

Review Article

An Overview of PCOD & PCOS Treatment Strategies

Pratiksha Rathod*, Snehal Rathod, Shital Rathod, Prachi Kadam, Renuka Sagane, Pragati Nade

Valmik Naik College of Pharmacy Telwadi, Ta. Kannad, Dist. Chh. Sambhajinagar

ARTICLE INFO

Published: 13 Nov 2025

Keywords:

Irregular menstrual cycles, PCOD and PCOS, and treatment methods

DOI:

10.5281/zenodo.17596245

ABSTRACT

PCOD and PCOS are prevalent endocrine diseases that afflict women of reproductive age. PCOD, also known as PCOS, has a significant impact on women's health and can result in a variety of symptoms. Infertility, irregular menstruation periods, and other symptoms are caused by PCOD, which is characterized by the development of ovarian cysts and the production of immature eggs. When used as natural therapies, some herbs may help with various aspects of PCOS; however, further research is required to fully understand their safety and mechanisms. Even medical specialists are unfamiliar with the comorbidities of this pathological disease, and most women are unaware of it. Because of the significant side effects of the allopathic system, most patients fall behind in their treatment. Herbal, allopathic, and unani approaches to treating and managing polycystic ovarian syndrome have been shown to have positive results since they target a variety of the condition's problems, whether they be metabolic or genetic. These days, natural medicines—especially those derived from plants—are the least dangerous, most accessible, and most efficient ways to cure illnesses.

INTRODUCTION

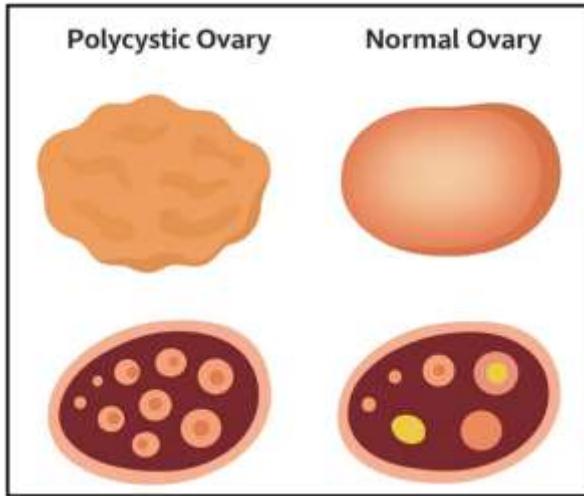
Polycystic Ovary Syndrome (PCOS) or Polycystic Ovarian Disease (PCOD)

The most prevalent and underdiagnosed endocrine disorders in women of reproductive age are polycystic ovarian syndrome (PCOS) and polycystic ovarian disease (PCOD) (Goodman et

al., 2015). The current situation indicates that Indian women are susceptible to this illness. Although this is not a common symptom, the disease is named after the cysts that form in women's ovaries (Dunaif et al., 2013) (Khan et al., 2019). PCOD is primarily a medical disease in which the women's ovary produces partially developed eggs or immature eggs. Compared to PCOD, PCOS is a more serious medical disorder since it causes women's ovaries to release more

***Corresponding Author:** Pratiksha Rathod

Address: Valmik Naik College of Pharmacy Telwadi, Ta. Kannad, Dist. Chh. Sambhajinagar


Email : pratiksharathod75@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

male hormones, increasing the risk of ovarian cancer or excessive cyst formation (Tyagi et al., 2022). The male hormones testosterone and androstenedione are frequently overproduced in

women with polycystic ovaries, which raises blood testosterone levels and promotes the growth of facial and body hair.

Figure 1: Cells Showing Poly Cystic Ovary and Normal Ovaries

Differences between PCOD & PCOS

PCOD	PCOS
<ul style="list-style-type: none">a) Polycystic Ovarian Disease is the name given to it.b) It is a disorder where the ovaries have less cysts.c) It's reversible.d) It is not too bad.e) Hormone imbalance is the cause of this condition.	<ul style="list-style-type: none">a) Polycystic Ovarian Syndrome is the name given to it.b) It is a disorder when the ovaries have more than ten cysts.c) Hard to turn back.d) It may result in problems with fertility.e) In comparison to PCOD, it is more severe.

