
Yogesh Kakrambe, Int. J. of Pharm. Sci., 2026, Vol 4, Issue 2, 2034-2050 |Review 

*Corresponding Author: Yogesh Kakrambe 

Address: Department of Pharmaceutical Quality Assurance, Student, Rajgad Dnyanpeeth's College of Pharmacy, Bhor, 

Dis. Pune Pin: 412206 

Email ✉:  kakrambeyogesh1110@gmail.com 

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of 

any commercial or financial relationships that could be construed as a potential conflict of interest.   
                  
              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                2034 | P a g e  

Drug discovery is a complex, time-consuming, and costly process, traditionally 

requiring over a decade and billions of dollars to bring a new drug to market. Recent 

advances in artificial intelligence (AI), particularly machine learning (ML) and deep 

learning (DL), have transformed multiple stages of the drug discovery pipeline. AI-

driven approaches enable faster target identification, improved hit-to-lead optimization, 

accurate prediction of molecular properties, and more efficient clinical trial design. This 

review summarizes the core AI methodologies used in drug discovery, highlights key 

applications across the pipeline, discusses current challenges, and outlines future 

directions for AI-enabled pharmaceutical research.. 

 

 

 

INTERNATIONAL JOURNAL OF  

PHARMACEUTICAL SCIENCES 

[ISSN: 0975-4725; CODEN(USA): IJPS00] 

Journal Homepage: https://www.ijpsjournal.com 

 

Review Paper 

Artificial Intelligence (AI) In Drug Discovery 

Yogesh Kakrambe
1

, Dr. Kardile Prabhakar
2

, Rajkumar Shete
3

, Sambodhi Patil
4

, 

Sandip pawar
5 

1235Department of Pharmaceutical Quality Assurance, Faculty, Rajgad Dnyanpeeth's College of Pharmacy, 

Bhor, Dis.Pune Pin: 412206. 
4Department of Pharmaceutical Quality Assurance, Pdea’s Seth Govind Raghunath Sable College Of Pharmacy, 

Saswad, Pune 

ARTICLE INFO                              ABSTRACT                      
Published:  13 Feb 2026 

Keywords: 

AI: Artificial Intelligence; 

NDA: New Drug 

Application; 

DOI:    

10.5281/zenodo.18628484 

 

 

INTRODUCTION 

The traditional drug discovery process involves 

target identification, hit discovery, lead 

optimization, preclinical testing, and clinical trials. 

High attrition rates, limited biological 

understanding, and experimental costs have 

motivated the adoption of computational 

approaches. AI has emerged as a powerful tool due 

to its ability to learn complex patterns from large-

scale biological and chemical datasets. With the 

availability of high-throughput screening data, 

omics data, and chemical libraries, AI is 

increasingly integrated into modern drug 

discovery workflows.The vast chemical space, 

comprising >1060 molecules, fosters the 

development of a large number of drug 

molecules [19]. However, the lack of advanced 

technologies limits the drug development process, 

making it a time-consuming and expensive task, 

which can be addressed by using AI [15]. AI can 

recognize hit and lead compounds, and provide a 

https://www.ijpsjournal.com/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7577280/#bib0095
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quicker validation of the drug target and 

optimization of the drug structure design 19, 20. 

Different applications of AI in drug discovery are 

depicted in Figure 

Despite its advantages, AI faces some significant 

data challenges, such as the scale, growth, 

diversity, and uncertainty of the data. The data sets 

available for drug development in pharmaceutical 

companies can involve millions of compounds, 

and traditional ML tools might not be able to deal 

with these types of data. Quantitative structure-

activity relationship (QSAR)-based computational 

model can quickly predict large numbers of 

compounds or simple physicochemical 

parameters, such as log P or log D. However, these 

models are some way from the predictions of 

complex biological properties, such as the efficacy 

and adverse effects of compounds. In addition, 

QSAR-based models also face problems such as 

small training sets, experimental data error in 

training sets, and lack of experimental validations. 

