene knockouts, or RNA interference tools.
Despite its speed and efficiency, HTS faces
challenges such as limited availability of suitable
assay materials and potential inaccuracies in
results. ¢12?)

To complement these methods, computational
techniques like molecular modeling and docking
are employed to predict how candidate molecules
will interact with their targets. These tools also
help evaluate the chemical properties of
compounds, allowing researchers to prioritize
them for further testing (2> The effectiveness of
computational approaches depends largely on the
quality and relevance of the input data, as well as

the accuracy and robustness of the algorithms
used: 2526
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Phytochemical identification

Thin-layer chromatography, High-Performance Liquid Chromatography (HPLC), Gas
Chromatography (GC), Mass Spectrometry (MS), Nuclear Magnetic Resonance (NMR)
Spectroscopy, Ultra-violet visible (UV-Vis) Spectroscopy, Infrared (IR) spectroscopy,
bioinformatics

Target prediction/identification

(Genomics, transcriptomics, proteomics, chemical genetics, phenotypic screening,
bioinformatics and computational methods, structural biology, CRISPR, known
phytochemicals from specific plants)

Target confirmation

(Gene manipulation, RNA interference-RNAi, analysis, use of modulating compounds,
patient derived cells and organoids, High Throughput Screening (HTS), pharmacological
validation, in silico validation, protein interaction analysis-reference proteins can be
obtained from the PDB)

Lead identification

(High-throughput screening (HTS), fragment-based lead discovery (FBLD), structure-based
drug design (SBDD), phenotypic screening, virtual screening, natural product screening
biomimetic synthesis, combinational chemistry

Lead optimisation

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR)
modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and
pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry)
Lead optimisation

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR)
modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and
pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry)
Preclinical testing

(in vitro studies and in vivo studies on appropriate disease models, pharmacokinetic studies,
pharmacodynamic studies, safety pharmacology, genotoxicity, and carcinogenicity studies,
reproductive toxicology, immunotoxicology

Lead optimisation.

(Structure-based design (SBDD), quantitative structure-activity relationship (QSAR)
modelling, in vitro testing, ADME testing, toxicity testing, physicochemical and
pharmacodynamics (PK/PD) modelling, parallel synthesis and combination chemistry)
Preclinical testing

(In vitro studies and in vivo studies on appropriate disease models, pharmacokinetic studies,
pharmacodynamic studies, safety pharmacology, genotoxicity, and carcinogenicity studies,
reproductive toxicology, immunotoxicology

Clinical trials

Phase I, II, III and IV trials

Approval

(Submission of Marketing Authorisation Application, review by regulatory agencies,
inspections, advisory committee review, decision

2.4 Fig 1: 1 sequential stages phytochemical 3.Ovarvieww phytochemical screening
drug discovery and development approaches
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Computational phytochemistry integrates
advanced mathematical and computational tools to
enhance  phytochemical  research, from
biosynthetic pathways to molecular modeling.
Techniques like Density Functional Theory (DFT)
play a pivotal role in predicting molecular
properties and electronic structures. 7

Here's a deeper look into the scope and
significance of computational phytochemistry

3.1 What Is Computational Phytochemistry?

Computational phytochemistry refers to the use of
computational, mathematical, and statistical

methods to analyze, predict, and simulate
phytochemical phenomena. It bridges theoretical
models with experimental data, enabling

researchers to explore plant-derived compounds
more efficiently and accurately.

3.2 Key Applications

o Biosynthetic Pathway Modeling: Simulates
how plants produce secondary metabolites,
helping identify key enzymes and regulatory
steps.

o High-Throughput Screening: Uses
algorithms to rapidly evaluate thousands of
phytochemicals for potential bioactivity or
therapeutic relevance.

*  Structure Prediction & Optimization:
Employs quantum chemistry tools like DFT to
determine molecular geometry, -electronic
distribution, and reactivity. %

3.3 Role of DFT in Phytochemical Research

Density Functional Theory (DFT) has long been a
cornerstone  in  computational  chemistry,
especially in phytochemical studies where
understanding molecular behavior is crucial.

fE
\‘7"“ ;(,\y'
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Before the rise of Al, DFT provided a robust
framework for:

e Predicting molecular geometry and electronic
structure

e Simulating vibrational and

ionization energies

frequencies

e Analysing magnetic and electric properties of
bioactive compounds

3.4 Ullah et al. (2014) Study Highlights

In their 2014 study, Ullah and colleagues
conducted a comparative theoretical and
experimental analysis of Pistagremic acid, a
bioactive compound. Key aspects of their work
include:

e DFT simulations at the B3LYP/6-31G(d,p)
level to optimize geometric and electronic
parameters.

e Validation against X-ray crystallographic
data, showing strong agreement with minor
deviations in bond lengths (0.01-0.15 A) and
angles (0.19-1.30°).

e Spectroscopic predictions that aligned well
with experimental results, reinforcing the
reliability of  DFT in modeling
phytochemicals. ?*

3.5 Why This Matters

This study exemplifies how DFT bridges
theoretical chemistry and experimental validation,
offering insights into molecular behavior that are
essential for drug discovery, natural product
analysis, and bioactivity profiling.