Common Symptoms of PCOD or PCOS

Figure 2. Symptoms of PCOD or PCOS

Types of PCOS

The following describes the four forms of PCOS:

- **Insulin-resistant PCOS**

Increased insulin levels induce the pancreas to release more insulin into the body, which results in the most common type of PCOS. The body is then told to produce more androgen by this excess insulin. Blood glucose accumulation from the delayed reaction can change the body's sugar metabolism (Galan et al., 2024).

- **Inflammatory PCOS**

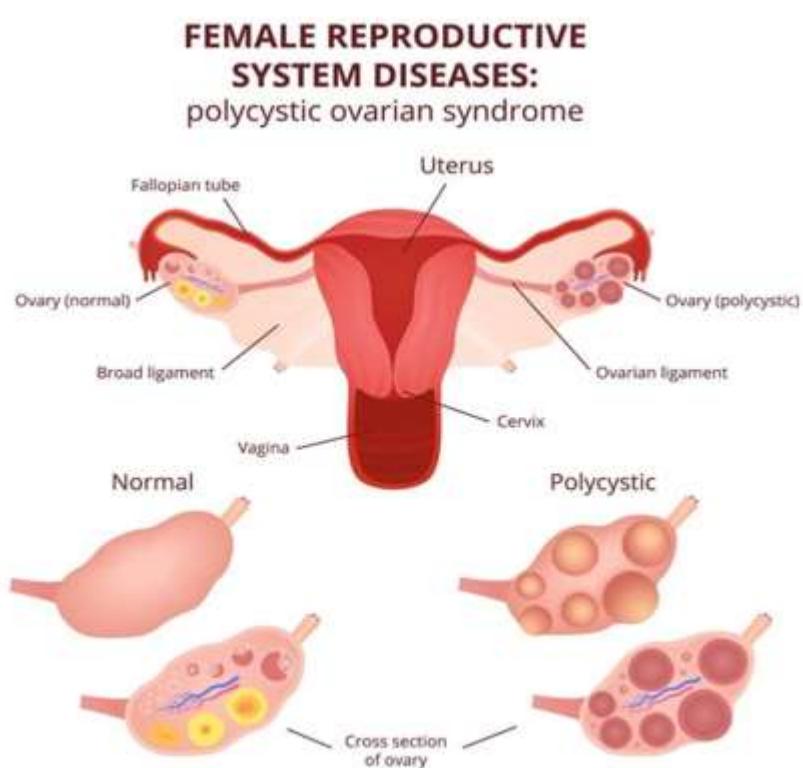
PCOS is caused by inflammation in the body, which can be exacerbated by stress or diets high in inflammatory chemicals. Because of the inflammation, a person with inflammatory PCOS is unable to ovulate, which upsets their hormone balance and causes them to produce more testosterone (Admin et al., 2022Post-Pill PCOS). PCOS arises when people stop using oral contraceptives. When you stop taking these drugs, your body will make more testosterone. If you stop taking these drugs, your ovaries may produce more androgen than usual. Such high androgen levels cause PCOS symptoms such acne, irregular periods, and excessive hair growth (Zeng et al., 2022).

- **Adrenal PCOS**

PCOS is the result of our body's reaction to stress. A female hormone may be disrupted by adrenal PCOS, making it more difficult for PCOS-afflicted women to conceive and perhaps leading to infertility. Furthermore, an excess of male hormones brought on by this condition may cause undesirable side effects like excessive body and facial hair. (2010) Pellett et al.

History

Following their 1935 description by American gynecologists Irving F. Stein, Sr. and Michael L. Leventhal, the condition was first known as Stein–Leventhal syndrome (EMedicine et al., 2022, 2023). Since Stein and Leventhal first recognized PCOS as an endocrine disorder in the US, it has gained recognition as one of the main causes of oligo ovulatory infertility in women (Barry et al., 2014). Changes associated with ovarian cysts were first reported in 1844 (Kovacs et al., 2013).


