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ARTICLE INFO ABSTRACT
Published: 13 Feb 2026 Drug discovery is a complex, time-consuming, and costly process, traditionally
Keywords: requiring over a decade and billions of dollars to bring a new drug to market. Recent
Al: Artificial Intelligence; advances in artificial intelligence (Al), particularly machine learning (ML) and deep
NDA_5 N?W Drug learning (DL), have transformed multiple stages of the drug discovery pipeline. Al-
ggﬁ“caﬂon? driven approaches enable faster target identification, improved hit-to-lead optimization,

accurate prediction of molecular properties, and more efficient clinical trial design. This
review summarizes the core Al methodologies used in drug discovery, highlights key
applications across the pipeline, discusses current challenges, and outlines future
directions for Al-enabled pharmaceutical research..
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INTRODUCTION availability of high-throughput screening data,

omics data, and chemical libraries, Al is
The traditional drug discovery process involves jncreasingly integrated into modern drug
target  identification, hit discovery, lead giscovery workflows.The vast chemical space,
optimization, preclinical testing, and clinical trials.  comprising ~ >10% molecules, ~ fosters  the
High  attrition  rates, limited  biological  gevelopment of a large number of drug
understanding, and experimental costs have  olecules [19]. However, the lack of advanced
motivated the adoption of computational  technologies limits the drug development process,
approaches. Al has emerged as a powerful tooldue  aking it a time-consuming and expensive task,

to its ability to learn complex patterns from large-  \yhich can be addressed by using Al [15]. Al can
scale biological and chemical datasets. With the  rgcognize hit and lead compounds, and provide a
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quicker validation of the drug target and
optimization of the drug structure design 19, 20.

Despite its advantages, Al faces some significant
data challenges, such as the scale, growth,
diversity, and uncertainty of the data. The data sets
available for drug development in pharmaceutical
companies can involve millions of compounds,
and traditional ML tools might not be able to deal
with these types of data. Quantitative structure-
activity relationship (QSAR)-based computational
model can quickly predict large numbers of
compounds  or  simple  physicochemical
parameters, such as log P or log D. However, these
models are some way from the predictions of
complex biological properties, such as the efficacy
and adverse effects of compounds. In addition,
QSAR-based models also face problems such as
small training sets, experimental data error in
training sets, and lack of experimental validations.
To overcome these challenges, recently developed
Al approaches, such as DL and relevant modeling
studies, can be implemented for safety and
efficacy evaluations of drug molecules based on
big data modeling and analysis. In 2012, Merck
supported a QSAR ML challenge to observe the
advantages of DL in the drug discovery process in
the pharmaceutical industry. DL models showed
significant predictivity compared with traditional
ML approaches for 15 absorption, distribution,
metabolism, excretion, and toxicity (ADMET)
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Different applications of Al in drug discovery are
depicted in Figure

data sets of drug candidates .The virtual chemical
space is enormous and suggests a geographical
map of molecules by illustrating the distributions
of molecules and their properties. The idea behind
the illustration of chemical space is to collect
positional information about molecules within the
space to search for bioactive compounds and, thus,
virtual screening (VS) helps to select appropriate
molecules for further testing. Several chemical
spaces are open access, including PubChem,
ChemBank, DrugBank, and
ChemDB.Numerous in silico methods to virtual
screen compounds from virtual chemical spaces
along with structure and ligand-based approaches,
provide a better profile analysis, faster elimination
of nonlead compounds and selection of drug
molecules, with reduced expenditure . Drug design
algorithms, such as coulomb matrices and
molecular fingerprint recognition, consider the
physical, chemical, and toxicological profiles to
select a lead compound .Various parameters, such
as predictive models, the similarity of molecules,
the molecule generation process, and the
application of in silico approaches can be used to
predict the desired chemical structure of a
compound . Pereira et al. presented a new system,
DeepVS, for the docking of 40 receptors and 2950
ligands, which showed exceptional performance
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when 95 000 decoys were tested against these
receptors.  Another approach applied a
multiobjective automated replacement algorithm
to optimize the potency profile of a cyclin-
dependent kinase-2 inhibitor by assessing its shape
similarity, biochemical activity, and
physicochemical properties .QSAR  modeling
tools have been utilized for the identification of
potential drug candidates and have evolved into
Al-based QSAR approaches, such as linear
discriminant analysis (LDA), support vector
machines (SVMs), random forest (RF) and
decision trees, which can be applied to speed up
QSAR analysis. Kinget al. found a negligible
statistical difference when the ability of six Al
algorithms to rank anonymous compounds in
terms of biological activity was compared with
that of traditional approaches .