Would you like help paraphrasing or expanding
this into a formal academic paragraph or
integrating it into a larger literature review?
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Dynamic techniques can be employed to elucidate
the molecular structure of phytochemicals
dissolved in  organic solvents, offering
complementary insights to those obtained from
NMR spectroscopy. In a theoretical study, the 1 H
NMR spectrum of 5,4'-Dihydroxy-7,5',3'-
trimethoxyisoflavone—isolated from Quratea
ferruginea tea—was analyzed using the hybrid
B3LYP density functional theory (DFT) method
(Hernandes et al., 2020). G?

4. Computer-Aided Structure Elucidation
(CASE) in Phytochemistry

Computer-assisted methods for predicting and
determining molecular structures have been in use
for over five decades, originally developed using
spectroscopic data. Today, CASE primarily relies
on one-dimensional (1D) and two-dimensional
(2D) nuclear magnetic resonance (NMR) data,
which significantly reduce errors in identifying the
structures of phytochemicals.

CASE operates on a set of axioms that link
molecular fragments to specific spectral features.
For example, if a molecule contains a certain
fragment (e.g., Al), its presence can be inferred
from characteristic spectral regions. However,
when using 2D-NMR data, a hypothesis based on
general spectral patterns tends to be more effective
than rigid axioms.

e 4y INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

N
/4

72\
<,«\{'

The structural backbone of a phytochemical is
typically derived from key 2D-NMR techniques

such as COSY and HMBC. Final structure
elucidation involves assembling:

e Strict fragments from 1D NMR, 2D COSY,
and infrared (IR) data

o Fuzzy fragments from 2D HMBC data

These fragments are validated against known
axioms to build a complete molecular structure.

4.1. CASE Software Tools

e ACD Structure Elucidator: One of the
earliest CASE programs, requiring only an
empirical formula and *13C chemical shifts
from HSQC and HMBC data. It generates a list

of possible structures and a molecular

connectivity diagram for unusual correlations.
e Other notable programs include:
o Bruker CMC-se
o Mestrelab MNova
o Nuzillard’s LSD

These tools enhance the accuracy and efficiency of
phytochemical structure elucidation ¢V
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Computer Assisted Structure Elucidation (CASE) of phytochemicals

—> Data preprocessing —> Spectral Interpretation ——>

+ Isolation & purification
+ Spectroscopic data
collection - NMR, MS, IR,

+ Data conversion
* Noise reduction
* Datanormalisation

UV.vis, CD spectra
> } ]

1
—ull

ﬁ
[
)

\

-l
)\
(

Structure generation &
validation

+ Peakpicking

¢+ Peakassignment

+ Spectraldatabase
search

Fig. 2 Outline of computer-assisted structure elucidation (CASE) of phytochemicals. The data of
phytochemical col lected from the spectroscopic instruments will be preprocess

Group assignments were determined using HMBC
correlations, followed by a comparison with
predicted “13C NMR data generated through the
ACD/Spectrus Processor (Du et al.,, 2019) ©2:
Another significant computational approach is
chemometrics, which extracts essential chemical
insights  from  experimental data
mathematical, statistical, and algorithmic

using

techniques. The chemometric workflow typically
includes experimental design, data preprocessing,
classification, calibration, knowledge extraction,
and interpretation (Sarker and Nahar, 2024’ G
Notably, chemometrics employs principal
component analysis (PCA) and hierarchical cluster
analysis (HCA) to provide both descriptive and
predictive insights. PCA is an unsupervised
method used for recognizing patterns in
multivariate datasets, whereas HCA groups data
based on similarity measures to derive meaningful
outcomes (Patras et al., 2011). ¥
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Machine learning-enhanced analytical methods
are transforming phytochemical 5 research,

offering powerful avenues to investigate the
concealed molecular characteristics of plant-
derived samples. These advanced techniques serve
as gateways to decode complex phytochemical
profiles, enabling researchers to identify, classify,
and predict the bioactivity of natural compounds
with greater precision and efficiency.

4.2 Table 1 Representative Tools in
Current Phytochemical Research ¢

While the exact contents of Table 1 may vary by
publication, based on recent literature, it typically
includes the following categories of tools and
techniques:

Tool/Technique Purpose
Chromatography | RPN
(HPLC, GC) phytochemicals
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Molecular weight
determination and
structural analysis

Mass Spectrometry
(MS)

Pattern recognition,
AI/ML Algorithms predictive modeling,
and data integration

Detailed structural
elucidation of organic
compounds

Nuclear Magnetic
Resonance (NMR)

Al-powered tool for
Herblntel Platform decoding plant-based
molecular structures

Spectroscopy (UV-Vis, Detection of functional

IR) groups and compound
identification
Metabolomics rotﬁﬁlmlz)rf }If;Sal[;](flites
Platforms P b

in plant samples

Combine genomics,

Omics Data Integration proteomics, and
Tools metabolomics for

holistic analysis

4.3 Table 2: Plant Databases and Their Applications ¢

Data base Source Application
Ensembl plant Ensemble plant Genome annotation
NCBL taxonomy | NCBL Taxonomy Taxonomy