Pathogenesis of PCOD

Polycystic ovaries occur when one or more of the following factors (often in combination with inherited predisposition) cause the ovaries to produce excessive levels of androgenic hormones, particularly testosterone (Strauss et al., 2003). The anterior pituitary gland secretes too much luteinizing hormone (LH) through women whose ovaries are sensitive to this stimuli, who have high blood levels of insulin (hyperinsulinemia). The majority of obese and/or insulin-resistant women have insulin resistance, which is a significant risk factor for insulin resistance (Mortada et al., 2015). Insulin resistance is also a common finding among women with PCOS who have normal weight (Teede, Nafiseh et al., 2010). Hyperinsulinemia causes an increase in the frequency of GnRH pulses (Kandarakis et al., 2012). Adipose (fat) tissue contains the enzyme aromatase, which converts testosterone into estradiol and androstenedione into estrone. The paradoxical dual levels of excess androgens, which produce virilization and hirsutism, and estrogens, which limit FSH through negative feedback, are caused by the extra adipose tissue found in obese women. (Rojas et al., 2014). Multiple (poly) ovarian cysts, a common finding on ultrasound examination, gave rise to the syndrome's most common name. Actually, these so-called "cysts" are immature ovarian follicles. Because of the disrupted ovarian

function, the follicles' development from primordial follicles has ceased (or "arrested") at an early stage. When viewed by ultrasound examination, the follicles may be arranged in a "string of pearls" pattern along the ovarian periphery (Ali et al., 2016). Risk factors for the ailment include being overweight, not exercising, and having a family member with the illness (Eunice et al., 2021). Out of the three, two the diagnosis is made using ovarian cysts, increased androgen levels, and ovulation results (NICH et al., 2018). PCOS is a disorder where women's ovaries generate a lot of eggs and more than the point at which these develop into ovarian cysts, as seen in Figure 1.5 below. The primary cause of PCOS is Ovarian dysfunction, hormonal imbalance, metabolic, genetic, and environmental variables, among others. irregular menstruation, heavy periods, pelvic pain, infertility, acne, acne scars, and patches of thicker, Women with PCOS may experience symptoms such as velvetier skin.

This condition's primary characteristics are hyperandrogenism, insulin resistance, ovulation, and neuroendocrine disorders (Crespo et al., 2018). According to Murri et al. (2013), PCOS seems to be linked to a greater level of oxidative stress. Additionally, a substantial amount of data suggests that the ovaries of women with PCOS have abnormal follicular microenvironments. Unquestionably, a poor lifestyle—which includes eating poorly, which also increases the risk of metabolic disease—is the primary cause of PCOS pathogenesis. (Azziz and others, 2016) Furthermore, smoking and high-fat and/or high-protein diets, particularly those that contain foods cooked at high temperatures and low moisture content, might cause endogenous or exogenous AGE formation. Figure 1.2 below illustrates the female reproductive system's differences between a normal ovary and an ovary affected by polycystic ovarian syndrome (PCOS):

Figure 3. Differences between Polycystic Ovary and Normal Ovary

Diagnosis

Although ovarian cysts and polycystic ovaries (PCO) are common causes of PCOS, PCOS is not necessarily associated with them; various diagnostic methods are available than pelvic ultrasonography (Emedicine et al., 2020). Even when the illness manifests with a wide range of symptoms, the diagnosis is very straightforward when using the Rotterdam criteria (Lujan et al., 2008). diagnostic methods like blood tests,

Polycystic ovarian syndrome (PCOS) cannot be diagnosed with culture or biopsy. In addition to irregular or infrequent periods, high levels of androgenic hormones, and related symptoms, PCOS can be detected by ultrasound scanning. PCOS may be identified if an ultrasound shows at least two biochemical or clinical signs of hyperandrenism, ovulatory dysfunction, or polycystic ovaries. (Sadeghi and others, 2022).

