

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Research Paper

Antifungals: From Pharmacokinetics to Clinical Practice

Shruti Kamble*, Supriya Mhamane, Dr. R. R. Bendgude

Shri Ganapati Institute of Pharmaceutical Sciences and Research, Tembhurni. 413211

ARTICLE INFO

Published: 29 Nov 2025 Keywords: antifungal drugs, azoles, amphotericin B, echinocandins, resistance, fungal infections, drug monitoring DOI:

10.5281/zenodo.17759657

ABSTRACT

Fungal disease has long existed at the margins of global health conversations, overshadowed by the more familiar threats of bacteria and viruses. Yet in recent years, fungi have emerged as silent protagonists in a growing public-health drama—particularly for people whose immune defenses are already compromised by HIV/AIDS, cancer therapies, organ transplantation, or the intensive care environment. The challenge is structural as well as biological: fungi, like humans, are eukaryotic, and their cellular commonalities render the therapeutic landscape perilously limited. Every new antifungal drug must navigate the fine line between harming the pathogen and sparing the patient. This review surveys the major classes of antifungal medications through a lens that is both scientific and systemic. It examines how these drugs work, where they succeed, where they falter, and why. It also situates antifungal therapy within broader global realities—economic disparities, fragile health infrastructures, and the accelerating emergence of multidrug-resistant species. Ultimately, the story of antifungal pharmacology is one of scientific ingenuity constrained by biological similarity and shaped by the inequities of the world in which fungal diseases thrive.

INTRODUCTION

Fungal infections traverse an expansive spectrum—from the mundane inconvenience of athlete's foot to the devastating, life-threatening illnesses that infiltrate the lungs, bloodstream, and central nervous system. The latter, known as invasive fungal infections, exact a toll comparable to some of the world's most lethal diseases, claiming an estimated 1.6 million lives each year. These infections disproportionately affect

communities and individuals whose bodies have been weakened, either by circumstance or by the very medical interventions designed to save them.

Modern medicine has inadvertently sculpted the ecological conditions in which these pathogens flourish. Antibiotics that disrupt protective microbiomes; immunosuppressants that temper the immune system; technologies like catheters and ventilators that breach the body's boundaries—all create openings for opportunistic

Address: Shri Ganapati Institute of Pharmaceutical Sciences and Research, Tembhurni. 413211

Email ≥: shrutikamble0849@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

^{*}Corresponding Author: Shruti Kamble

fungi. At the same time, global forces such as climate change and urban density shape fungal evolution, enabling temperature-tolerant and drugresistant species like Candida auris to emerge and spread.

Compounding these challenges is the biological reality that fungi resemble us more than we might wish. Their kinship to human cells narrows the therapeutic window, leaving clinicians with few safe, selective targets and an alarmingly slow pace of drug innovation. Antifungal resistance, once a rarity, has become a defining concern of the 21st century. Understanding the landscape of antifungal therapy is therefore not merely a matter of pharmacology—it is a matter of public health, global equity, and human vulnerability.

CLASSIFICATION OF ANTIFUNGAL DRUGS

Antifungal drugs are grouped according to how they attack fungal cells. The main targets are the fungal cell membrane, cell wall, or DNA/RNA synthesis. Below are the key classes used in medical practice.

1. Polyene

Examples: Amphotericin B, Nystatin

Moa: Polyenes bind to *ergosterol*, an important component of the fungal cell membrane. This creates holes in the membrane, causing the fungal cell to leak and die.

Uses: Amphotericin B is used for serious, lifethreatening infections like cryptococcal meningitis, mucormycosis, invasive aspergillosis, and systemic candidiasis.

The main issue with Amphotericin B is kidney damage. It can also cause fever, chills, and loss of electrolytes like potassium and magnesium. To

reduce these side effects, safer versions such as liposomal amphotericin B were developed, which are less toxic but more expensive.

2. Azoles

Azoles have risen to prominence for their convenience, broad efficacy, and comparatively gentle side-effect profile. By inhibiting lanosterol 14-α-demethylase, they disrupt the pathway that produces ergosterol, destabilizing fungal cell membranes. But each azole carries its own clinical personality: fluconazole for its CNS penetration, itraconazole for endemic mycoses, voriconazole for Aspergillus, posaconazole for prophylaxis, and isavuconazole for mucormycosis with fewer toxicities.