5. Application of Al phytochemical screening :

1. Artificial intelligence has revolutionized the
discovery of herbal medicines by optimizing key
stages such as  target  identification,
deorphanization, = metabolome  exploration,
synthesis design, and virtual screening. The
integration of deep learning (DL) facilitates the
analysis of biosynthetic gene clusters and
metabolic pathways. Additionally, techniques like
pharmacophore modeling, molecular docking, and
bioactivity fingerprinting enhance the accuracy of
identifying molecular targets: ¢7-*%)

2. Through algorithmic prediction of toxicity,
bioactivity, and pharmacokinetics, artificial
intelligence reveals hidden patterns within large
datasets to identify promising bioactive
compounds. Moreover, Al—especially machine
learning (ML) and deep learning (DL)
techniques—facilitates  automatic =~ compound
recognition and comparison with known
molecules during dereplication. This is achieved
by leveraging  spectroscopic data  and
convolutional neural networks (CNNs). (>
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3. Al accelerates de novo drug development by
leveraging in silico screening techniques and
reinforcement learning to optimize multiple
aspects of drug efficacy. It also enhances the
reliability of natural therapies through robust
quality control frameworks built on machine
learning pipelines. These include image-based
authentication using convolutional  neural
networks (CNNs) such as ResNetl01 and
Inception V3, along with real-time detection of
adulterants. 0

4. Meanwhile, the analysis of synergistic effects in
polyherbal formulations—such as Diabet and
Dihar, which act as hypoglycaemic agents—is
greatly facilitated by deep learning models. Tools
like DeepSynergy, SynergyFinder, and network
pharmacology approaches enable the prediction of
safer and more effective herbal combinations." “V

5. By enhancing the pharmacokinetic properties of
promising bioactive compounds such as quercetin,
kaempferol, and vancomycin, the integration of
artificial intelligence with natural product research
is advancing precision medicine—enabling the
development of personalized, cost-effective
therapies for a wide range of diseases ¥
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6. Advancements in computational omics
technologies have  significantly  expanded
opportunities for drug discovery, particularly by
uncovering diverse natural product sources. At the
same time, progress in computational drug
design—especially through artificial intelligence
methods like machine learning—has enhanced the
ability to predict biological activity and design
novel compounds aimed at specific molecular
target “3)

7. Artificial intelligence has significantly impacted
computer-aided drug discovery, with its influence
growing due to the widespread adoption of
machine learning—particularly deep learning—
across various scientific fields. This progress is
further propelled by continual improvements in
computing technologies, both hardware and
software. Despite initial apprehensions that Al
might supplant traditional pharmaceutical
innovation, medicinal chemistry has ultimately
gained from its integration into the drug discovery
process. ¥

8. Natural compounds derived from fungi,
bacteria, plants, animals, and other organisms
serve as an important foundation for modern drug
discovery. Their rich structural variety and
biological significance make them excellent
candidates for initiating new drug development. In
this context, computational methods play a crucial
role, either as a preliminary step or as a

complement to laboratory-based testing 4>

U

(% "'\\'1‘/’ INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

N
/4

9. Machine learning has significantly transformed
the pharmaceutical industry, with both supervised
and unsupervised techniques being applied across
various phases of drug development. Clustering
methods have been instrumental in tasks such as
segmenting cell-type predicting the
druggability of protein targets, and designing new
molecules from scratch. Supervised learning
models, including regression and classification
algorithms, have helped identify promising
therapeutic targets for conditions like Huntington's
disease. Additionally, these models have been
used to predict biological activity and assess key

images,

pharmacokinetic and toxicological properties—
namely absorption, distribution, metabolism,
excretion, and toxicity (ADME/Tox)
(Vamathevan et al. 4%

10. Natural product research, a reliable foundation
for modern small molecule drug discovery, has
increasingly embraced computational approaches
powered by artificial intelligence and machine
learning. In the early 2000s, techniques like
principal component analysis and self-organizing
maps were primarily employed to chart the
chemical landscape of natural products and
convert organic molecules into digital formats.
Over the following decade, machine learning-
based binary classifiers emerged to predict the
biological functions of these compounds. More
recently, scientists have started leveraging neural
network architectures to aid in molecular design
and genome mining: 7
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Molecular docking

Complex

To obtain
near—natV
structure 3D-QSAR using

Ligand  Protein

IScreening Hetve moleculeso F experimental values
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/\ = ) Experimental assay Q} secondary \
— screemng
l(Z:hemlcal — o~ ECBS
database - PR F
. “Molecules O (b ( .‘QT’ e
with high % m/‘ Screening
ECBS score
Inactwe molecules

Comparison
O A~ - of scores _C\__ »
L O Experimental assay 4~ | Chemical
X database
O ¢ X R
O Possibility for * Molecules with % X
O improved hits both ECBS and = |xX*
pharmacophore | * X incives
score

3D-0SAR score

5.1 Fig:3 Compound prediction and virtual screening QSAR models:

5.2 AI has revolutionized QSAR modeling,
transforming it from a classical predictive tool
into a dynamic, deep learning-powered engine
for drug discovery.