Etiology Of PCOD

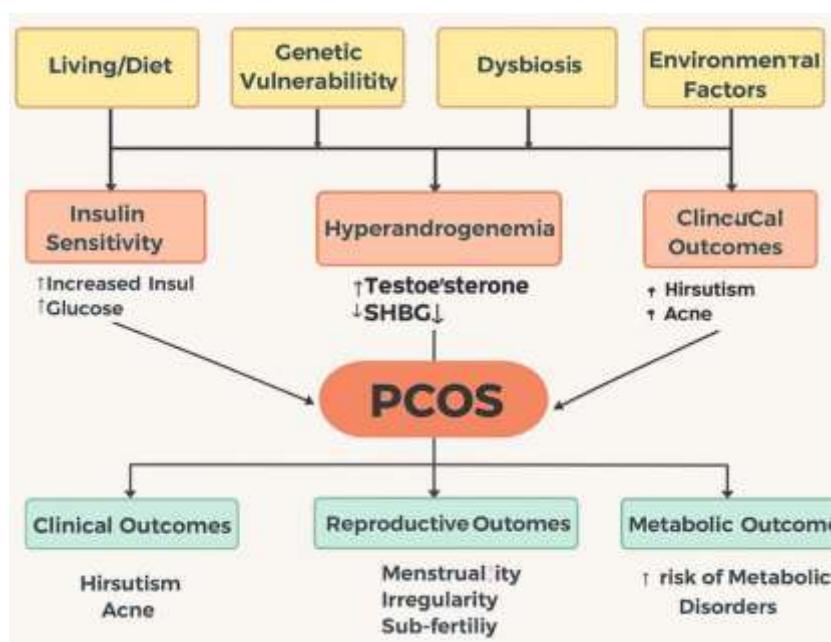


Figure 4. Etiology of PCOS

Treatment of PCOS;

There is no treatment for PCOS (Eunice et al., 2021). Lifestyle modifications including exercising and losing weight may be part of the treatment (Mortada et al., 2015). PCOS is also treated with medicinal medicines. According to NIH et al. (2015), birth control pills may help lessen acne, excessive hair growth, and irregular periods. Numerous plants have shown therapeutic efficacy against PCOS, such as fennel (*Foeniculum vulgare*), liquorice (*Glycyrrhiza glabra*), chaste berries (*Linum*), turmeric (*Curcuma longa*), and Vitex negundo (Chinese

chaste tree) (Goswami et al., 2012). For obese PCOS patients, losing weight offers various benefits. Insulin, testosterone, and luteinizing hormone (LH) all decrease as a result of weight loss. Additionally, by controlling ovulation, it increases the likelihood of pregnancy. (Guzick and others, 2004) Scientific studies have demonstrated the safety and effectiveness of employing herbs as part of alternative medicine for a range of ailments (Rashidi et al., 2012). A small change in lifestyle reduces the risk of PCOS (Norman et al., 2002). It is evident that no medication can completely cure PCOS (Hoeger et al., 2008). It is well recognized that modifying one's lifestyle to incorporate yoga,

exercise, and a nutritious diet will reduce the severity and symptoms of the illness. PCOS treatment and ovulatory cycles benefit from

improved hormonal balance. (Verma and others, 2015)

Herbal Treatment;

Sr No.	Herbal medicines	Scientific Name	Part used	Applications
1	Liquorice	Glycyrrhiza glabra (Leguminosae)	Roots, Rhizome	Cough, various bacterial or
2	Chaste berries	Linum (verbenaceae)	Ripe fruit, Chaster	Control menstrual cycles, treat
3	Turmeric	Curcuma longa (zingiberaceae)	Root Rhizome	Respiratory infections, liver disease
4	Fennel	Foeniculum Vulgare (Aplaceae)	Edible Shoots leaves	Loss of appetite, bloating
5	Cinnamon	Cinnamomum Zeylanicum (Lauraceae)	Perennial herbaceous plant	Antioxidants, anticancer, antidiabetic
6	Aloe vera	Aloe Arborescens (Liliaceae)	Plant, genus panax	Antioxidant and anti-inflammation

All-natural Therapy

Allopathic drugs like metformin, clomiphene citrate, tamoxifen, and troglitazone are currently the most widely used and successful treatments for PCOS.