Applications Across the Drug Discovery
Pipeline

Target Identification and Validation

Al models analyze genomic, transcriptomic,
proteomic, and biomedical literature data to
identify disease-associated targets. Network-based
Al approaches help uncover complex disease
mechanisms and drug-target interactions.

Role of Al in Target Identification

Al techniques integrate and analyze large-scale
datasets generated from genomics,
transcriptomics, proteomics, and metabolomics
studies. Machine learning algorithms identify
disease-associated genes by recognizing patterns
and correlations that are often undetectable
through conventional statistical approaches.
Network-based models further assist in mapping
protein—protein  interactions and  signaling
pathways, helping to prioritize targets that are
central to disease networks.
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Natural Language Processing (NLP) tools are
widely used to extract target—disease relationships
from vast biomedical literature, patents, and
clinical trial databases. This automated literature
mining accelerates hypothesis generation and
supports evidence-based target selection.

Al-Assisted Target Validation

Once potential targets are identified, Al supports
target validation by predicting functional
relevance and therapeutic feasibility. Deep
learning models assess target druggability by
evaluating structural features, binding site
accessibility, and similarity to known drug targets.
Al also predicts off-target effects and safety
concerns early in development.integrative Al
platforms combine biological data with clinical
and real-world evidence to validate whether
modulation of a target is likely to produce a
meaningful therapeutic effect. This data-driven
validation reduces the risk of late-stage failure and
improves confidence in target selection.

Advantages of Al-Based Target Identification
and Validation

Al-driven approaches significantly reduce time
and cost by automating data analysis and
prioritization. They enable the discovery of novel
and non-obvious targets, enhance prediction
accuracy, and support personalized medicine by
identifying patient-specific targets based on
molecular profiles.

Virtual Screening and Hit Identification

Al-driven virtual screening significantly reduces
the search space by predicting ligand-target
binding affinity, outperforming traditional
docking methods in speed and scalability.
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Al-Driven Virtual Screening

Traditional virtual screening methods rely on
molecular docking and scoring functions, which
are often time-consuming and limited in predictive
accuracy. Al-based virtual screening employs
machine learning (ML) and deep learning (DL)
algorithms to predict ligand-target interactions
more efficiently. Models such as convolutional
neural networks (CNNs), graph neural networks
(GNNs), and support vector machines (SVMs)
analyze molecular structures and protein features
to estimate binding affinity and activity.Ligand-
based virtual screening uses Al models trained on
known active and inactive compounds to identify
new molecules with similar physicochemical and
biological properties. Structure-based virtual
screening integrates protein structural information
to improve interaction predictions, even for large
and diverse compound libraries.

Hit Identification

Al accelerates hit identification by ranking
compounds based on predicted activity,
selectivity, and drug-likeness. Deep learning
models evaluate molecular descriptors and
fingerprints to prioritize high-quality hits while
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Hit Compounds

minimizing false positives. Al-assisted screening
can analyze millions of compounds in a fraction of
the time required for experimental high-
throughput screening.Additionally, Al helps filter
compounds based on toxicity and ADMET
properties at early stages, ensuring that identified
hits have favorable safety and pharmacokinetic
profiles.

Advantages of Al in Virtual Screening and Hit
Identification

Al-driven  approaches significantly reduce
computational cost, increase screening speed, and
improve hit rates. They allow efficient exploration
of vast chemical spaces and enable identification
of novel chemical scaffolds that may not be
detected using conventional methods.

Lead Optimization

Predictive Al models assist
pharmacokinetic and pharmacodynamic
properties, including absorption, distribution,
metabolism, excretion, and toxicity (ADMET).

in optimizing

Role of Al in Lead Optimization
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Al models analyze structure—activity relationship
(SAR) data to predict how chemical modifications
influence potency and selectivity. Machine
learning algorithms such as random forest, support
vector machines, and deep neural networks
evaluate molecular descriptors and fingerprints to
guide rational optimization strategies.Deep
learning architectures, including graph neural
networks (GNNs), capture complex molecular
structures and interactions, allowing precise
prediction of binding affinity and biological
activity. These models help medicinal chemists
prioritize structural modifications with the highest
likelihood of success.

Generative Al for Molecular Design

Generative Al techniques such as variational
autoencoders (VAESs), generative adversarial
networks (GANSs), and reinforcement learning are
increasingly used to design novel chemical
structures. These models generate optimized
molecules that satisfy multiple objectives
simultaneously, including potency, solubility,
metabolic stability, and synthetic
feasibility.Reinforcement learning approaches
iteratively refine molecular structures by
rewarding desirable properties, enabling efficient
exploration of chemical space beyond traditional
trial-and-error methods.