Here's a paraphrased version of your sentence with
added clarity and flow:

With the advent of artificial intelligence,
quantitative structure—activity  relationship
(QSAR) modeling—an established technique in
computer-aided drug design for

decades—has undergone

over six
remarkable
advancements, evolving into a more powerful and

versatile approach (Tropsha et al., 2024).
To expand on this idea:

o Traditional QSAR relied on linear models
and handcrafted molecular descriptors to
predict biological activity based on chemical
structure.
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e Modern Al-enhanced QSAR, often called
deep OSAR, integrates deep learning, graph
neural networks, and large molecular datasets
to uncover complex, non-linear relationships
between structure and activity.

e These innovations have led to greater
predictive accuracy, broader applicability
across chemical space, and faster screening
of drug candidates, significantly accelerating

the drug discovery pipeline 4

5.3 Quantitative  Structure—Activity
Relationship (QSAR) modelling

is a foundational technique in cheminformatics
that explores how molecular characteristics
influence chemical, biological, and toxicological
behaviors.  Traditionally applied in lead
optimization during drug discovery, QSAR has
evolved to support broader applications, including
virtual screening for hit and lead identification,
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prediction of drug-like properties, and chemical
risk assessment. These advancements have been
driven by the development of more robust models,
improved validation protocols, and a greater
emphasis on external validation (Golbraikh et al.,
20 (50

Quantitative  Structure—Activity  Relationship
(QSAR) modeling entails the collection and
refinement of large datasets of natural compounds,
the computation of molecular descriptors, and the
use of machine learning techniques to forecast
biological effects and potential toxicities. With the
integration of advanced Al methods like deep
learning, contemporary QSAR models have
demonstrated significant success in pinpointing
potential  drug with
pharmacological characteristics. This approach
has been validated through various successful case
studies in the development of improved
therapeutics derived from natural products (Kar &
Roy, 2012). ©D

candidates enhanced

In QSAR modeling, the initial phase involves
preparing the data. This begins with identifying a
pertinent chemical, biological, or toxicological
target. Following this, a comprehensive dataset
must be assembled and refined, with relevant
molecular descriptors selected and computed. The
next step is to choose a suitable machine learning
algorithm for model development. To ensure the
reliability of the analysis, the dataset is repeatedly
divided into external validation and modeling
subsets. During the model-building stage, the
modeling subset undergoes multiple rounds of
splitting into training and testing sets to enhance
robustness (Wang et al., 2024). ©2)

In combinatorial QSAR (combi-QSAR), models
are developed using training datasets and assessed
with test datasets. This modeling process is
repeated for each combination of descriptor sets
and computational methods. Models that

U
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demonstrate strong statistical reliability are chosen
for further external validation. To avoid overfitting
and random correlations, a Y-randomization test is
performed. The validation phase includes
generating consensus predictions for an external
test set, ensuring the predictions fall within the
model's applicability domain (AD). To refine the
process, optimal Z-score thresholds are established
based on the accuracy and coverage of the
predictions. Subsequently, virtual
screening of chemical libraries is carried out by
conducting similarity searches using the training
or modeling datasets filtered by the Z-threshold.
Compounds that pass this filter are then evaluated
using the consensus QSAR models (Golbraikh et
al., 2017). &9

consensus

6. ROLE OF ARTIFICIAL INTELLIGENCE
IN NATURAL PRODUCT RESEARC

6.1 Overview of Al Technologies

Artificial Intelligence (Al) refers to a collection of
computational methods designed to process
intricate datasets, uncover patterns, and support
decision-making. Within the realm of natural
product research, Al is revolutionizing the field by
streamlining labor-intensive  processes and
unlocking new possibilities for identifying and
developing biologically compounds.
Prominent Al technologies include:

active

e Machine Learning (ML): A branch of Al that
utilizes algorithms to detect trends and forecast
results. ML is especially useful for evaluating
chemical libraries, anticipating biological
activities, and refining lead compounds.

e Deep Learning (DL): An advanced form of
ML that leverages neural networks to interpret
complex, high-dimensional data. DL excels in
tasks such as determining molecular structures
and predicting compound efficacy.
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o Natural Language Processing (NLP): A set
of tools that process and understand textual
information, including scientific articles and
patent documents. NLP aids in uncovering

natural products and identifying

potential uses by extracting valuable insights
from written sources' %

novel

6.2 Virtual Screening and Predictive Modeling

Artificial intelligence has revolutionized drug
discovery by enabling virtual screening of
extensive chemical databases to identify
compounds with promising therapeutic effects.
Machine learning (ML) and deep learning (DL)
models are employed to predict key attributes such
as binding affinity, solubility, and toxicity. These

advanced  computational  tools  minimize
dependence on conventional trial-and-error
approaches, thereby accelerating the drug

development process and optimizing resource
utilization. &

6.3 Structure Elucidation and Activity
Prediction

Determining the intricate structures of natural
compounds typically involves sophisticated
spectroscopic methods. Artificial intelligence
plays a pivotal role in this process by interpreting
spectral information and forecasting molecular
configurations. Among Al approaches, deep
learning stands out for its ability to link molecular
characteristics with biological functions, thereby
supporting the refinement of lead compounds to
improve their effectiveness and safety ¢

6.4 Data Mining and Integration

Research in natural products produces extensive
datasets encompassing chemical, biological, and
genomic information. Artificial intelligence tools
play a crucial role in extracting valuable insights
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from these datasets to pinpoint potential bioactive
compounds. Natural

language processing (NLP) algorithms examine
scientific literature, patent documents, and
database records to reveal patterns, connections,
and innovative prospects. By merging these varied
data sources, the process of discovering new drug
candidates becomes significantly faster and more
efficient. 7

6.5 Al in Natural Product Research:
Transformative Applications
Artificial Intelligence has significantly

transformed natural product research by tackling
major obstacles and boosting productivity across
multiple domains.