- Clomiphene

Citrate of clomiphene (CC) It includes a more cost-effective and less hazardous initial treatment regimen for PCOS patients that induces ovulatory cycles. Because CC is an antagonist of the estrogen receptor, it has a direct impact on the estrogen-signaling pathway's negative feedback loop, which increases FSH. This is a non-steroidal fertility drug. High dosages of 150–200 mg have been demonstrated to be beneficial in

- Anastrozole

Both letrozole and anastrozole are effective selective aromatase inhibitors that induce ovulation. When compared to CC, their action appears to be stronger and more reversible, with a half-life of 5-7 days. Letrozole is the focus of more study than anastrozole. As a supportive reproductive medication, CC was linked to a variety of side effects, the intricacy of the gonadotropin regimen, and its poor effectiveness. Letrozole is proven to aid PCOS sufferers in becoming parents to healthy children. Letrozole increases FSH and gonadotropin-releasing hormone (GnRH) by blocking the hypothalamus-pituitary axis's capacity to create estrogen. There are also suggestions that people with PCOS have lower levels of aromatase, which inhibits the

growth of follicles required for ovulatory cycles. Elnashar and colleagues (2006)

- Glucocorticoids

Glucocorticoids Prednisone and dexamethasone cause ovulation. The majority of PCOS patients show a significant increase in the frequency of conception, and Elnashar et al. claim that adding dexamethasone (high dose, short course) to CC in CC-resistant PCOS with normal DHEAS stimulates ovulation and is linked to no undesirable antiestrogenic effect on the endometrium [46]. It is helpful to give these patients with elevated adrenal androgen a low dosage of dexamethasone (0.25–0.5 mg) prior to bedtime. In one study, more than 230 PCOS patients who did not ovulate after five days were given 200 mg of CC. After an extra 2 mg of dexamethasone was administered from days 5 to 14, it was discovered that the drug's potential to negatively impact insulin sensitivity was the reason for the higher ovulation rate and, in turn, the total conception rate. It is therefore not used very often. (Faslul and others, 2012)

Unani Treatment;

Although the main component of this regimen is plant-based, it also includes minerals and animal-derived drugs. It witnesses the healing of innumerable human illnesses. Except for the idea of cellular and hormonal imbalance, the causes and traits of PCOS and infertility in obese women are comparable to those of Unani medicine. knowing that Uqr is treated in the Unani medical system because to its abnormally huge body mass, which is unrelated to contemporary science (Harrison et al., 2011).

- Giloe

Giloe is a powerful herb that combats inflammatory illnesses. It is believed that persistent tissue inflammation is a major contributing factor to both insulin imbalance and multiple ovarian cysts. It naturally raises metabolism and permits nutrition of the body's tissues. Insulin resistance is also lessened by it. (Jungbauer and others, 2014)

- Satawar

Satawar alters the monthly cycles, supports female reproductive health, and encourages the healthy formation of ovarian follicles. Satawar helps determine the natural plant-based estrogen that is causing the hyperinsulinemia. (Pachiappan and colleagues, 2017)

CONCLUSION

In conclusion, women of reproductive age are affected by the common endocrine illnesses PCOD and PCOS. PCOD or PCOS has a substantial impact on women's health and can lead to a range of symptoms and outcomes. PCOD is defined by the formation of ovarian cysts and the production of immature eggs, which leads to infertility, irregular menstrual cycles, and other symptoms. Certain herbs used as natural remedies may help with many aspects of PCOS, but further study is needed to completely comprehend their mechanisms and safety. Even medical professionals are not well-versed in the comorbidities linked to this pathological state, and the majority of women are not aware of it. Most people fall behind in their treatment because of the harsh side effects of the allopathic system. A comprehensive evaluation is necessary to diagnose PCOS and PCOD, and lifestyle modifications like stress reduction, regular exercise, and dietary changes are the cornerstones of treatment. For the treatment and management of some disorders, early diagnosis is helpful.