Multi-Parameter Optimization

Al facilitates multi-parameter optimization by
balancing efficacy, safety, and pharmacokinetic
properties. Predictive models simultaneously
assess parameters such as lipophilicity, solubility,
permeability, metabolic stability, and toxicity,
reducing the risk of late-stage failures.

Advantages of Al-Driven Lead Optimization
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Al significantly reduces development time and
cost by automating SAR analysis and molecular
design. It enhances decision-making accuracy,
enables discovery of novel scaffolds, and
improves success rates in advancing optimized
leads toward preclinical development.

Drug Repurposing

Al enables rapid identification of new therapeutic
indications for existing drugs by integrating
chemical, biological, and clinical data, as
demonstrated during the COVID-19 pandemic.

Role of Al in Drug Repurposing

Al integrates chemical, biological, genomic, and
clinical data to uncover novel drug—disease
relationships. Machine learning models analyze
gene  expression  profiles,  protein—protein
interaction networks, and pathway data to predict
how existing drugs can modulate disease-related
biological ~ processes. = These  data-driven
approaches enable the identification of
repurposing opportunities that may not be evident
through conventional methods.

Natural Language Processing (NLP) techniques
further support drug repurposing by mining
scientific literature, clinical trial reports, electronic
health records, and adverse event databases. NLP-
based models extract valuable insights on drug
effects, side effects, and disease associations,
facilitating hypothesis generation for new
indications.

Network-Based and Similarity Approaches

Al-driven  network pharmacology = models
construct drug—target—disease interaction
networks to identify potential repositioning
candidates. Similarity-based algorithms compare
molecular structures, gene expression signatures,

or pharmacological profiles to match existing
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drugs with diseases exhibiting similar biological
characteristics.Deep learning models, including
graph neural networks, enhance prediction
accuracy by capturing complex relationships
within these networks and prioritizing high-
confidence repurposing candidates.

Advantages of Al-Based Drug Repurposing

Al-enabled drug repurposing significantly reduces
risk by leveraging known safety and

The Role of
Generative Al

in Modern =
Clinical Trials

Areplifying Patient s
Engogoement

Role of Al in Clinical Trial Design

Al algorithms analyze large volumes of clinical,
genomic, and real-world data to support data-
driven trial planning. Machine learning models
evaluate historical trial data and electronic health
records (EHRs) to identify suitable patient
populations, define inclusion and exclusion
criteria, and predict patient responses to
treatment.Al also enables adaptive trial designs by
continuously analyzing incoming trial data and
suggesting protocol modifications, such as dose
adjustments or cohort expansion, to improve trial
outcomes.

Patient Recruitment and Stratification

Patient recruitment is a major challenge in clinical
trials. Al-based tools use NLP and predictive
analytics to screen EHRs and medical databases,
identifying eligible participants more efficiently.
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pharmacokinetic data. It enables rapid response to
emerging  diseases, supports  personalized
treatment strategies, and improves the efficiency
of translational research.

Clinical Trial Design

Al supports patient stratification, biomarker
discovery, and trial outcome prediction, improving
trial efficiency and success rates.
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Al also supports patient stratification by grouping
participants based on genetic, molecular, or
clinical characteristics, enhancing precision
medicine and reducing variability in trial results.

Outcome Prediction and Risk Assessment

Al models predict clinical trial outcomes by
assessing efficacy, safety, and potential adverse
events. Predictive analytics help identify high-risk
patients, anticipate trial failures, and optimize
endpoints, thereby reducing late-stage attrition and
development costs.

Advantages of Al in Clinical Trial Design

Al-driven clinical trial design improves trial
efficiency, reduces timelines, enhances patient
safety, and increases the likelihood of regulatory
success. It supports personalized treatment
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strategies and facilitates evidence-based decision-
making throughout the trial lifecycle.

Advantages of Al in Drug Discovery

Reduced cost and development time

Improved prediction accuracy

Ability to handle high-dimensional, multimodal
data

Discovery of novel chemical space beyond human
intuition

1. Reduced Time and Cost

Al significantly shortens the drug discovery
timeline by automating data analysis, virtual
screening, and lead optimization. Tasks that
traditionally take years can now be completed in
months, leading to substantial reductions in
research and development costs.

2. Improved Target Identification

Al analyzes large-scale biological datasets to
identify and validate novel drug targets with
higher accuracy. This reduces the likelihood of
selecting ineffective targets and lowers the risk of
late-stage clinical failure.