Would you like me to expand on the specific areas
where Al is making an impact—Ilike drug
discovery, compound  classification, or
biosynthetic pathway prediction? ©®

6.6 Benefits of Al in Natural Product Research

Integrating artificial intelligence into natural
product research brings a wide range of
advantages:

e Enhanced Efficiency: Al streamlines
processes like data interpretation, compound
screening, and modeling, dramatically
shortening the timeline for discovery and
development.

e Greater Scalability: With the ability to handle
massive datasets, Al enables high-throughput
analysis that surpasses the limitations of
manual approaches.

e Improved Accuracy: Predictive algorithms
refine assessments of biological activity and
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toxicity, reducing the likelihood of

experimental errors.

e Reduced Costs: By refining workflows and
minimizing the need for extensive lab
validation, Al helps cut down research and
development expenses.

*  Uncovering Hidden Insights: Al identifies

subtle patterns and relationships within

complex data, paving the way for novel
discoveries and research directions. 9

7. Computational Strategies for Discovering
Phytochemical Drug Candidates

Modern computational techniques have proven to
be valuable tools in the discovery and refinement
of phytochemical-based therapies. Methods such
as machine learning, virtual screening, molecular
dynamics simulations, and molecular docking
have been successfully applied to assess and
enhance  the  biological  properties  of
phytochemicals®® Virtual screening is a widely
used computational method in drug development
that enables the swift assessment and ranking of
chemical compounds for potential experimental
validation against a particular biological target or
disease model®" Several approaches can be used,
e.g., molecular descriptors and fingerprint-based
similarity searching to ligand-based
pharmacophore models or structure-based
techniques. “» Several approaches can be used,
e.g., molecular descriptors and fingerprint-based

ligand-based
structure-based

similarity searching to
pharmacophore  models or
techniques. ¥ Virtual screening methods can be
applied to large databases containing known
phytochemicals or in-silico-generated libraries
mimicking natural products  This  efficient
technique manages large datasets and can reduce
the number of compounds evaluated in biological
assays (9

ot
P
/4
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7.1. Molecular docking has revolutionized
phytochemical drug discovery by providing a
computational approach to forecast how a
phytochemical interacts with its target

protein(s)®> This tool plays a crucial role in
identifying phytochemicals with strong potential
for further experimental validation. A wide array
of computational tools and algorithms have been
developed to support this process. Some of the
most commonly used platforms include AutoDock
Vina, AutoDock GOLD, Discovery Studio,
FRED, Glide, ICM, Surflex, MCDock, MOE-
Dock, FlexX, DOCK, LeDock, rDock, Cdcker,
LigandFit, and UCSF Dock. (°® "Molecular
docking plays a crucial role in pinpointing the
molecular targets of nutraceuticals, aiding in the
treatment of various diseases 7

During the COVID-19 pandemic, molecular
docking played a pivotal role in identifying
phytochemicals with potential to inhibit SARS-
CoV-2 replication and pathogenesis.

Molecular docking emerged as a powerful
computational tool to screen and evaluate
bioactive compounds from medicinal plants
against key SARS-CoV-2 proteins, especially the
main protease (Mpro), which is essential for viral
replication. Here's how it contributed ¢®

7.2 Role of Molecular Docking in COVID-19
Phytochemical Research ¢

o Target Identification: Researchers focused
on druggable viral proteins such as Mpro,
spike protein, and RNA-dependent RNA
polymerase (RdRp), which are crucial for
SARS-CoV-2 replication and infection.

e Phytochemical Screening: Docking studies
evaluated compounds from plants like
Azadirachta indica (neem), Curcuma longa
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(turmeric), Barleria prionitis, and
Bougainvillea for their binding affinity to viral
targets.

Binding Affinity and Stability: These
simulations predicted how well
phytochemicals fit into the active sites of viral
proteins, estimating their potential to inhibit
viral function.

Lead Identification: Compounds showing
strong binding interactions were flagged as
promising leads for further in vitro and in vivo
testing.

7.3 Examples of Promising Phytochemicals %

Curcumin from turmeric showed strong
interaction with Mpro and spike protein.

Quercetin, a flavonoid found in many plants,
demonstrated potential inhibition of viral entry
and replication.

e Azadirachtin from neem exhibited high
docking scores against Mpro.