REFERENCES

1. Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E (November 2015). "American Association of Clinical Endocrinologists, American College of Endocrinology, and androgen excess and PCOS society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome part1". *EndocrinePractice*. 21 (11):12911300. doi: 10.4158/EP15748.DSC. PMID 26509855.
2. Dunaif A, Fauser BC (November 2013). "Renaming PCOS--a two-state solution". *The Journal Clinical Endocrinology and Metabolism*. 98 (11):4325–4328. doi:10.1210/jc.2013-2040. PMC 3816269. PMID 24009134.
3. Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. *Appl Clin Genet*. 2019 Dec 24; 12:249-260. doi: 10.2147/TACG.S200341. PMID 31920361; PMCID: PMC6935309.
4. Lentscher JA, Slocum B, Torrealday S (March 2021). "Polycystic Ovarian Syndrome and Fertility". *Clinical Obstetrics and Gynecology*. 64 (1): 75. doi:10.1097/GRF.0000000000000595. PMID 33337743. S2CID 229323594.
5. Dr. Prachi Tyagi, 20 August 2022 at <https://bschool.dpu.edu.in/Blogs/pcod-or-pcos-the-major-challenge- for-women-of-this-generation> Access date 9 august 2024.
6. Nicole Galan, RN, is a register nurse and the author of "The Everything Fertility Book".
7. Admin (2022-06-20). "What Are the Four Types of PCOs?". *Fertility IVF & Fertility Clinics*. Retrieved 2024-05-29.
8. Aboeldalyl S, James C, Seyam E, et al. The role of chronic inflammation in polycysticovarian syndrome-a systematic review and meta-analysis. *Int J Mol Sci*. 2021; 22(5):2734. doi:10.3390/ijms22052734.
9. Polycystic Ovarian Syndrome at eMedicine 27 Nov 2023.
10. Barry JA, Azizia MM, Hardiman PJ (1 September 2014). "Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis". *Human Reproduction Update*. 20 (5): 758. doi:10.1093/humupd/dmu012. PMC 4326303. PMID 24688118.
11. Kovacs GT, Norman R (2007-02-22). *Polycystic Ovary Syndrome*. Cambridge University Press. p. 4. ISBN 978-1-139-46203-7. Archived from the original on 16 June 2013. Retrieved 29 March 2013.
12. Strauss JF (November 2003). "Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome". *Annals of the New York Academy of Sciences*. 997 (1): 42–48. Bibcode:2003NYASA.997...42S. doi:10.1196/annals.1290.005. PMID 14644808. S2CID 23559461.
13. Mortada R, Williams T (August 2015). "Metabolic Syndrome: Polycystic Ovary Syndrome". *FP Essentials (Review)*. 435: 30–42. PMID 26280343.
14. Teede H, Deeks A, Moran L (June 2010). "Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impact on health across the lifespan"
15. Nafiye Y, Sevtap K, Muammer D, Emre O, Senol K, Leyla M (April 2010). "The effect of serum and intrafollicular insulin resistance parameters and homocysteine levels of nonobese, nonhyperandrogenemic polycystic ovary syndrome patients on in vitro fertilization outcome". *Fertility and Sterility*. 93 (6): 1864–1869.

16. Diamanti-Kandarakis E, Dunaif A (December 2012). "Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications". *Endocrine Reviews*. 33 (6): 1034. PMC 5393155. PMID 23065822. 981–1030. doi:10.1210/er.2011-1200
17. Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, et al. (2014). "Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth". *Int J Reprod 71905*. doi:10.1155/2014/719050. PMC 4334071. PMID 25763405.
18. Ali HI, Elsadawy ME, Khater NH (March 2016). "Ultrasound assessment of polycystic ovaries: Ovarian volume and morphology; which is more accurate in making the diagnosis?". *The Egyptian Journal of Radiology and Nuclear Medicine*. 47 (1): 347–350. doi: 10.1016/j.ejrm.2015.10.002.
19. "What causes PCOS?". Eunice Kennedy Shriver National Institute of Child Health and Human Development. 29 September 2022. Archived from the original on 9 October 2021. Retrieved 13 October 2021.
20. "Polycystic Ovary Syndrome (PCOS): Condition Information". National Institute of Child Health and Human Development. January 31, 2017. Archived from the original on 22 October 2018. Retrieved 19 November 2018.
21. Crespo RP, Bachega TA, Mendonça BB, Gomes LG (June 2018). "An update of genetic basis of PCOS pathogenesis". *Archives of Endocrinology and Metabolism*. 62 (3): 352–361. doi:10.20945/2359-3997000000049. PMC 10118782. PMID 29972435. S2CID 49681196.
22. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013). "Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis". *Human Reproduction Update*. 19 (3): 268–288. doi:10.1093/humupd/dms059. PMID 23303572.
23. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin - family study. *J Clin Endocrinol Metab*. 2006; 91:2100 – 4. [PubMed] [Google Scholar].
24. Crisosto N, Ladson de Guevara A, Echiburú B, Maliqueo M, Cavada G, Codner E, et al. Higher luteinizing hormone levels associated with antimüllerian hormone in postmenarchal daughters of women with polycystic ovary syndrome. *Fertil Steril*. 2019; 111:381–8. [PubMed] [Google Scholar].
25. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. *Nat Rev Dis Primers*. 2016; 2:16057. [PubMed] [Google Scholar].
26. Garg D, Merhi Z. Advanced glycation end products: link between diet and ovulatory dysfunction in PCOS? *Nutrients*. 2015;7:10129–44. [PMC free article] [PubMed] [Google Scholar]
27. Dunaif A. Perspectives in polycystic ovary syndrome: from hair to eternity. *J Clin Endocrinol Metab*. 2016; 101:759–68. [PMC free article] [PubMed] [Google Scholar]. Imaging in Polycystic Ovary Disease at eMedicine February 2020.
28. Lujan ME, Chizen DR, Pierson RA (August 2008). "Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies". *Journal of Obstetrics and Gynaecology*
29. Witchel, S. F., Burghard, A. C., Tao, R. H., & Oberfield, S. E. (2019). The diagnosis and treatment of PCOS in adolescents: an update. *Current Opinion in Pediatrics*, 31(4), 562–569. <https://doi.org/10.1097/MOP.0000000000000778>.
30. Xita N, Georgiou I, Tsatsoulis A. The genetic basis of polycystic ovary syndrome. *Eur J*

