

Review Paper

Applications of Artificial Intelligence in Pharmaceutical Sciences: A Review

Akash kawale*, Krishna patil

Department of pharmaceutics, Channabasweshwar college of pharmacy (Degree), Latur

ARTICLE INFO

Published: 03 Feb 2026

Keywords:

Artificial Intelligence,
Machine Learning,
Pharmaceutical Sciences,
Drug Discovery, Drug
Development.

DOI:

10.5281/zenodo.18464414

ABSTRACT

Artificial intelligence (AI) has emerged as a transformative technology in pharmaceutical sciences, providing innovative solutions to challenges associated with conventional drug research and development. Traditional pharmaceutical approaches are often time-consuming, costly, and associated with high attrition rates. The integration of AI-based tools, particularly machine learning (ML) and deep learning (DL) techniques, has enabled data-driven predictions, automation, and efficient handling of large and complex datasets. This review summarizes the fundamental concepts of artificial intelligence and discusses its applications across major pharmaceutical domains, including drug discovery, formulation development, pharmacokinetics and pharmacodynamics, clinical trials, and pharmacovigilance. Additionally, current challenges, ethical considerations, and regulatory issues related to AI adoption are highlighted. Future perspectives emphasize the role of explainable AI and personalized medicine. Overall, artificial intelligence is reshaping pharmaceutical research and holds significant promise for accelerating the development of safe and effective medicines.

INTRODUCTION

Pharmaceutical sciences play a critical role in the discovery, development, manufacturing, and safe use of medicinal products. Conventional drug development strategies rely heavily on experimental screening and trial-and-error approaches, which are resource-intensive and frequently result in high failure rates [1]. With increasing complexity in drug targets and the

exponential growth of biomedical data, traditional methodologies are often insufficient. Recent advancements in computational power and data analytics have facilitated the widespread adoption of artificial intelligence (AI) in pharmaceutical research. AI refers to computational systems capable of simulating human intelligence, including learning, reasoning, and decision-making [2]. Techniques such as machine learning,

*Corresponding Author: Akash kawale

Address: Department of pharmaceutics, Channabasweshwar college of pharmacy (Degree), Latur

Email : kawale760@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

deep learning, and natural language processing enable efficient analysis of large datasets generated during pharmaceutical research. This review aims to provide a comprehensive overview of artificial intelligence and critically examine its applications, challenges, and future potential in pharmaceutical sciences [3,4].

2. Overview of Artificial Intelligence

Artificial intelligence encompasses a broad range of computational techniques designed to replicate human cognitive functions. Among these, machine learning (ML) enables systems to learn patterns

from data and improve predictive performance without explicit programming [5]. Deep learning (DL), a subset of ML, employs multilayered neural networks capable of modeling highly complex and nonlinear relationships, making it particularly useful for molecular modeling and image-based analysis [6]. Natural language processing (NLP) facilitates the extraction of meaningful information from unstructured textual data, including scientific publications, clinical reports, and adverse drug reaction databases [7]. The major AI techniques commonly employed in pharmaceutical sciences and their applications are summarized in Table 1.

Table 1. Common Artificial Intelligence Techniques Used in Pharmaceutical Sciences

AI Technique	Description	Major Pharmaceutical Applications
Machine Learning (ML)	Algorithms that learn patterns from datasets	Drug discovery, ADMET prediction, formulation optimization
Deep Learning (DL)	Multilayer neural networks for complex modeling	Molecular modeling, image-based screening
Natural Language Processing (NLP)	Computational analysis of textual data	Literature mining, pharmacovigilance
Artificial Neural Networks (ANN)	Brain-inspired computational models	Dissolution prediction, PK modeling
Support Vector Machines (SVM)	Classification and regression algorithms	Drug-target interaction prediction

Source: Compiled by the authors based on published literature [1-5].

3. Applications of Artificial Intelligence in Pharmaceutical Sciences

3.1 AI in Drug Discovery

Drug discovery is a complex, multistep process involving target identification, hit discovery, lead optimization, and preclinical evaluation. Artificial intelligence has significantly accelerated this process by enabling virtual screening of large chemical libraries and predicting drug–target interactions with high accuracy [2,5]. ML models

analyze molecular descriptors and biological datasets to identify promising candidates, thereby reducing experimental costs and development timelines. AI-driven de novo drug design further enables the generation of novel chemical entities with optimized pharmacokinetic and pharmacodynamic properties, contributing to improved success rates during early-stage drug discovery [6,8].

3.2 AI in Pharmaceutical Formulation Development

Formulation development focuses on optimizing drug stability, bioavailability, and patient compliance. AI tools assist formulation scientists by predicting the influence of formulation and process variables on critical quality attributes such as particle size, dissolution rate, and drug release profiles [9]. Machine learning models support Quality by Design (QbD) approaches by identifying critical material attributes and process parameters, minimizing trial-and-error experimentation.