7.4 Significance and Impact 7V

e Accelerated Drug Discovery: Docking
allowed rapid virtual screening of hundreds of
compounds, saving time and resources.

o Natural Compound Libraries: It highlighted
the therapeutic potential of traditional
medicine and plant-based compounds.

e Preclinical Validation: Docking results
guided laboratory experiments, helping
prioritize compounds for antiviral testing.

This approach not only advanced the search for
COVID-19 therapeutics but also reinforced the
value of integrating computational biology with
ethnopharmacology.
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"Additionally, other phytochemicals, such as
phenolics and terpenoids, have shown potential as
leads, including quercetin (23), luteolin (24), and
neoandrographolide (25) (Figure 10), that were
identified as potential inhibitors of SARS-CoV-2
druggable protein targets. It was shown that their
interaction could disrupt viral replication and
pathogenesis [13]."7)

7.5  Molecular Docking in Phytochemical-
Based Anticancer Drug Discovery

Molecular docking has played a pivotal role in
identifying potential anticancer agents derived
from phytochemicals. For example, a study by
Swargiary and Mani (2021) identified bayogenin,
asiatic acid, and andrographolide as promising
lead compounds for targeting Hexokinase 2
(HK2), involved in cancer
metabolism. Among these, bayogenin and
andrographolide demonstrated the strongest
binding affinities to HK2, while asiatic acid also

a key enzyme

showed interaction, albeit to a lesser extent. These
findings suggest that these compounds could serve
as novel anticancer agents targeting HK2, pending
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further validation through in vitro and in vivo
studies. 7®

In another investigation focusing on Sauropus
androgynus, researchers employed a combination
of molecular docking and network pharmacology
to uncover key target genes and underlying
mechanisms. The study identified AKT1, mTOR,
AR, PPID, FKBPS5, and NR3C1 as primary targets'
(7 Notably, the PI3K-Akt signaling pathway—a
crucial regulatory axis in various pathological
conditions—was significantly influenced. This
integrative  approach, combining network
pharmacology, molecular docking, and in vitro
experiments, provided deeper insights into the
anticancer and anti-inflammatory molecular
activities of S. androgynus®?

8. Case study

8.1 Al-Driven Approaches and Case Studies
Virtual screening

Virtual screening (VS) is a key computational
technique in drug discovery that facilitates the
automated analysis of large molecular libraries to
pinpoint  promising therapeutic  candidates.
Serving as an initial filtering step, VS efficiently
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discards compounds with unfavorable
characteristics, thereby refining the selection to
molecules with a greater potential for biological

efficacy (Oliveira et al., 2023) &V

During the virtual screening process, candidate
ligands may be modified in terms of their chemical
composition and structural features to enhance
their pharmacokinetic properties—specifically
absorption, distribution, metabolism, excretion,
and toxicity (ADMET). A typical virtual screening
pipeline involves two key computational stages.
The initial phase focuses on library preparation,
which encompasses the collection of compound
structures and the conversion of these data into
standardized formats suitable for computational
analysis, such as SDF, SMILES, and MOL2 (82

The process begins with generating molecular
conformers and correcting any stereochemical or
valence-related  inaccuracies. To  identify
promising chemical candidates, computational
tools are employed in the next phase. Final
validation is carried out through experimental
methods, including in vitro and in vivo assays such
as enzyme inhibition or cell line testing. Over time,
artificial intelligence-driven virtual screening has
incorporated a wide range of computational
strategies. Integrating these digital approaches
with laboratory techniques significantly enhances
the chances of discovering novel bioactive
compounds (Santana et al., 202163

Ligand -based virtual screening (LBVS) and
structure-based virtual screening (SBVS) are two
computational approaches commonly employed in
compound screening. To identify new bioactive
molecules targeting specific biological systems or
molecular targets, these methods are often
integrated into comprehensive virtual screening
strategies. LBVS, in particular, predicts molecular
activity by analyzing a collection of known
bioactive compounds. This technique evaluates
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various intrinsic properties of the compounds,
such as their electronic characteristics, topological
features, physicochemical parameters, and
structural attributes (Berenger et al., 2017; Garcia-
Hernandez et al., 2019). &9

encompass a range of
machine  learning,

pharmacophore
modeling, searches, and
quantitative relationship
(QSAR) analysis. In contrast, structure-based
virtual screening (SBVS) utilizes the three-
dimensional configuration of a bioreceptor to

Computational tools
techniques
cheminformatics

such as

filters,

similarity-based
structure—activity

explore how ligands interact with its binding site.
The success of this method hinges on a thorough
understanding of intermolecular forces, the
makeup of binding site residues, ligand affinity,
and the conformational dynamics of the

bioreceptor (Maia et al., 2020¢7

Structure-based virtual screening (SBVS) employs
several key strategies to enhance ligand binding to
bioreceptors. These include molecular docking to
predict optimal binding orientations, molecular
dynamics simulations to assess the stability and
flexibility of ligand-receptor interactions, and
structure-based pharmacophore modeling to
identify essential features for binding affinity
(Wang et al., 2020) &9

Visual systems (VS) are fundamentally dependent
on a robust foundation of knowledge, drawing
heavily on both the depth and breadth of available
information about the subject being examined.
Their effectiveness hinges on the meticulous
curation and refinement of this data to ensure
accurate and meaningful analysis (Kirchweger &
Rollinger, 2018) ®9