3. Enhanced Hit and Lead Discovery

Al-driven virtual screening enables rapid
evaluation of millions of compounds, increasing
hit rates and identifying novel chemical scaffolds.
Al also improves structure—activity relationship
(SAR) analysis, leading to better-quality lead
compounds.

4. Better Prediction of ADMET Properties

Machine learning models accurately predict
absorption, distribution, metabolism, excretion,
and toxicity (ADMET) profiles at early stages.
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Early toxicity prediction reduces late-stage
failures and improves overall drug safety.

5. Support for Drug Repurposing

Al accelerates drug repurposing by identifying
new therapeutic indications for existing drugs
using biological, chemical, and clinical data. This
approach reduces development risk and allows
faster entry into clinical trials.

6. Improved Clinical Trial Efficiency

Al optimizes clinical trial design through better
patient selection, stratification, and outcome
prediction. This enhances trial success rates,
reduces patient dropout, and improves regulatory
approval prospects.

7. Data Integration and Decision Support

Al integrates diverse data sources such as
genomics, proteomics, chemical libraries, and
real-world evidence. This holistic analysis
supports informed decision-making and reduces
human bias.

8. Personalized and Precision Medicine

Al enables personalized drug discovery by
identifying patient-specific targets and predicting
individual treatment responses. This supports the
development of precision medicines tailored to
specific populations.

Challenges and Limitations

Despite its promise, Al in drug discovery faces
several challenges:

Limited availability of high-quality, unbiased data
Lack of model interpretability and explainability
Poor generalization across biological domains
Regulatory and ethical concerns

Integration with experimental validation
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1. Data Quality and Availability

Al models rely heavily on large, high-quality, and
well-annotated datasets. In drug discovery,
available data are often incomplete, noisy, biased,
or proprietary. Poor data quality can lead to
inaccurate predictions and unreliable outcomes,
limiting the effectiveness of Al-driven approaches.

2. Lack of Data Standardization

Biological and chemical data originate from
diverse sources and are generated using different
experimental  protocols. The absence of
standardized data formats and reporting practices
complicates data integration and model training,
reducing reproducibility and model robustness.

3. Model Interpretability and Transparency

Many Al models, particularly deep learning
architectures, function as “black boxes,” making it
difficult to interpret their predictions. Lack of
explainability hinders trust among researchers and
regulators, especially in high-stakes decisions
related to safety and efficacy.

4. Limited Generalizability

Al models trained on specific datasets may
perform poorly when applied to new targets,
diseases, or chemical spaces. Overfitting and
limited chemical diversity in training data reduce
the ability of models to generalize across different
drug discovery scenarios.

5. Computational and Technical Constraints

Al-driven drug discovery requires substantial
computational resources, specialized
infrastructure, and technical expertise. High costs
and limited access to advanced computing
facilities may restrict adoption, particularly in
academic and small-scale research settings.
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6. Integration with Experimental VValidation

Al predictions must be experimentally validated,
which remains time-consuming and expensive.
Discrepancies between in silico predictions and in
vitro or in vivo results can limit confidence in Al-
generated outcomes.

7. Regulatory and Ethical Challenges

The use of Al in drug discovery raises regulatory
concerns regarding data privacy, model validation,
and accountability. Regulatory agencies require
transparent and reproducible evidence, which can
be challenging to provide with complex Al
models.

8. Bias and Ethical Concerns

Bias in training data can lead to biased predictions,
potentially affecting drug safety and efficacy
across different populations. Ethical concerns
related to data usage, patient privacy, and fairness
must be carefully addressed.

Future Directions

Future research is expected to focus on explainable
Al, integration of physics-based and data-driven
models, multimodal learning, and tighter coupling
of Al predictions with automated laboratory
experiments.  Collaborative efforts between
academia, industry, and regulatory agencies will
be crucial for translating Al innovations into
approved therapeutics.

1.Integration of Multi-Omics Data

Future Al systems will increasingly integrate
multi-omics  datasets, including genomics,
transcriptomics, proteomics, metabolomics, and
epigenomics. This holistic data integration will
enable more accurate target identification, disease
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stratification, and personalized drug discovery
approaches.

2. Explainable and Interpretable Al

Developing explainable Al (XAI) models will be
a major focus to address the “black-box” nature of
current deep learning methods. Transparent
models will enhance trust among researchers and
regulatory agencies by providing clear rationale
for predictions related to target selection, toxicity,
and efficacy.