Endocrinol. 2002; 147:717–725. [PubMed] [Google Scholar].

31. Diamanti-Kandarakis E, Kandarakis H, Legro RS. The role of genes and environment in the etiology of PCOS. *Endocrine*. 2006; 30:19–26. [PubMed] [Google Scholar].

32. Shannon M, Wang Y. Polycystic ovary syndrome: A common but often unrecognized condition. *J Midwifery Womens Health*. 2012; 57:221–230. [Pub Med] [Google Scholar.]

33. Balen, A. (2004). The pathophysiology of polycystic ovary syndrome: trying to understand PCOS and its endocrinology. *Best Practice & Research Clinical Obstetrics & Gynaecology*, 18(5), 685-706. <https://doi.org/10.1016/j.bpobgyn.2004.05.004>.

34. Eunice Kennedy Shriver National Institute of Child Health and Human Development. 31 January 2017. Archived from the original on 9 October 2021. Retrieved 13 October 2021.

35. Mortada R, Williams T (August 2015). "Metabolic Syndrome: Polycystic Ovary Syndrome". *FP Essentials (Review)*. 435: 30–42.

36. National Institutes of Health (NIH) (2014-07-14). "Treatments to Relieve Symptoms of PCOS". Archived from the original on 2 April 2015. Retrieved 13 March 2015.

37. Goswami P.K., Khale A. Natural Remedies for Polycystic Ovarian Syndrome (PCOS): A Review. *Int. J. Pharm. Phytopharm. Res.* 2012; 1:396–402.

38. Leroy RS. Polycystic ovarian syndrome: Current and future treatment paradigms. *Am J Obstet Gynecol.* 1998; 179: S101–S108. [PubMed] [Google Scholar].

39. Guzick DS. Polycystic ovary syndrome. *Obstet Gynecol.* 2004; 103(1):181–193. [PubMed] [Google Scholar]

40. Rashidi S, Farajee H, Jahanbin D, Mirfardi A. Evaluation of Knowledge, Belief, and Operation of Yasouj People Towards Pharmaceutical Plants. *J Med Plants.* 2012; 11:177–84.

41. Norman RJ, Davies MJ, Lord J, Moran LJ. The role of lifestyle modification in polycystic ovary syndrome. *Trends Endocrinol Metab.* 2002; 13(6):251–257. [PubMed].

42. Hoeger K, Davidson K, Kochman L, Cherry T, Kopin L, Guzick DS. The impact of metformin, oral contraceptives, and lifestyle modification on polycystic ovary syndrome in obese adolescent women in two randomized, placebo-controlled clinical trials. *J Clin Endocrinol health.* 2008; 93(11):4299–4306. [PMC free article] [PubMed] [Google Scholar].

43. Verma A, Kumar S, Dei L, Dhiman K. Management of PCOS: a psychosomatic disorder by yoga practice. *Int J Innov Res Devel.* 2015; 4(1):216–219. [Google Scholar].