Yet the very metabolic pathways azoles inhibit in fungi correspond to human cytochrome systems that process countless drugs. This makes azole therapy a choreography of interactions and contraindications—especially in patients already burdened with complex medical regimens. Moreover, rising resistance, driven partly by agricultural azole use, signals a looming crisis in antifungal efficacy.

Examples: Fluconazole, Itraconazole,

Moa: Azoles block an enzyme called lanosterol 14-α-demethylase (part of the CYP450 family). This enzyme helps make ergosterol, a key membrane component. Blocking it disrupts the fungal membrane and stops fungal growth.

Uses:

- **Fluconazole** is widely used for yeast infections and cryptococcal meningitis.
- **Itraconazole** treats fungal infections of the nails, skin, and lungs.
- **Voriconazole** is the first-line treatment for invasive aspergillosis.

 Posaconazole and Isavuconazole are newer broad-spectrum drugs used for serious infections and as prophylaxis in high-risk patients.

Side effects: Liver problems, nausea, visual disturbances (voriconazole), and heart rhythm changes (QT prolongation).

Drug interactions: Many azoles interfere with other medicines because they affect liver enzymes that metabolize drugs (CYP3A4, CYP2C19). This makes dosing complicated, especially in patients taking immunosuppressant's or cancer drugs.

Resistance: Some fungi become resistant by changing the target enzyme or pumping the drug out of their cells.

3. Echinocandins

targeting the $\beta(1,3)$ -D-glucan component of the fungal cell wall, exemplify the power of seeking out what makes fungi uniquely themselves. Their safety and potency against Candida have made them essential in contemporary care. Yet their limitations—poor penetration into certain body compartments and the necessity of intravenous administration—remind us that even elegant pharmacology cannot escape practical constraints. Resistance remains relatively rare but is emerging, particularly through mutations in FKS genes.

Examples: Caspofungin, Micafungin, Anidulafungin

Moa: Echinocandins block the enzyme $\beta(1,3)$ -D-glucan synthase, which builds the fungal cell wall. Without this wall, the cell bursts and dies.

Uses:

• First-line therapy for *Candida* bloodstream infections.

- Used when *Candida* species are resistant to azoles.
- Sometimes used as a backup for invasive aspergillosis.

Advantages: Generally safe, few drug interactions, and well-tolerated.

Limitations: Only available intravenously and not effective for all molds or infections in the brain. Resistance, though rare, can occur through *FKS* gene mutations.

4. Pyrimidine Analogues

Flucytosine, transformed by fungal enzymes into a toxic metabolite that sabotages DNA and RNA synthesis, is a drug whose utility is inseparable from its fragility. It is rarely used alone due to swift resistance, yet in combination—particularly with amphotericin B for cryptococcal meningitis—it can dramatically reduce mortality. Its toxicities, including bone-marrow suppression, necessitate careful monitoring and underscore the narrow therapeutic margins that characterize antifungal therapy.

Example: Flucytosine (5-FC)

Moa: Inside fungal cells, flucytosine turns into 5-fluorouracil, which interferes with fungal DNA and RNA production.

Uses: Usually combined with Amphotericin B for cryptococcal meningitis or severe *Candida* infections.

Limitations: Can cause bone marrow suppression and liver problems. It should never be used alone because fungi can quickly become resistant.

5. Allylamines and Other Topical Drugs

Example: Terbinafine

Moa: Blocks squalene epoxidase, another enzyme needed to make ergosterol.

Uses: Skin and nail infections (like athlete's foot, ringworm, and onychomycosis).

These drugs are not useful for deep or systemic fungal infections but are very effective for superficial ones.

6. Antifungal Drugs Pharmacokinetics and pharmacodynamics

How a drug behaves inside the body (pharmacokinetics) and how it affects fungi (pharmacodynamics) are key to successful treatment.

- **Tissue penetration:** Not all drugs reach every part of the body equally. For example, many antifungals don't reach the brain well, so they are less useful for meningitis.
- Therapeutic drug monitoring (TDM): For drugs like voriconazole and posaconazole, measuring blood levels helps ensure the drug is working without causing toxicity.
- Patient factors: Liver or kidney disease can affect dosing. Drug interactions, obesity, or severe illness can change how drugs are processed.
- Combination therapy: Sometimes two drugs are used together (e.g., amphotericin B + flucytosine) for better results.