To overcome these challenges, recently developed 

AI approaches, such as DL and relevant modeling 

studies, can be implemented for safety and 

efficacy evaluations of drug molecules based on 

big data modeling and analysis. In 2012, Merck 

supported a QSAR ML challenge to observe the 

advantages of DL in the drug discovery process in 

the pharmaceutical industry. DL models showed 

significant predictivity compared with traditional 

ML approaches for 15 absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) 

data sets of drug candidates .The virtual chemical 

space is enormous and suggests a geographical 

map of molecules by illustrating the distributions 

of molecules and their properties. The idea behind 

the illustration of chemical space is to collect 

positional information about molecules within the 

space to search for bioactive compounds and, thus, 

virtual screening (VS) helps to select appropriate 

molecules for further testing. Several chemical 

spaces are open access, including PubChem, 

ChemBank, DrugBank, and 

ChemDB.Numerous in silico methods to virtual 

screen compounds from virtual chemical spaces 

along with structure and ligand-based approaches, 

provide a better profile analysis, faster elimination 

of nonlead compounds and selection of drug 

molecules, with reduced expenditure . Drug design 

algorithms, such as coulomb matrices and 

molecular fingerprint recognition, consider the 

physical, chemical, and toxicological profiles to 

select a lead compound .Various parameters, such 

as predictive models, the similarity of molecules, 

the molecule generation process, and the 

application of in silico approaches can be used to 

predict the desired chemical structure of a 

compound . Pereira et al. presented a new system, 

DeepVS, for the docking of 40 receptors and 2950 

ligands, which showed exceptional performance 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7577280/#bib0095
https://pmc.ncbi.nlm.nih.gov/articles/PMC7577280/#bib0100
https://pmc.ncbi.nlm.nih.gov/articles/PMC7577280/#fig0015
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when 95 000 decoys were tested against these 

receptors . Another approach applied a 

multiobjective automated replacement algorithm 

to optimize the potency profile of a cyclin-

dependent kinase-2 inhibitor by assessing its shape 

similarity, biochemical activity, and 

physicochemical properties .QSAR modeling 

tools have been utilized for the identification of 

potential drug candidates and have evolved into 

AI-based QSAR approaches, such as linear 

discriminant analysis (LDA), support vector 

machines (SVMs), random forest (RF) and 

decision trees, which can be applied to speed up 

QSAR analysis . King et al. found a negligible 

statistical difference when the ability of six AI 

algorithms to rank anonymous compounds in 

terms of biological activity was compared with 

that of traditional approaches . 

Applications Across the Drug Discovery 

Pipeline 

Target Identification and Validation 

AI models analyze genomic, transcriptomic, 

proteomic, and biomedical literature data to 

identify disease-associated targets. Network-based 

AI approaches help uncover complex disease 

mechanisms and drug–target interactions. 

Role of AI in Target Identification 

AI techniques integrate and analyze large-scale 

datasets generated from genomics, 

transcriptomics, proteomics, and metabolomics 

studies. Machine learning algorithms identify 

disease-associated genes by recognizing patterns 

and correlations that are often undetectable 

through conventional statistical approaches. 

Network-based models further assist in mapping 

protein–protein interactions and signaling 

pathways, helping to prioritize targets that are 

central to disease networks. 

Natural Language Processing (NLP) tools are 

widely used to extract target–disease relationships 

from vast biomedical literature, patents, and 

clinical trial databases. This automated literature 

mining accelerates hypothesis generation and 

supports evidence-based target selection. 

AI-Assisted Target Validation 

Once potential targets are identified, AI supports 

target validation by predicting functional 

relevance and therapeutic feasibility. Deep 

learning models assess target druggability by 

evaluating structural features, binding site 

accessibility, and similarity to known drug targets. 

AI also predicts off-target effects and safety 

concerns early in development.Integrative AI 

platforms combine biological data with clinical 

and real-world evidence to validate whether 

modulation of a target is likely to produce a 

meaningful therapeutic effect. This data-driven 

validation reduces the risk of late-stage failure and 

improves confidence in target selection. 

Advantages of AI-Based Target Identification 

and Validation 

AI-driven approaches significantly reduce time 

and cost by automating data analysis and 

prioritization. They enable the discovery of novel 

and non-obvious targets, enhance prediction 

accuracy, and support personalized medicine by 

identifying patient-specific targets based on 

molecular profiles. 