44. Wuttke W., Seidlova W.D., Gorkow C. The Cimicifuga preparation BNO 1055 vs. conjugated estrogens in a double-blind placebo-controlled study: Effects on menopause symptoms and bone markers. *Maturitas.* 2003; 44((Suppl. 1)):67–77. doi: 10.1016/S0378-5122(02)00350-X. [PubMed] [CrossRef] [Google Scholar].

45. Singh G, Maurya S, DeLampasona MP, Catalan CA. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. *Food Chem Toxicol.* 2007; doi: 10.1016/j.fct.2007.02.031. [PubMed] [CrossRef] [Google Scholar]

46. Desai B.N., Maharjan R.H., Nampoothiri L.P. *Aloe barbadensis* Mill. formulation restores lipid profile to normal in a letrozole-induced polycystic ovarian syndrome rat model. *Pharmacogn. Res.* 2012. • Wojcik M., Krawczyk M., Wojcik P., Cypryk K., Wozniak

L.A. Oxidative Med. Cell. Longev. 2018; 2018:9698258. doi: 10.1155/2018/9698258.

47. Yang H., Kim H.J., Pyun B.-J., Lee H.W. Liquorice ethanol extract improves symptoms of polycystic ovary syndrome in Letrozole induced female rats. Integr. Med. Res. 2018; 7:264. Doi: 10.1016/j.imr.2018.05.003.

48. Ghavi F, Taghizadeh M, Taebi M, Abdolahian S. Effect of *Foeniculum vulgare* essence on symptoms of polycystic ovarian syndrome (PCOS): A randomized double-blind, placebo controlled trial. JHerbalMed. 2019;1718: 100277.doi: 10.1016/j.hermed.2019.100277. [CrossRef] [Google Scholar]

49. Xueli C., Chong T., Jingyi W., Baochang H., Jinbang X. Meta-analysis of therapeutic efficacy and effects of integrated traditional Chinese and Western medicine on coagulation and fibrinolysis system in patients with threatened abortion and polycystic ovary syndrome. Am. J. Transl. Res. 2022.

50. Legro RS, Huiman XB, William DS, Bruce RC, Michael PD, et al. (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 356(6): 551-566.

51. Elnashar A, Emad A, Mahmud F, Magdy S (2006) Clomiphene citrate and dexamethazone in treatment of clomiphene citrate-resistant polycystic ovary syndrome: a prospective placebo-controlled study. Human Reprod 21(7): 1805-1808.

52. Faslul Haq M (2012) Effect of 'Dawa-ul-Husk' on Human Seminal Fluid Anomalies.

53. Harrison CL, Lombard CB, Moran LJ, Teede HJ. Exercise therapy in polycystic ovary syndrome: a systematic review. Hum Reprod Update. 2011 Mar-Apr;17(2):171-83. doi: 10.1093/humupd/dmq045. Epub 2010 Sep 10. PMID: 20833639.

54. Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol. 2014 Jan; 139:277-89. doi: 10.1016/j.jsbmb.2012.12.009. Epub 2013 Jan 11. PMID: 23318879.

55. Pachiappan S, Suganeswari M, Poorana PS, Gayathiri M (2017) Medicinal plants for polycystic ovary syndrome: A review of phytomedicine research. International Journal of Herbal Medicine 5(2): 78-80.

56. Dayani Siriwardene SA, Karunathilaka LP, Kodituwakku ND, Karunaratne YA. Clinical efficacy of Ayurveda treatment regimen on Subfertility with Poly Cystic Ovarian Syndrome (PCOS). Ayu. 2010 Jan;31(1):24-7. doi: 10.4103/0974-8520.68203. PMID: 22131680; PMCID: PMC3215317.

57. Sawant A, Patil S, Shah S (2017) Review on PCOD/PCOS & its treatment in different medicinal systems—allopathy, ayurveda, homeopathy. Sci Jurno 1(1): 1-16.

HOW TO CITE: Pratiksha Rathod, Snehal Rathod, Shital Rathod, Prachi Kadam, Renuka Sagane, Pragati Nade, An Overview of PCOD & PCOS Treatment Strategies, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 1937-1947. <https://doi.org/10.5281/zenodo.17596245>

