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Artificial Intelligence (AI) has emerged as a transformative force in drug discovery and 

pharmacology, offering unprecedented capabilities to accelerate and optimize the 

traditionally lengthy, expensive, and complex drug development pipeline. By leveraging 

machine learning (ML), deep learning (DL), and natural language processing (NLP), AI 

enables rapid identification of drug targets, virtual screening of lead compounds, drug 

repurposing, and early prediction of pharmacokinetic and pharmacodynamic properties. 

These techniques significantly reduce the time and cost associated with bringing new 

therapies to market while enhancing accuracy and efficacy. In pharmacology, AI aids in 

modeling drug interactions, understanding pharmacogenomic profiles, and predicting 

adverse drug reactions (ADRs) through real-time data from electronic health records 

(EHRs) and post-marketing surveillance. Tools such as AlphaFold for protein structure 

prediction, DeepChem for cheminformatics, and commercial platforms like Schrödinger 

and Insilico Medicine exemplify the integration of AI into both preclinical and clinical 

stages of drug development. Despite the promise, challenges such as data heterogeneity, 

lack of interpretability in deep models, and regulatory ambiguities remain significant 

hurdles. Ethical concerns surrounding data privacy and algorithmic bias also necessitate 

cautious implementation. However, ongoing advancements in explainable AI, federated 

learning, and quantum computing are poised to address many of these limitations. This 

review provides a comprehensive overview of current AI applications in drug discovery 

and pharmacology, discusses emerging tools and platforms, and explores future 

directions aimed at realizing precision medicine. The interdisciplinary collaboration 

between AI experts, pharmacologists, and regulatory bodies will be key to unlocking 

the full potential of AI in therapeutics.  
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INTRODUCTION 
The global drug discovery landscape is undergoing 

a paradigm shift driven by the increasing 

integration of Artificial Intelligence (AI) 

https://www.ijpsjournal.com/
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technologies. Traditionally, drug development is 

an extensive and resource-intensive process, often 

taking over 10–15 years and costing upwards of 

$2.6 billion to bring a single new chemical entity 

to market [1]. Despite these efforts, high attrition 

rates in clinical trials due to inefficacy or toxicity 

pose a persistent challenge, highlighting the urgent 

need for more efficient and predictive approaches. 

Artificial Intelligence, particularly machine 

learning (ML) and deep learning (DL), offers 

powerful tools for learning from large-scale 

biological, chemical, and clinical data to identify 

hidden patterns and actionable insights. These 

technologies are transforming various stages of the 

drug discovery pipeline—ranging from target 

identification, virtual screening, and de novo 

molecule generation to predicting 

pharmacokinetic/pharmacodynamic (PK/PD) 

behavior and adverse drug reactions (ADRs) [2,3]. 

Furthermore, AI-driven techniques such as natural 

language processing (NLP) facilitate mining of 

vast biomedical literature, patents, and clinical 

records to uncover novel drug-target-disease 

relationships [4]. In pharmacology, AI is proving 

instrumental in optimizing dosage regimens, 

modeling drug-drug interactions, and 

individualizing therapies through 

pharmacogenomics [5]. Platforms such as 

DeepMind's AlphaFold have revolutionized 

structural biology by accurately predicting protein 

structures, enabling rational drug design at an 

unprecedented scale [6]. Several 

biopharmaceutical companies and startups are 

now leveraging AI for high-throughput virtual 

screening, drug repurposing, and preclinical 

toxicity prediction [7,8]. Notable examples 

include BenevolentAI, Insilico Medicine, and 

Exscientia, all of which have developed AI-

generated compounds that have progressed to 

clinical trials [9]. The COVID-19 pandemic has 

further accelerated AI adoption, with platforms 

identifying repurposable drugs in record time [10]. 

Despite these advances, integrating AI in drug 

development presents challenges, such as the need 

for high-quality, interoperable datasets, model 

interpretability, regulatory hurdles, and ethical 

considerations related to patient data. Nonetheless, 

AI is poised to become a cornerstone in modern 

drug discovery and pharmacology, with the 

potential to shorten development cycles, reduce 

costs, and improve therapeutic outcomes. 

2. AI TECHNOLOGIES IN DRUG 

DISCOVERY 

2.1 Machine Learning (ML) 

Machine Learning (ML) plays a pivotal role in 

modern drug discovery by enabling the analysis of 

complex, high-dimensional biological and 

chemical datasets. Supervised learning is 

commonly applied in predicting molecular 

properties, binding affinities, and clinical 

outcomes based on labeled data. Unsupervised 

learning helps in clustering compounds and 

identifying hidden patterns in omics data. 