CLINICAL USES

Condition	Treatments
Invasive	Echinocandins (first choice),
candidiasis	fluconazole (step-down)
Invasive	Voriconazole (first-line),
aspergillosis	amphotericin B or isavuconazole
Cryptococcal	Amphotericin B + flucytosine,
meningitis	then fluconazole

Mucormycosis	Liposomal amphotericin B, then posaconazole or isavuconazole
Superficial infections	Terbinafine, topical azoles

The choice of drug depends on the infection site, fungal species, patient's condition, and potential side effects.

SIDE EFFECTS AND DRUG INTERACTIONS

Antifungal drugs are powerful but not without risks.

- Polyenes (Amphotericin B): Kidney damage, electrolyte loss, and infusion-related fever and chills.
- Azoles: Liver toxicity, visual disturbances, and dangerous drug interactions
- Echinocandins: Generally mild side effects, such as mild liver enzyme elevation.
- Flucytosine: Bone marrow suppression and liver issues.

Drug interactions:

Azoles can change the levels of many other medicines (like warfarin, cyclosporine, tacrolimus, and some chemotherapy drugs). Doctors must adjust doses or monitor levels closely to prevent harm.

Limitations:

- Some drugs are only available in IV form (e.g., echinocandins).
- Lipid formulations of amphotericin B are expensive.
- Access to newer antifungal drugs is limited in many low-income countries.

ANTIFUNGAL RESISTANCE

Fungal resistance is becoming a major issue worldwide.

How resistance happens:

- Fungi may pump drugs out of their cells (efflux pumps).
- Mutations in enzymes prevent drugs from binding.
- Fungi form biofilms (protective layers) that make drugs less effective.
- Overuse or inappropriate dosing of antifungals can speed up resistance.

Common resistant organisms:

- Candida glabrata and Candida auris have shown resistance to multiple drug classes.
- Aspergillus fumigatus is also developing azole resistance in some regions.

How to reduce resistance:

- Use antifungals only when truly needed (antifungal stewardship).
- Perform proper lab testing to identify fungi and their susceptibility.
- Avoid under-dosing or long unnecessary treatment.
- Develop new drugs and rapid diagnostic methods.

NEW AND EMERGING ANTIFUNGAL THERAPIES

Because current drugs have limits, researchers are developing new treatments and strategies.

New drug targets:

Scientists are studying new pathways in fungi to find targets that are not present in human cells. This could make drugs safer and more effective.

Improved drug delivery:

Nanoparticles, liposomes, and other delivery systems are being developed to help antifungal drugs reach hard-to-penetrate areas like the brain while reducing side effects.

Immune-based therapy:

Drugs that boost the immune system or antibodies that target fungal cells may help the body fight infection more effectively.

Pharmacogenomics:

By studying how genes affect drug metabolism (e.g., CYP2C19 for voriconazole), dosing can be adjusted to match individual patients.

Vaccines:

Research into fungal vaccines is ongoing but still in early stages.

DISCUSSION

Antifungal drugs have come a long way, yet fungal infections remain difficult to manage. Each drug class has its advantages and disadvantages:

- Amphotericin B is highly effective but very toxic.
- Azoles are convenient but interact with many other drugs.
- Echinocandins are safe but can only be given IV.
- Flucytosine works best in combination, not alone.

Resistance is rising rapidly, and new antifungal drug development has not kept pace. Better diagnostic tools, monitoring systems, and rational drug use are needed to slow this trend.

Global inequality in access to antifungal drugs and diagnostics also worsens outcomes in developing countries. International efforts are needed to make these life-saving treatments more affordable and available.

CONCLUSION

Antifungal drugs are essential tools for treating serious infections, but challenges remain. We now have several major drug classes that work in different ways, yet toxicity, resistance, and limited availability restrict their use.

To improve outcomes, clinicians should:

- Choose antifungals wisely based on infection type and patient condition.
- Monitor drug levels and side effects carefully.
- Use antifungal stewardship programs to prevent misuse.
- Support ongoing research for safer and more effective new drugs.

Delivery

The future of antifungal therapy lies in innovation—developing novel compounds, improving systems, and integrating personalized medicine. Addressing these challenges will be vital in reducing deaths from fungal infections worldwide.

