

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Research Article

An Approach Of Computer Aided Drug Design (CADD) Tools For Insilico Evaluation Of Various Derivatives Of Antidiabetic Standard Drugs

Anushree Suga¹, Ashwini Paschapur¹, Somashekhar M Metri^{*}, Trupti A Hunnura², Hanamant B Sannakki²

Department of Pharmaceutical Chemistry, BLDEA's SSM College of Pharmacy and Research Centre Vijayapura-586103, Karnataka, India.

ARTICLE INFO	ABSTRACT
Published: 19 Oct 2024	An in-silico ADME/T study utilizing Swiss ADME software was conducted on novel
Keywords:	derivatives of standard antidiabetic drugs, revealing reduced toxicity levels compared to
Insilco study, ADME/T	existing medications. Docking scores showed significant interactions with antidiabetic
study, Pass Prediction,	and antitubercular properties, successfully binding to protein PDB IDs 8Q0T and 1H5U.
Antidiabetic Activity,	Predictive analysis yielded Pa and Pi values (0-1), indicating promising antidiabetic
Antitubercular Activity	activity. These findings suggest the derivatives' potential for development into enhanced
DOI:	efficacy antidiabetic compounds, opening new avenues for antidiabetic drug discovery
10.5281/zenodo.13955358	and providing valuable leads for future research in combating diabetes.

INTRODUCTION

In chemistry, "docking" often refers to a computational method used in molecular modeling to predict how small molecules, such as drugs, interact with larger molecules, such as proteins or enzymes. This technique is instrumental in drug discovery and design.1 Here's a breakdown of how docking works: The process involves placing a small molecule (the ligand) into the requisite site of a larger fragment (the target, usually a protein) to predict how well they fit together. The goal is to

find the optimal orientation and conformation of the ligand that maximizes its interaction with the target.2 In the context of chemistry, particularly in drug development and pharmaceuticals, ADME, and toxicity are crucial for understanding how compounds behave in biological systems.3 Refers to the adverse effects a compound can have on an organism. It involves studying the harmful effects that can occur at various concentrations and understanding the safety margin between

*Corresponding Author: Somashekhar M Metri

Address: Department of Pharmaceutical Chemistry, BLDEA's SSM College of Pharmacy and Research Centre Vijayapura-586103, Karnataka, India.

Email : csm.som@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

therapeutic and toxic doses.4 Together, ADME and toxicity studies help predict a compound's behavior in the body, its effectiveness, and its safety profile, guiding the development of new drugs and chemicals.5 Numerous physiological functions were predicted using the online communication PASS (prediction of activity profiles for compounds; http://www.pharmaexpert.ru/ PASS online/ index.php). According to Kumaresan et al. (2015), this instrument was developed to predict a variety of biological processes with 95% accuracy.6 The structures were created in ChemDraw 16.0, translated to Smiles format, and used with the PASS online version to predict the biological spectrum (Kawsar et al. 2022a). The outcome was displayed as the likelihood of the active substance, Pa, and the inactive substance, Pi. In the range of 0.000-1.000, Pa > Pi is taken into consideration here, and Pa + Pi \neq 1 generally.7 The PASS prediction results were interpreted and applied with flexibility: [i] the prospect of discovery of the movement empirically is in elevation when Pa >0.5; [ii] the possibility of conclusion the action empirically is lesser if 0.5 < Pa < 0.7, but the composite is probable not as comparable to recognized remedial products agents, and [iii] the prospect of conclusion the activity through researches is lesser but not the structure-based prospect (Filimonov et al. 2014). Therefore, the chemical's intrinsic feature is the spectrum's expected activity.8

MATERIALS AND METHODS:

The docking investigations are performed to evaluate the different forms of bimolecular connections and ligand-receptor attachment intensities. PyRX, PyMOL, Biovia Discovery Studios 2020, Auto dock Vina, and other tools were used for these docking studies. Proteins were used in the docking investigation, specifically Polyketide synthase, an antitubercular amino acid, and its structure in crystals. PKS13 (PDB ID: 8Q0U) The enzyme glycogen phosphorylase is an anti-diabetic protein (PDB ID: 1H5U). An AMD Ryzen 7 3700U processor powered an HP 15s-eq0132au computer, which was utilized for the statistical task.