Limited availability of 3D libraries for natural
products (NPs) has posed a challenge to
conducting screening  for

extensive virtual
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bioactive compounds. Despite this, several
impactful studies have emerged. Liu and Zhou
explored marine and traditional Chinese medicine
metabolites to identify potential inhibitors of the
SARS-CoV protease. Toney et al. discovered
sabadinine, a terpenoid alkaloid, as a promising
anti-SARS candidate. Moro highlighted ellagic
acid as a strong inhibitor of protein kinase CK2.
Furthermore, Zhao and Brinton demonstrated the
utility of receptor-based molecular docking in
pinpointing flavonoid compounds with high
affinity for estrogen receptors, showcasing its
value in selective ligand identification (Rollinger
et al., 200 These instances highlight the critical
role of virtual screening (VS) in propelling drug
discovery forward, particularly through the use of
robust

methodologies”©”

datasets and advanced screening

8.2 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations have been
widely applied to investigate biomacromolecules
such as proteins and nucleic acids. Advances in
this field now enable researchers to simulate entire
cells, offering deeper insights into the fundamental
molecular mechanisms of life. These simulations
are instrumental in exploring structural changes
under varying analyzing drug
interactions  with  biological targets, and
characterizing protein behavior (Heidari et al.,
2016b). Moreover, MD techniques allow the
observation of rapid molecular events at atomic-

conditions,

level detail within sub-millisecond timescales in

many biologically relevant systems (Borhani &
Shaw, 2012) ©D

8.2 Table: 1 Computational Methods in Virtual Screening ©?

Ethos Category Description Examples/ Tools
Cheminformatics Applies empirical rules (e.g., Lipinski's Rule of Lipinski's Rule,
Filters Five, Veber's Rule) to evaluate drug-likeness and Veber's Rule
pharmacokinetics based on physicochemical traits.
Molecular Uses binary encodings of molecular structures to SMILES (SMlfp
Fingerprint- assess compound similarity. Facilitates rapid SIFt, Jeffrey's
Based Methods screening using structural and pharmacophore fingerprint
features.
Similarity Quantifies molecular similarity using mathematical | Tanimoto, Dice,
Distance Metrics metrics applied to fingerprints. Cosine
coefficients
Pharmacophore | Identifies active compounds by matching chemical LigandScout,
Modeling features (ligand-based) or spatial MOE, Pharmer
3D Compares 3D molecular shapes to predict binding SHAFTS,
Shape-Similarity OptiPharm,
Search Shape-it
Machine Employs Al models to forecast bioactivity, QSAR models,
Learning deep
Algorithms

9. Challenges and limitations

A large volume of data is essential for training Al
systems effectively, making data accessibility a
key factor in their success. However, obtaining
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information from multiple database providers can
increase costs for companies seeking accurate
predictive outcomes. In addition, the data used
must be reliable and of high quality. Other
challenges hindering the widespread adoption of

3286 | Page



Mayuri Mohondkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3270-3297| Review

Al in the pharmaceutical industry include a
shortage of skilled professionals capable of
managing Al-driven platforms, limited financial
resources—particularly among smaller firms—
concerns over potential job displacement, doubts
about the reliability of Al-generated results, and
the “black box™ issue, referring to the lack of
transparency in how Al systems reach their
conclusion ¢#%

Although some pharmaceutical companies have
already adopted artificial intelligence (AI), the
industry was expected to generate approximately
US$2.199 billion in revenue from Al-driven
solutions by 2022. Between 2013 and 2018, the
sector invested more than US$7.2 billion across
over 300 deals. To maximize the benefits of Al,
pharmaceutical firms must clearly communicate
the realistic objectives and problem-solving
capabilities that AI can offer. Cultivating a
workforce of software engineers and data
scientists who possess both robust Al expertise
and a deep understanding of the company’s
research and development priorities, as well as its
commercial goals, is essential for leveraging Al

platforms effectively (Research & Markets, 2019).
4

Through advances in total synthesis, semi-
synthetic methods, and biosynthetic engineering,
scientists are actively exploring new classes of
natural products (NPs) with antimicrobial
potential, while also enhancing and refining
existing ones. Moreover, antivirulence strategies
present an alternative approach to infection
control, with NPs that interfere with bacterial
quorum sensing emerging as promising tools in

this context (Atanasov et al., 2021; Merit et al., 20
95)

One of the key hurdles in applying Al to the
development of natural product-based medications
is maintaining high data quality. The effectiveness

U

‘\Z‘:ri:\',\} INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

7

of machine learning (ML) and deep learning
models heavily relies on the accuracy and
uniformity of the training data. Variations in
format, precision, and measurement standards
across different data sources can pose significant
challenges. Incomplete datasets may introduce
into models, necessitating the use of
imputation methods to address missing
information. To ensure that Al models deliver

bias

reliable predictions and can be generalized across
different scenarios, rigorous validation is essential.
Techniques such as cross-validation, which assess
model performance across multiple data subsets,
identifying like
overfitting or underfitting (Saldivar Gonzélez et
al., 2022). ©9

are instrumental in issues

Integrating artificial intelligence into drug
research presents notable regulatory hurdles. It is
essential for regulatory authorities to grasp the
reasoning behind Al-driven decisions. To facilitate
this, Al models must be designed with
interpretability in mind, and the
development process should be meticulously
documented (Okibe & Samuel, 2024).