Virtual Screening and Hit Identification 

AI-driven virtual screening significantly reduces 

the search space by predicting ligand–target 

binding affinity, outperforming traditional 

docking methods in speed and scalability. 
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AI-Driven Virtual Screening 

Traditional virtual screening methods rely on 

molecular docking and scoring functions, which 

are often time-consuming and limited in predictive 

accuracy. AI-based virtual screening employs 

machine learning (ML) and deep learning (DL) 

algorithms to predict ligand–target interactions 

more efficiently. Models such as convolutional 

neural networks (CNNs), graph neural networks 

(GNNs), and support vector machines (SVMs) 

analyze molecular structures and protein features 

to estimate binding affinity and activity.Ligand-

based virtual screening uses AI models trained on 

known active and inactive compounds to identify 

new molecules with similar physicochemical and 

biological properties. Structure-based virtual 

screening integrates protein structural information 

to improve interaction predictions, even for large 

and diverse compound libraries. 

Hit Identification 

AI accelerates hit identification by ranking 

compounds based on predicted activity, 

selectivity, and drug-likeness. Deep learning 

models evaluate molecular descriptors and 

fingerprints to prioritize high-quality hits while 

minimizing false positives. AI-assisted screening 

can analyze millions of compounds in a fraction of 

the time required for experimental high-

throughput screening.Additionally, AI helps filter 

compounds based on toxicity and ADMET 

properties at early stages, ensuring that identified 

hits have favorable safety and pharmacokinetic 

profiles. 

Advantages of AI in Virtual Screening and Hit 

Identification 

AI-driven approaches significantly reduce 

computational cost, increase screening speed, and 

improve hit rates. They allow efficient exploration 

of vast chemical spaces and enable identification 

of novel chemical scaffolds that may not be 

detected using conventional methods. 

Lead Optimization 

Predictive AI models assist in optimizing 

pharmacokinetic and pharmacodynamic 

properties, including absorption, distribution, 

metabolism, excretion, and toxicity (ADMET). 

Role of AI in Lead Optimization 
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AI models analyze structure–activity relationship 

(SAR) data to predict how chemical modifications 

influence potency and selectivity. Machine 

learning algorithms such as random forest, support 

vector machines, and deep neural networks 

evaluate molecular descriptors and fingerprints to 

guide rational optimization strategies.Deep 

learning architectures, including graph neural 

networks (GNNs), capture complex molecular 

structures and interactions, allowing precise 

prediction of binding affinity and biological 

activity. These models help medicinal chemists 

prioritize structural modifications with the highest 

likelihood of success. 

Generative AI for Molecular Design 

Generative AI techniques such as variational 

autoencoders (VAEs), generative adversarial 

networks (GANs), and reinforcement learning are 

increasingly used to design novel chemical 

structures. These models generate optimized 

molecules that satisfy multiple objectives 

simultaneously, including potency, solubility, 

metabolic stability, and synthetic 

feasibility.Reinforcement learning approaches 

iteratively refine molecular structures by 

rewarding desirable properties, enabling efficient 

exploration of chemical space beyond traditional 

trial-and-error methods. 

Multi-Parameter Optimization 

AI facilitates multi-parameter optimization by 

balancing efficacy, safety, and pharmacokinetic 

properties. Predictive models simultaneously 

assess parameters such as lipophilicity, solubility, 

permeability, metabolic stability, and toxicity, 

reducing the risk of late-stage failures. 

Advantages of AI-Driven Lead Optimization 

AI significantly reduces development time and 

cost by automating SAR analysis and molecular 

design. It enhances decision-making accuracy, 

enables discovery of novel scaffolds, and 

improves success rates in advancing optimized 

leads toward preclinical development. 

Drug Repurposing 

AI enables rapid identification of new therapeutic 

indications for existing drugs by integrating 

chemical, biological, and clinical data, as 

demonstrated during the COVID-19 pandemic. 

Role of AI in Drug Repurposing 

AI integrates chemical, biological, genomic, and 

clinical data to uncover novel drug–disease 

relationships. Machine learning models analyze 

gene expression profiles, protein–protein 

interaction networks, and pathway data to predict 

how existing drugs can modulate disease-related 

biological processes. These data-driven 

approaches enable the identification of 

repurposing opportunities that may not be evident 

through conventional methods. 

Natural Language Processing (NLP) techniques 

further support drug repurposing by mining 

scientific literature, clinical trial reports, electronic 

health records, and adverse event databases. NLP-

based models extract valuable insights on drug 

effects, side effects, and disease associations, 

facilitating hypothesis generation for new 

indications. 