Proteins assembly

The RCSB Proteins The information a bank provided the crystalline structure of the antitubercular amino acids Polyketide synthesis the PKS13 (PDB ID: 8Q0U) as well as the antidiabetic amino acids Glycogen phosphorylase (PDB ID: 1H5U). The amino acids were generated using the Swiss PDB viewers to remove the remaining agonists, and the resulting amino acids have been retained in the form of a PDB.

The Ligand setup

The three-dimensional models for the molecules were generated utilizing a chem sketch and submitted in BIOVIA Discovery Studio Visualizer-2020. A clustered sdf file had been generated after ligands reduction was completed utilizing the "A SMALL MOLECULES" procedure in BIOVIA Discovery Studios the Visualizer feature-2020.

Docking studies

Docking investigations become more important to minimize mistakes and determine the proper position of compounds inside the protein's active region. PyRx-Virtual Evaluation Tools was utilized to do the docking process. In the PyRx-Virtual Screens Instrument change ligands to pdbqt, then choose those as ligands in the Vina tutorial. ready-to-use proteins have been imported into the PyRx-Virtual Screening Tool and marked for macro molecule selection. The calculation of the binding-related amino acids and connection energy—the relationship between the substance that binds and the receptor was done.

Research on Drugs Likelihood

DruLiTO was used to import the chosen phytonutrients in sdf file and perform the therapeutic likelihood testing ADME/T Studies.

The Swiss ADME/T was used to download the SMILES of the chosen compounds while saving their ADME/T attributes. Scores have been summarized as shown in the table.

Predictions for PASS

The shortlisted compounds' SMILES were entered into the validation phase of the digital way2drug program.

RESULTS AND DISCUSSION

The following are the smiles of some standard antidiabetic drugs with their derivatives:

Standard Drugs name with smiles	Derivative smiles				
O=S(=O)(NC(=O)NCCC)c	CCCN(CCC)C(=O)NS(=O)(=O)c1ccc(Cl)cc1				
1ccc(Cl)cc1	Derivative I				
Chlorpropamide	CCCN(C(=O)NCCC)S(=O)(=O)c1ccc(Cl)cc1				
	Derivative II				
O=S(=O)(NC(=O)NC1CC	O=S(=O)(NC(=O)N(C1CCCCC1)C1CCCCC1)c1ccc(C				
CCC1)c1ccc	CNC(=O)c2ncc(C)nc2)cc1				
(cc1)CCNC(=O)c1ncc(C)n	Derivative I				
c1	O=S(=O)(NC(=O)NC1CCCCC1)c1ccc(cc1)CCNC(=O)				
Glipizide	clncc(ncl)CC				
	Derivative II				
O=C(O)c1ccc(CC(=O)NC(COC(=O)c1ccc(CC(=O)NC(CC(C)C)c2ccccc2N2CCC				
CC	CC2)cc1OCC				
(C)C)c2ccccc2N2CCCC2	Derivative I				
)cc1OCC	O=C(O)c1ccc(CC(=O)NC(CC(C)C)c2ccccc2N2CCCC				
Repaglinide	C2)cc1OCOC				
•	Derivative II				
N\C(=N/C(=N)N)N(C)C	N=C(\N=C(/N)N(C)C)N(C)C				
Metformin	Derivative I				
	N\C(=N/C(=N)N)N(C)OC				
	Derivative II				
O=C1SC(Cc2ccc(cc2)OCC	O=C1SC(Cc2ccc(cc2)OCCc2ccc(COC)cn2)C(=O)N1				
c2ccc(CC)	Derivative I				
cn2)C(=O)N1	O=C1SC(Cc2ccc(cc2)OCCc2ccc(C)cn2)C(=O)N1				
Pioglitazone	Derivative II				
OC1OC(CO)C(OC2OC(C	OC1OC(CO)C(OC2OC(CO)C(OC3OC(OC)C(NC4C=				
O)C(OC3OC	C(CO)C(O)C(O)C4O)				
(C)C(NC4C=C(CO)C(O)C	C(O)C3O)C(O)C2O)C(O)C1O				
(O)C4O)	Derivative I				
C(O)C3O)C(O)C2O)C(O)	OC1OC(CO)C(OC2OC(CO)C(OC3OC				
C10	(CC)C(NC4C=C(CO)C(O)C(O)C4O)				
Acarbose	C(0)C30)C(0)C20)C(0)C10				
	Derivative II				