Reinforcement learning (RL) is emerging as a 

method to optimize de novo molecular design by 

simulating trial-and-error strategies in molecular 

spaces [11,12]. 

2.2 Deep Learning (DL) 

Deep Learning, a subfield of ML, utilizes neural 

networks with many layers to learn complex 

representations of data. Convolutional Neural 

Networks (CNNs) are widely used for analyzing 

biomedical images, such as histopathological 

slides, to identify cancer subtypes and drug 

responses. Recurrent Neural Networks (RNNs), 

including long short-term memory (LSTM) 

networks, are effective in processing sequential 

data such as SMILES (Simplified Molecular Input 

Line Entry System) strings and genomic 

sequences. DL models significantly outperform 
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traditional QSAR models in prediction tasks 

[13,14]. 

2.3 Natural Language Processing (NLP) 

Natural Language Processing (NLP) is employed 

to mine biomedical literature, patents, clinical trial 

reports, and EHRs. By extracting relationships 

among drugs, genes, proteins, and diseases, NLP 

helps in building knowledge graphs and drug-

disease association maps. Named entity 

recognition (NER), part-of-speech tagging, and 

dependency parsing are common techniques used 

in biomedical NLP pipelines. Recent models like 

BioBERT and SciSpacy are trained specifically on 

biomedical corpora [15,16]. 

2.4 Generative Models 

Generative models such as Generative Adversarial 

Networks (GANs) and Variational Autoencoders 

(VAEs) have revolutionized the field of de novo 

drug design. These models generate novel 

chemical structures by learning latent 

representations of molecular data. GANs use a 

generator-discriminator setup to create realistic 

molecular graphs or SMILES strings, while VAEs 

map molecules into a continuous latent space for 

property optimization. These methods can 

generate drug-like molecules with specific target 

affinities or ADMET profiles [17,18]. 

3. Key Applications in Drug Discovery 

3.1 Target Identification and Validation 

Target identification is the foundational step in 

drug discovery. AI analyzes complex biological 

datasets—such as genomics, transcriptomics, and 

proteomics—to uncover disease-associated genes 

and proteins. Network-based algorithms and 

machine learning methods like Random Forests, 

Support Vector Machines (SVM), and deep 

learning extract actionable insights from high-

dimensional omics data. AI can also integrate 

knowledge graphs and protein–protein interaction 

networks to prioritize and validate therapeutic 

targets [19,20] 

3.2 Lead Compound Discovery and 

Optimization 

AI accelerates hit-to-lead and lead optimization 

stages by predicting how candidate compounds 

interact with biological targets. Virtual screening 

(VS) powered by ML and DL can rapidly evaluate 

thousands to millions of compounds for desirable 

binding affinity, selectivity, and physicochemical 

properties. Tools such as AtomNet and DeepDock 

deploy convolutional neural networks (CNNs) to 

assess 3D molecular docking scores and suggest 

lead molecules [21,22]. 

3.3 Drug Repurposing 

AI significantly shortens the drug development 

timeline through drug repurposing—identifying 

new uses for existing drugs. Using machine 

learning on molecular profiles, clinical data, and 

literature, AI uncovers hidden relationships among 

drugs, targets, and diseases. Notably, Benevolent 

AI used NLP and knowledge graph-based 

approaches to propose baricitinib as a COVID-19 

therapeutic, which later entered clinical trials 

[23,24]. 

3.4 ADMET Prediction 

Predicting Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET) early in drug 

development reduces costly clinical failures. AI 

models trained on large annotated datasets can 

forecast these properties with high precision. Deep 

neural networks, ensemble models, and transfer 

learning approaches have improved the prediction 

of hepatotoxicity, blood-brain barrier 

permeability, and cytochrome P450 interactions 

[25,26]. 
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3.5 Clinical Trial Design and Patient 

Stratification 

AI enhances clinical trial success by identifying 

biomarkers, optimal endpoints, and responsive 

patient subgroups. Machine learning can stratify 

patients based on genetic or phenotypic data, 

allowing for precision medicine approaches. 

Predictive models also optimize trial design by 

simulating outcomes and estimating statistical 

power, helping reduce time and cost. AI has been 

integrated into adaptive trials to modify protocols 

in real time [27,28]. 