Network-Based and Similarity Approaches 

AI-driven network pharmacology models 

construct drug–target–disease interaction 

networks to identify potential repositioning 

candidates. Similarity-based algorithms compare 

molecular structures, gene expression signatures, 

or pharmacological profiles to match existing 
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drugs with diseases exhibiting similar biological 

characteristics.Deep learning models, including 

graph neural networks, enhance prediction 

accuracy by capturing complex relationships 

within these networks and prioritizing high-

confidence repurposing candidates. 

Advantages of AI-Based Drug Repurposing 

AI-enabled drug repurposing significantly reduces 

risk by leveraging known safety and 

pharmacokinetic data. It enables rapid response to 

emerging diseases, supports personalized 

treatment strategies, and improves the efficiency 

of translational research. 

Clinical Trial Design 

AI supports patient stratification, biomarker 

discovery, and trial outcome prediction, improving 

trial efficiency and success rates. 

Role of AI in Clinical Trial Design 

AI algorithms analyze large volumes of clinical, 

genomic, and real-world data to support data-

driven trial planning. Machine learning models 

evaluate historical trial data and electronic health 

records (EHRs) to identify suitable patient 

populations, define inclusion and exclusion 

criteria, and predict patient responses to 

treatment.AI also enables adaptive trial designs by 

continuously analyzing incoming trial data and 

suggesting protocol modifications, such as dose 

adjustments or cohort expansion, to improve trial 

outcomes. 

Patient Recruitment and Stratification 

Patient recruitment is a major challenge in clinical 

trials. AI-based tools use NLP and predictive 

analytics to screen EHRs and medical databases, 

identifying eligible participants more efficiently. 

AI also supports patient stratification by grouping 

participants based on genetic, molecular, or 

clinical characteristics, enhancing precision 

medicine and reducing variability in trial results. 

Outcome Prediction and Risk Assessment 

AI models predict clinical trial outcomes by 

assessing efficacy, safety, and potential adverse 

events. Predictive analytics help identify high-risk 

patients, anticipate trial failures, and optimize 

endpoints, thereby reducing late-stage attrition and 

development costs. 

Advantages of AI in Clinical Trial Design 

AI-driven clinical trial design improves trial 

efficiency, reduces timelines, enhances patient 

safety, and increases the likelihood of regulatory 

success. It supports personalized treatment 
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strategies and facilitates evidence-based decision-

making throughout the trial lifecycle. 

Advantages of AI in Drug Discovery 

Reduced cost and development time 

Improved prediction accuracy 

Ability to handle high-dimensional, multimodal 

data 

Discovery of novel chemical space beyond human 

intuition 

1. Reduced Time and Cost 

AI significantly shortens the drug discovery 

timeline by automating data analysis, virtual 

screening, and lead optimization. Tasks that 

traditionally take years can now be completed in 

months, leading to substantial reductions in 

research and development costs. 

2. Improved Target Identification 

AI analyzes large-scale biological datasets to 

identify and validate novel drug targets with 

higher accuracy. This reduces the likelihood of 

selecting ineffective targets and lowers the risk of 

late-stage clinical failure. 

3. Enhanced Hit and Lead Discovery 

AI-driven virtual screening enables rapid 

evaluation of millions of compounds, increasing 

hit rates and identifying novel chemical scaffolds. 

AI also improves structure–activity relationship 

(SAR) analysis, leading to better-quality lead 

compounds. 

4. Better Prediction of ADMET Properties 

Machine learning models accurately predict 

absorption, distribution, metabolism, excretion, 

and toxicity (ADMET) profiles at early stages. 

Early toxicity prediction reduces late-stage 

failures and improves overall drug safety. 

5. Support for Drug Repurposing 

AI accelerates drug repurposing by identifying 

new therapeutic indications for existing drugs 

using biological, chemical, and clinical data. This 

approach reduces development risk and allows 

faster entry into clinical trials. 

6. Improved Clinical Trial Efficiency 

AI optimizes clinical trial design through better 

patient selection, stratification, and outcome 

prediction. This enhances trial success rates, 

reduces patient dropout, and improves regulatory 

approval prospects. 