3. Generative Al and De Novo Drug Design

Advances in generative Al, including large
language models, graph-based models, and
reinforcement learning, will enable efficient de
novo design of drug molecules. These systems will
generate optimized compounds with improved
efficacy, safety, and synthetic feasibility,
accelerating lead discovery and optimization.

4. Al-Driven Automation and Closed-Loop
Systems

Future drug discovery platforms will integrate Al
with laboratory automation to create closed-loop
systems. These systems will continuously design,
synthesize, test, and optimize compounds with
minimal human intervention, significantly
reducing development timelines.

5. Improved Prediction of Clinical Success

Al models will increasingly incorporate real-world
evidence, electronic health records, and clinical
trial data to better predict clinical outcomes. This
will reduce late-stage failures and improve the
probability of regulatory approval.

6. Personalized and Precision Medicine
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Al will enable personalized drug discovery by
identifying patient-specific targets and predicting
individual treatment responses. This approach will
support the development of precision therapies
tailored to genetic and molecular profiles.

7. Enhanced Drug Repurposing and Pandemic
Preparedness

Al-driven drug repurposing will continue to
expand, enabling rapid identification of
therapeutic options for emerging diseases. This
capability will strengthen global preparedness for
pandemics and public health emergencies.

8. Regulatory Acceptance and Standardization

Future efforts will focus on establishing regulatory
frameworks, validation standards, and best
practices for Al models in drug discovery.
Increased collaboration between researchers,
industry, and regulatory bodies will support
broader adoption and compliance.

CONCLUSION

Al has become an indispensable component of
modern drug discovery, offering transformative
improvements in efficiency and innovation. While
challenges remain, continued advances in
algorithms, data quality, and interdisciplinary
collaboration are likely to make Al-driven drug
discovery a cornerstone of pharmaceutical
research. The use of Al technology in drug design
has grown rapidly due to its predictive ability and
accuracy. This review highlights the numerous
applications of Al in all phases of drug
development, from disease diagnosis to post-
marketing analysis. Al helps in the early prediction
of diseases, the development of personalized
medicine, optimization of drug doses, and the
prediction of treatment outcomes. Additionally, Al
assists in target and lead identification through the
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prediction of protein structures and biological
activities of small molecules. Al technology can
also predict drug-like properties and off-target
effects of new compounds, reducing the need for
experimental validation. Furthermore, Al-driven
approaches improve patient stratification,
recruitment, monitoring, and follow-ups in clinical
trials, and can even assist in FDA approvals and
pharmacovigilance. The integration of Al in drug
design has resulted in faster drug discovery, cost
savings, reduced resource and manpower usage,
and decreased attrition rates in clinical trials.
Additionally, Al helps to minimize the use of in
vivo bioassays, reducing animal sacrifice. Al has
far-reaching applications beyond medicine,
including healthcare management, surgeries,
mMRNA vaccination, preventive treatments, and
nutrigenomics. However, it is important to note
that Al models are meant to complement human
intelligence, not replace it. Al models may have
comparable or better predictive ability than human
researchers, but they still lack human intuition.
Predictions made by Al machines must be verified
by humans, as Al models can provide false
positive and false negative results, compromising
the sensitivity and specificity of the model.
Additionally, resource sustainability needs holistic
solutions like cost-aware cross-layer co-design,
integrating hardware, algorithms, and models for
efficient exploration of resource-sustainable
configurations.  Consensus-based  distributed
learning is suggested to fully utilize existing and
future computing infrastructures, incorporating
Internet-of-Things devices and edge servers for
data sharing while ensuring privacy. Stable
infrastructures  with  Al-enhanced  resource
allocation are recommended, involving dedicated
healthcare Al infrastructures compliant with
evolving government  regulations.  Lastly,
interpretable self-supervised learning is proposed
to address the sustainability issue in domain
expertise, enhancing trust by extracting clinically
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useful features and providing human-interpretable
evidence in healthcare applications. There are
numerous challenges associated with Al, including
the explainability of models, the quality and
suitability of data used to train models, avoiding
bias and overfitting, resource sustainability and
more. It is crucial to remain aware of the
limitations and risks associated with Al
technology. Opportunities for improvement in Al
technology include minimizing dependence on
supercomputing  power, addressing ethical
concerns surrounding data collection, and
implementing Al in a controlled manner in the
healthcare sector to limit negative consequences.
It is possible that the future of Al-assisted drug
discovery lies in developing a virtual human with
complete complexity, allowing for accurate
predictions of all possible interactions between
molecules and exploring all therapeutic potentials
and adverse side effects.
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