REFERENCE

- 1. Houšť J, Spížek J, Havlíček V. Antifungal Drugs. Metabolites. 2020;10(3):106.
- 2. Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev. 2020;49:2426–2480.

- 3. Mehta D, Saini V, Bajaj A. Recent developments in membrane-targeting antifungal agents to mitigate
- 4. antifungal resistance. RSC Med Chem. 2023;14:1603–1628.
- 5. Antifungal treatment strategies and their impact on resistance development in clinical settings. J Antimicrob Chemother. 2025 (online first).
- 6. Antifungal Drugs: An updated review of CNS pharmacokinetics. J Fungi. 2020;5(4):97.
- 7. Antifungals: From pharmacokinetics to clinical practice. [Review] 2023.
- 8. Szymańska M, Baranowski A, Płachta D. A review of the most often used medicines in the treatment of fungal infections. Prospects Pharm Sci. 2007;5(1)
- 9. Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and multinational prevalence of fungal diseases—estimate precision. Journal of Fungi, 3(4), 57.
- Brown, G. D., Denning, D. W., Gow, N. A. R., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science Translational Medicine, 4(165), 165rv13.
- 11. O'Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J. M., & Vilgalys, R. (2005). Fungal community analysis by large-scale sequencing of environmental samples. Nature Reviews Microbiology, 3, 775–788.
- 12. Perfect, J. R. (2017). The impact of the host on fungal infections. American Journal of Medicine, 130(8), 946–954.
- 13. Casadevall, A., & Kontoyiannis, D. P. (2021). Fungal infections in the 21st century: the rise of temperature-tolerant and drug-resistant species. Annual Review of Microbiology, 75, 1–25.
- 14. Chowdhary, A., Sharma, C., & Meis, J. F. (2017). Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant

- fungal infections. Journal of Clinical Microbiology, 55(6), 1965–1973.
- 15. Fisher, M. C., Hawkins, N. J., Sanglard, D., & Gurr, S. J. (2018). Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 360(6390), 739–742.
- 16. Gray, K. C. et al. (2012). Amphotericin B kills cells by binding ergosterol. Proceedings of the National Academy of Sciences, 109(7), 2234–2239.
- 17. Laniado-Laborín, R., & Cabrales-Vargas, M. N. (2009). Amphotericin B: side effects and toxicity. Journal of Antimicrobial Chemotherapy, 65(1), 10–20.
- 18. Hamill, R. J. (2013). Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs, 73(9), 919–934.
- 19. Kelly, S. L., & Kelly, D. E. (2013). Microbial cytochrome P450: biodiversity and biotechnology. Topics in Current Chemistry, 357, 315–350.
- 20. Perfect, J. R. (2017). The antifungal pipeline: a reality check. Nature Reviews Drug Discovery, 16, 603–616.
- 21. Cowen, L. E. et al. (2015). Harnessing Hsp90 function as a powerful therapeutic strategy for fungal infections. PNAS, 112(27), E3809–E3818.
- 22. Snelders, E. et al. (2008). Emergence of azole resistance in Aspergillus fumigatus and its

- spread through the environment. PLoS Medicine, 5(11), e219.
- 23. Denning, D. W. (2003). Echinocandins: a new class of antifungal. Journal of Antimicrobial Chemotherapy, 52(6), 883–897.
- 24. Perlin, D. S. (2015). Mechanisms of echinocandin resistance in Candida. Journal of Antimicrobial Chemotherapy, 70(10), 2577–2586.
- 25. Arendrup, M. C., & Perlin, D. S. (2014). Echinocandin resistance: an emerging clinical problem. Current Opinion in Infectious Diseases, 27(6), 484–492.
- 26. Vermes, A., Guchelaar, H.-J., & Dankert, J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity, and drug interactions. Journal of Antimicrobial Chemotherapy, 46(2), 171–179.
- 27. Perfect, J. R. et al. (2010). Clinical practice guidelines for the management of cryptococcal disease. Clinical Infectious Diseases, 50(3), 291–322.

HOW TO CITE: Shruti Kamble, Supriya Mhamane, Dr. R. R. Bendgude, Antifungals: From Pharmacokinetics to Clinical Practice, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 4778-4784. https://doi.org/10.5281/zenodo.17759657