4. 4. Applications in Pharmacology 

4.1 Pharmacokinetic and Pharmacodynamic 

Modeling (PK/PD) 

Pharmacokinetics (PK) and pharmacodynamics 

(PD) are essential for understanding how drugs 

behave in the body and how they elicit therapeutic 

effects. AI, especially machine learning 

algorithms, enhances PK/PD modeling by 

predicting drug concentration-time profiles, inter-

individual variability, and dose-response 

relationships. Unlike traditional compartmental 

models, AI-based models can account for 

nonlinear dynamics, complex covariate effects, 

and large-scale population variability (29). For 

instance, deep learning models can simulate 

virtual populations to forecast plasma drug levels 

under different dosing scenarios (30). This enables 

optimization of dosage regimens across diverse 

patient subgroups, improving therapeutic 

outcomes and reducing toxicity risks. 

4.2 Pharmacogenomics 

Pharmacogenomics investigates how genetic 

differences influence drug response. AI 

accelerates this process by integrating genomic, 

transcriptomic, and clinical data to identify 

genotype-phenotype associations. Techniques 

such as Random Forests, support vector machines 

(SVM), and neural networks are used to classify 

responders and non-responders to specific 

treatments (31). AI has facilitated the discovery of 

pharmacogenomic biomarkers, such as CYP2C9 

and VKORC1 variants for warfarin dosing, 

supporting personalized therapy (32). Moreover, 

AI-based models can suggest genetic signatures 

associated with adverse drug reactions or altered 

metabolism, laying the groundwork for precision 

medicine. 

4.3 Pharmacovigilance 

Traditional pharmacovigilance relies on 

spontaneous reporting systems, which are often 

slow and underreported. AI, particularly natural 

language processing (NLP) and machine learning 

(ML), transforms pharmacovigilance by enabling 

real-time analysis of adverse drug events (ADEs) 

from diverse sources such as electronic health 

records (EHRs), clinical notes, social media, and 

regulatory databases (33). NLP can extract drug-

event relationships from unstructured texts, while 

ML classifies and predicts the severity and 

frequency of side effects (34). Platforms like 

MedWatcher Social and FDA’s Sentinel system 

have incorporated AI-based monitoring, 

improving early detection of safety signals and 

public health responses (35). 

5. PROMINENT TOOLS AND PLATFORMS 

DeepChem 

DeepChem is an open-source Python-based library 

that provides tools for applying deep learning to 

drug discovery, materials science, and quantum 

chemistry. It supports molecular featurization, 

graph convolutional models, and multitask 

learning, enabling rapid development of predictive 

models for molecular properties, bioactivity, and 

ADMET characteristics (36). Its modular structure 

allows researchers to implement state-of-the-art 



Tanmay Kohad, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 2011-2019 |Review   

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 2015 | P a g e  

algorithms and benchmark them across multiple 

datasets. 

AtomNet 

AtomNet is a pioneering deep convolutional 

neural network (CNN) architecture developed by 

Atomwise for structure-based drug design. It 

predicts binding affinities by analyzing the spatial 

configuration of atoms within target-ligand 

complexes. AtomNet has been used in virtual 

screening campaigns for diseases including Ebola 

and multiple cancers, demonstrating high-

throughput prediction of molecular interactions 

with protein binding sites (37). 

AlphaFold 

Developed by DeepMind, AlphaFold is a 

revolutionary deep learning system that predicts 

protein 3D structures from amino acid sequences 

with atomic-level accuracy. Alpha Fold has solved 

structures for nearly every known human protein, 

greatly enhancing structure-based drug discovery 

by providing structural information that was 

previously inaccessible via experimental methods 

(38). Its open-source implementation, 

AlphaFold2, has been widely adopted by both 

academia and industry. 

Commercial Platforms: Schrödinger, BioXcel, 

Insilico Medicine 

Several commercial platforms have successfully 

integrated AI into pharmaceutical R&D: 

• Schrödinger combines physics-based 

modeling with ML algorithms to accelerate 

drug lead identification and optimization. Its 

platform is used for virtual screening, 

molecular docking, and ADMET prediction 

(39). 

• BioXcel Therapeutics uses AI to repurpose 

and develop drugs for neuroscience and 

immuno-oncology. Their AI engine analyzes 

multi-modal data to identify new therapeutic 

opportunities (40). 

• Insilico Medicine utilizes generative 

adversarial networks (GANs) and 

reinforcement learning to design novel 

molecules. Its end-to-end AI drug discovery 

platform has led to the identification of 

clinical candidates in record time (41). 

6. CASE STUDIES 

6.1 AlphaFold 2 by DeepMind (2021) 

In a landmark achievement, DeepMind’s 

AlphaFold 2 solved the protein structure 

prediction problem with near-experimental 

accuracy. Leveraging advanced deep learning 

techniques such as attention mechanisms and 

geometric reasoning, AlphaFold 2 outperformed 

all other methods at the 14th Critical Assessment 

of protein Structure Prediction (CASP14) (42). 