entire

The effectiveness of Al in drug discovery can be
significantly enhanced through its integration with
omics technologies such as genomics, proteomics,
and metabolomics. This synergy enables a deeper
comprehension of biological systems and drug
interactions. By merging data across various omics
layers, researchers can achieve a holistic view of
disease pathways and therapeutic mechanisms. Al
plays a pivotal role in constructing and analyzing
biological  networks,  pinpointing critical
pathways, and predicting how alterations in these
pathways might influence disease progression and
treatment outcomes (Egwuatu et al., 2024; Paul et
al., 2021; Ekpan et al., 2024). ©7

10. LIMITATION
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While the review offers valuable insights, it is not
without limitations. To begin with, the diversity in
experimental models and cancer types investigated
makes  direct  comparisons  challenging.
Additionally, the majority of the included studies
are preclinical, leading to a limited number of
clinical trials that assess the therapeutic efficacy of
Peganum harmala and Nigella sativa compounds,
especially within frameworks involving artificial
intelligence. Furthermore, several studies lacked
detailed methodologies and reproducibility
information, increasing the risk of publication and
selection biase®®

While phytochemicals offer numerous benefits in
drug development, several limitations can hinder
their effectiveness, safety, and feasibility. One
major challenge is the intricate and diverse nature
of phytochemical profiles found in plants. This
complexity often results in difficulties with
consistent identification and extraction of specific
compounds %)

Environmental conditions—including climate,
geographic region, and soil characteristics—
significantly influence a plant's phytochemical
composition, which poses challenges for achieving
consistent standardizatio 1°0)

"Finally, potential safety and toxicity issues
represent a significant constraint, as certain
phytochemicals harmful effects.

Therefore, thorough toxicological assessments are
n(101)

may elicit

essential to ensure their safe application.
11.Future pespectives

To fully harness the capabilities of Al-assisted
phytochemical therapy, a number of strategic
initiatives are essential.

1. One key step involves developing Al-curated
databases of phytochemicals specifically
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targeted for anticancer applications. These

libraries should integrate comprehensive
molecular descriptors, detailed
pharmacokinetic  profiles, and thorough

toxicity evaluations to support effective and
safe therapeutic design

2. Initiating clinical trials that leverage Al-driven
synergy prediction platforms to guide
combination therapies incorporating bioactive
compounds from Peganum harmala or Nigella

sativa.
3. Developing robust, publicly accessible
databases that integrate natural product

profiles with Al models and pharmacological
outcomes to promote data transparency and
reproducibility (102

To successfully bridge the gap between laboratory
discoveries and  clinical  implementation,
collaborative efforts are essential—bringing
together oncologists, computational biologists,
pharmacognosists, and Al specialists. This
interdisciplinary approach fosters a seamless
integration of traditional medical practices with
cutting-edge therapeutic innovations (refer to
Figure 6 and Table 3 for synergy

11.1. The convergence of artificial intelligence
with natural product databases is set to evolve
in transformative ways:

1. Federated Learning: This technique allows
Al models to be trained across multiple
decentralized databases without exchanging
raw data, thereby preserving data privacy and
enhancing security.

2. Semantic Search: By leveraging semantic
search  capabilities, Al
significantly improve the

systems  will

accuracy and
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relevance of information retrieval from natural
product repositories.

3. Real-Time Data Integration: Al-powered
platforms enable the seamless
incorporation of newly generated data in real

will

time, ensuring that databases remain current
with the latest scientific findings (1%%

12.CONCLUSION:

Although challenges remain, the integration of Al
into natural product research offers immense
potential for advancing the development of
therapeutic compounds. By harnessing cutting-
edge innovations in artificial intelligence and
machine learning, scientists are able to expand the
frontiers of discovery, uncovering novel natural
products with promising medicinal properties !4

Al has revolutionized the development of herbal
medicines by overcoming traditional limitations
and streamlining key processes such as identifying
bioactive compounds, verifying plant species,
designing formulations, and predicting toxicity.
This advancement has led to reduced costs,
accelerated drug research, and enhanced
reliability. When integrated into areas like
pharmacovigilance, quality control, and synergy
modeling, Al ensures that natural remedies remain
consistently effective and trustworthy.
Additionally, real-time technologies and deep
learning-powered mobile
empowered non-specialists

applications have
to participate in
quality assurance and detect adulteration with
greater ease (109

Harnessing phytochemicals for drug discovery
presents a compelling strategy for developing
innovative therapeutic agents. When integrated
with  modern technologies, these natural
compounds can be effectively utilized in the drug
development pipeline. For instance, advancements

U
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in high-throughput screening and computational
methods can greatly accelerate the identification
and optimization of phytochemical-based
treatments, enhancing the efficiency of therapeutic
discovery (196
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