7. Data Integration and Decision Support 

AI integrates diverse data sources such as 

genomics, proteomics, chemical libraries, and 

real-world evidence. This holistic analysis 

supports informed decision-making and reduces 

human bias. 

8. Personalized and Precision Medicine 

AI enables personalized drug discovery by 

identifying patient-specific targets and predicting 

individual treatment responses. This supports the 

development of precision medicines tailored to 

specific populations. 

Challenges and Limitations 

Despite its promise, AI in drug discovery faces 

several challenges: 

Limited availability of high-quality, unbiased data 

Lack of model interpretability and explainability 

Poor generalization across biological domains 

Regulatory and ethical concerns 

Integration with experimental validation 
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1. Data Quality and Availability 

AI models rely heavily on large, high-quality, and 

well-annotated datasets. In drug discovery, 

available data are often incomplete, noisy, biased, 

or proprietary. Poor data quality can lead to 

inaccurate predictions and unreliable outcomes, 

limiting the effectiveness of AI-driven approaches. 

2. Lack of Data Standardization 

Biological and chemical data originate from 

diverse sources and are generated using different 

experimental protocols. The absence of 

standardized data formats and reporting practices 

complicates data integration and model training, 

reducing reproducibility and model robustness. 

3. Model Interpretability and Transparency 

Many AI models, particularly deep learning 

architectures, function as “black boxes,” making it 

difficult to interpret their predictions. Lack of 

explainability hinders trust among researchers and 

regulators, especially in high-stakes decisions 

related to safety and efficacy. 

4. Limited Generalizability 

AI models trained on specific datasets may 

perform poorly when applied to new targets, 

diseases, or chemical spaces. Overfitting and 

limited chemical diversity in training data reduce 

the ability of models to generalize across different 

drug discovery scenarios. 

5. Computational and Technical Constraints 

AI-driven drug discovery requires substantial 

computational resources, specialized 

infrastructure, and technical expertise. High costs 

and limited access to advanced computing 

facilities may restrict adoption, particularly in 

academic and small-scale research settings. 

6. Integration with Experimental Validation 

AI predictions must be experimentally validated, 

which remains time-consuming and expensive. 

Discrepancies between in silico predictions and in 

vitro or in vivo results can limit confidence in AI-

generated outcomes. 

7. Regulatory and Ethical Challenges 

The use of AI in drug discovery raises regulatory 

concerns regarding data privacy, model validation, 

and accountability. Regulatory agencies require 

transparent and reproducible evidence, which can 

be challenging to provide with complex AI 

models. 

8. Bias and Ethical Concerns 

Bias in training data can lead to biased predictions, 

potentially affecting drug safety and efficacy 

across different populations. Ethical concerns 

related to data usage, patient privacy, and fairness 

must be carefully addressed. 

Future Directions 

Future research is expected to focus on explainable 

AI, integration of physics-based and data-driven 

models, multimodal learning, and tighter coupling 

of AI predictions with automated laboratory 

experiments. Collaborative efforts between 

academia, industry, and regulatory agencies will 

be crucial for translating AI innovations into 

approved therapeutics. 

1.Integration of Multi-Omics Data 

Future AI systems will increasingly integrate 

multi-omics datasets, including genomics, 

transcriptomics, proteomics, metabolomics, and 

epigenomics. This holistic data integration will 

enable more accurate target identification, disease 
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stratification, and personalized drug discovery 

approaches. 

2. Explainable and Interpretable AI 

Developing explainable AI (XAI) models will be 

a major focus to address the “black-box” nature of 

current deep learning methods. Transparent 

models will enhance trust among researchers and 

regulatory agencies by providing clear rationale 

for predictions related to target selection, toxicity, 

and efficacy. 

3. Generative AI and De Novo Drug Design 

Advances in generative AI, including large 

language models, graph-based models, and 

reinforcement learning, will enable efficient de 

novo design of drug molecules. These systems will 

generate optimized compounds with improved 

efficacy, safety, and synthetic feasibility, 

accelerating lead discovery and optimization. 

4. AI-Driven Automation and Closed-Loop 

Systems 

Future drug discovery platforms will integrate AI 

with laboratory automation to create closed-loop 

systems. These systems will continuously design, 

synthesize, test, and optimize compounds with 

minimal human intervention, significantly 

reducing development timelines. 