The ability to predict three-dimensional protein 

structures solely from amino acid sequences has 

significantly accelerated target identification in 

drug discovery by enabling structural 

understanding of previously uncharacterized 

proteins (43). The freely available AlphaFold 

Protein Structure Database provides access to 

structures for nearly all human proteins, 

facilitating both basic biology and drug 

development efforts. 

6.2 DSP-1181: AI-Designed Drug from 

Exscientia and Sumitomo Dainippon Pharma 

DSP-1181 is the first drug molecule designed 

using artificial intelligence to enter human clinical 

trials. Developed collaboratively by Exscientia 

and Sumitomo Dainippon Pharma, DSP-1181 is a 

serotonin 5-HT1A receptor agonist intended to 

treat obsessive-compulsive disorder (OCD). Using 

AI, the team reduced the drug design cycle to less 

than 12 months—far shorter than traditional 

timelines (44). Exscientia’s AI platform integrated 
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data on chemistry, pharmacology, and clinical 

outcomes to generate and optimize the molecular 

structure, setting a precedent for AI-enabled de 

novo drug design and candidate selection. 

6.3 IBM Watson for Drug Discovery 

IBM Watson applied natural language processing 

(NLP) and machine learning to mine vast 

quantities of biomedical literature and databases. 

Its system was used to identify novel drug-disease 

associations by correlating disparate pieces of 

biomedical information. For instance, it helped 

uncover potential drug candidates for glioblastoma 

by analyzing published literature and inferring 

connections between genes, pathways, and drugs 

that human researchers might miss (45). Watson’s 

ability to synthesize knowledge from unstructured 

data sources has influenced research pipelines in 

drug repurposing and target discovery. 

7. CHALLENGES AND LIMITATIONS 

7.1 Data Quality and Integration 

A fundamental challenge in AI-driven drug 

discovery is the quality and heterogeneity of 

biomedical data. Data often come from disparate 

sources—genomic databases, electronic health 

records (EHRs), clinical trials, and literature—

each with its own structure, format, and bias (46). 

Many datasets are incomplete, unstructured, or 

mislabeled, which can significantly degrade model 

performance and reproducibility. The integration 

of multi-omics data and longitudinal patient 

information remains an ongoing technical and 

computational hurdle (47). 

7.2 Model Interpretability 

While deep learning models, such as convolutional 

and recurrent neural networks, provide high 

predictive accuracy, they often function as “black 

boxes,” lacking transparent reasoning pathways 

(48). This opacity raises concerns in healthcare, 

where decisions must be justified to regulators, 

clinicians, and patients. Tools like SHAP 

(SHapley Additive exPlanations) and LIME 

(Local Interpretable Model-agnostic 

Explanations) are being developed to enhance 

interpretability, but widespread implementation 

remains limited (49). 

7.3 Regulatory Barriers 

There is currently a lack of clear regulatory 

frameworks for the approval of AI-generated drug 

candidates. Regulatory agencies like the FDA and 

EMA are still adapting to the rapidly evolving AI 

landscape, struggling to define validation 

standards, safety thresholds, and responsibility for 

AI-driven decisions (50). This uncertainty can 

delay or complicate the adoption of AI tools in 

official drug pipelines. 

7.4 Ethical Issues 

Ethical considerations include data privacy, 

especially when using sensitive genetic or patient 

health information. Moreover, algorithmic bias—

stemming from non-representative training data—

can lead to unequal outcomes across demographic 

groups (51). Another major issue is equitable 

access to AI-powered drug discovery 

technologies, which are often concentrated in 

wealthier institutions or countries, potentially 

widening global health disparities (52). 

8. FUTURE PROSPECTS 

• Federated Learning: Enables decentralized 

training across institutions while preserving 

data privacy. 

• Explainable AI (XAI): Making AI decisions 

interpretable to enhance trust and 

transparency. 

• Integration with Quantum Computing: 

Promises exponential speed-ups in molecular 

simulations. 



Tanmay Kohad, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 2011-2019 |Review   

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 2017 | P a g e  

• AI in Polypharmacology: Designing multi-

target drugs for complex diseases like cancer 

and Alzheimer’s. 

9. CONCLUSION 

Artificial intelligence has ushered in a new era of 

efficiency and innovation in drug discovery and 

pharmacology. While challenges remain, the 

convergence of AI with omics, real-world data, 

and high-throughput screening is laying the 

foundation for a more precise, cost-effective, and 

patient-centric drug development paradigm. A 

multidisciplinary approach, combining domain 

expertise with robust AI methodologies, will be 

pivotal in realizing the full potential of this 

technological revolution. 
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