3.3 AI in Pharmacokinetics and Pharmacodynamics

Pharmacokinetic (PK) and pharmacodynamic (PD) studies are essential for understanding drug absorption, distribution, metabolism, excretion,

and therapeutic response. AI-based models predict PK/PD parameters using preclinical and clinical datasets, reducing dependence on extensive animal and human studies [7]. These approaches also support dose optimization and individualized therapy, facilitating personalized medicine [10].

3.4 AI in Clinical Trials

Clinical trials represent one of the most expensive and time-consuming phases of drug development. Artificial intelligence improves clinical trial efficiency by optimizing study design, enhancing patient recruitment, and predicting trial outcomes using real-world data and electronic health records [3,10]. The role of AI across various stages of pharmaceutical development is summarized in Table 2.

Table 2. Application of Artificial Intelligence Across Different Stages of Pharmaceutical Development

Development Stage	Conventional Approach	AI-Based Advantage
Drug discovery	Experimental screening	Faster virtual screening and cost reduction
Formulation development	Trial-and-error methods	Predictive formulation optimization
Pharmacokinetics	Animal and human studies	In silico PK prediction
Clinical trials	Manual patient recruitment	AI-assisted patient selection
Pharmacovigilance	Spontaneous reporting	Automated safety signal detection

3.5 AI in Pharmacovigilance and Drug Safety

Pharmacovigilance focuses on the detection and prevention of adverse drug reactions to ensure patient safety. AI-based systems analyze large volumes of post-marketing surveillance data, including spontaneous reports and social media content, enabling early detection of safety signals

[7]. NLP techniques play a critical role in extracting relevant information from unstructured data sources, improving the efficiency and accuracy of drug safety monitoring [3].

4. Challenges and Limitations of AI in Pharmaceutical Sciences

Despite its advantages, the application of artificial intelligence in pharmaceutical sciences faces several challenges. The reliability of AI predictions depends heavily on the availability of high-quality and representative datasets [5]. Additionally, the lack of transparency in complex AI models, often described as the “black-box” problem, raises concerns regarding interpretability and regulatory acceptance. Ethical issues related to data privacy, algorithmic bias, and accountability must also be addressed. Moreover, regulatory frameworks governing AI-based pharmaceutical tools are still evolving, which may limit their widespread adoption [4,10]. The major advantages and limitations of AI applications are summarized in Table 3.

Table 3. Advantages and Limitations of Artificial Intelligence in Pharmaceutical Sciences

Advantages	Limitations
Reduces development time and cost	Requires large, high-quality datasets
Improves prediction accuracy	Limited model interpretability
Supports personalized medicine	Ethical and privacy concerns
Efficient handling of big data	Regulatory uncertainty

Source: Authors' analysis based on recent literature [1,4,10].

FUTURE PERSPECTIVES

The future of artificial intelligence in pharmaceutical sciences is highly promising. Advances in explainable AI are expected to improve transparency and regulatory acceptance. Integration of AI with real-world evidence, digital health technologies, and omics data will further

enhance drug discovery and development processes [1,6]. Interdisciplinary collaboration will be essential for maximizing the potential of AI-driven pharmaceutical research.

CONCLUSION

Artificial intelligence has emerged as a powerful and versatile tool in pharmaceutical sciences, offering innovative solutions across drug discovery, formulation development, pharmacokinetics, clinical trials, and pharmacovigilance. Although challenges related to data quality, ethics, and regulation persist, ongoing technological advancements are expected to address these limitations. The integration of AI into pharmaceutical research holds significant potential to improve efficiency, reduce costs, and enhance patient outcomes, making AI a cornerstone of future pharmaceutical innovation [1–4].

REFERENCE

1. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. *Drug Discov Today*. 2021.
2. Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. *Drug Discov Today*. 2021.
3. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. *Nat Rev Drug Discov*. 2019.
4. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. *Nat Med*. 2019.
5. Dara S, Dhamercherla S, Jadav SS, et al. Machine learning in drug discovery: a review. *Artif Intell Rev*. 2022.
6. Ekins S, Puhl AC, Zorn KM, et al. Exploiting machine learning for end-to-end drug discovery. *Nat Mater*. 2019.

7. Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery. *Pharmacol Rev.*
8. Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. *Drug Discov Today.* 2018.
9. Xu Y, Dai Z, Chen F, et al. Deep learning for drug-induced liver injury prediction. *Brief Bioinform.* 2021.
10. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. *N Engl J Med.* 2019.

HOW TO CITE: Akash kawale*, Krishna patil, Applications of Artificial Intelligence in Pharmaceutical Sciences: A Review, *Int. J. of Pharm. Sci.*, 2026, Vol 4, Issue 2, 295-299. <https://doi.org/10.5281/zenodo.18464414>