5. Improved Prediction of Clinical Success 

AI models will increasingly incorporate real-world 

evidence, electronic health records, and clinical 

trial data to better predict clinical outcomes. This 

will reduce late-stage failures and improve the 

probability of regulatory approval. 

6. Personalized and Precision Medicine 

AI will enable personalized drug discovery by 

identifying patient-specific targets and predicting 

individual treatment responses. This approach will 

support the development of precision therapies 

tailored to genetic and molecular profiles. 

7. Enhanced Drug Repurposing and Pandemic 

Preparedness 

AI-driven drug repurposing will continue to 

expand, enabling rapid identification of 

therapeutic options for emerging diseases. This 

capability will strengthen global preparedness for 

pandemics and public health emergencies. 

8. Regulatory Acceptance and Standardization 

Future efforts will focus on establishing regulatory 

frameworks, validation standards, and best 

practices for AI models in drug discovery. 

Increased collaboration between researchers, 

industry, and regulatory bodies will support 

broader adoption and compliance. 

CONCLUSION 

AI has become an indispensable component of 

modern drug discovery, offering transformative 

improvements in efficiency and innovation. While 

challenges remain, continued advances in 

algorithms, data quality, and interdisciplinary 

collaboration are likely to make AI-driven drug 

discovery a cornerstone of pharmaceutical 

research. The use of AI technology in drug design 

has grown rapidly due to its predictive ability and 

accuracy. This review highlights the numerous 

applications of AI in all phases of drug 

development, from disease diagnosis to post-

marketing analysis. AI helps in the early prediction 

of diseases, the development of personalized 

medicine, optimization of drug doses, and the 

prediction of treatment outcomes. Additionally, AI 

assists in target and lead identification through the 
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prediction of protein structures and biological 

activities of small molecules. AI technology can 

also predict drug-like properties and off-target 

effects of new compounds, reducing the need for 

experimental validation. Furthermore, AI-driven 

approaches improve patient stratification, 

recruitment, monitoring, and follow-ups in clinical 

trials, and can even assist in FDA approvals and 

pharmacovigilance. The integration of AI in drug 

design has resulted in faster drug discovery, cost 

savings, reduced resource and manpower usage, 

and decreased attrition rates in clinical trials. 

Additionally, AI helps to minimize the use of in 

vivo bioassays, reducing animal sacrifice. AI has 

far-reaching applications beyond medicine, 

including healthcare management, surgeries, 

mRNA vaccination, preventive treatments, and 

nutrigenomics. However, it is important to note 

that AI models are meant to complement human 

intelligence, not replace it. AI models may have 

comparable or better predictive ability than human 

researchers, but they still lack human intuition. 

Predictions made by AI machines must be verified 

by humans, as AI models can provide false 

positive and false negative results, compromising 

the sensitivity and specificity of the model. 

Additionally, resource sustainability needs holistic 

solutions like cost-aware cross-layer co-design, 

integrating hardware, algorithms, and models for 

efficient exploration of resource-sustainable 

configurations. Consensus-based distributed 

learning is suggested to fully utilize existing and 

future computing infrastructures, incorporating 

Internet-of-Things devices and edge servers for 

data sharing while ensuring privacy. Stable 

infrastructures with AI-enhanced resource 

allocation are recommended, involving dedicated 

healthcare AI infrastructures compliant with 

evolving government regulations. Lastly, 

interpretable self-supervised learning is proposed 

to address the sustainability issue in domain 

expertise, enhancing trust by extracting clinically 

useful features and providing human-interpretable 

evidence in healthcare applications. There are 

numerous challenges associated with AI, including 

the explainability of models, the quality and 

suitability of data used to train models, avoiding 

bias and overfitting, resource sustainability and 

more. It is crucial to remain aware of the 

limitations and risks associated with AI 

technology. Opportunities for improvement in AI 

technology include minimizing dependence on 

supercomputing power, addressing ethical 

concerns surrounding data collection, and 

implementing AI in a controlled manner in the 

healthcare sector to limit negative consequences. 

It is possible that the future of AI-assisted drug 

discovery lies in developing a virtual human with 

complete complexity, allowing for accurate 

predictions of all possible interactions between 

molecules and exploring all therapeutic potentials 

and adverse side effects. 
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