Physicochemic Chlorpro	al Properties pamide	Chlorpropamide d-I	Chlorpropamide d-II	Glipizide	Glipizide d-I	Glipizide d-II
Formula	C10H13CIN2O3 S	C13H19CIN2O38	C13H19CIN2O3S	C21H27N5O4S	C27H37N5O4S	C22H29N5O4S
Molecular weight	276.74 g/mol	318.82 g/mol	318.82 g/mol	445.54 g/mol	527.68 g/mol	459.56 g/mol
Molar Refractivity	65.16	79.67	79.67	115.30	142.12	120.11
TPSA	83.65 Ų	74.86 Ų	74.86 Ų	138.53 Å ²	129.74 Å ²	138.53 Å ²
Lipoph	ilicity					
Log Poin (iLOGP)	1.28	2.68	3.24	2.51	3.35	2.28
Consensus Log Pow	1.77	2.66	2.77	1.97	3.43	2.19
Water So	lubility					
Solubility	3.90e-01 mg/ml; 1.41e-03 mol/l	2.05e-01 mg/ml; 6.42e-04 mol/l	1.10e-01 mg/ml; 3.44e-04 mol/l	1.65e-01 mg/ml; 3.70e-04 mol/l	9.69e-03 mg/ml; 1.84e-05 mol/l	8.86e-02 mg/ml; 1.93e-04 mol/
Pharmaco	kinetics					
GI absorption	High	High	High	Low	Low	Low
Log <u>K</u> p (skin permeation)	-6.38 cm/s	-6.35 cm/s	-6.04 cm/s	-7.66 cm/s	-7.14 cm/s	-7.44 cm/s
Druglik	cness					
Lipinski	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation	Yes; 1 violation: MW>500	Yes; 0 violation
Bioavailability Score	0.55	0.55	0.55	0.55	0.55	0.55
Medicinal C	hemistry					
Synthetic accessibility	2.37	2.65	2.82	3.33	3.95	3.52
Physicochemi Repag	cal Properties linide	Repaglinide d-I	Repaglinide d-II	Metformin	Metformin d-I	Metformin d-II
Formula	C27H36N2O4	C28H38N2O4	C27H36N2O5	C4H11N5	C6H15N5	C4H11N5O
Molecular weight	452.59 g/mol	466.61 g/mol	468.59 g/mol	129.16 g/mol	157.22 g/mol	145.16 g/mol
Molar Refractivity	135.45	139.77	136.53	36.93	46.73	38.01
TPSA	78.87 Å ²	67.87 Å ²	88.10 Å ²	91.49 Å ²	68.71 Å ²	100.72 Å ²
Lipopl	hilicity					
T D (TOOD)						
Log P _{o/w} (iLOGP)	3.74	4.75	3.88	0.64	1.28	0.50
Consensus Log Po/w (ILOGP)	3.74 4.40	4.75 4.84	3.88 4.09	0.64 -0.92	1.28 -0.34	0.50
Log Poin (LOGP) Consensus Log Poin Water S	3.74 4.40 olubility	4.75 4.84	3.88 4.09	0.64 -0.92	1.28 -0.34	0.50
Log P _{o'm} (LOGP) Consensus Log P _{o'm} Water S Solubility	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/l	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/l	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/l	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1
Log P _{o'm} (ILOGP) Consensus Log P _{o'm} Water S Solubility Pharmac	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/l	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/l	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/l	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/l	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/l
Log Pow (ILOGP) Consensus Log Pow Water S Solubility Pharmac GI absorption	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics High	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/1 High	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High	1.28 -0.34 8.29e+01 mg/ml: 5.27e-01 mol/1 High	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High
Log P _{o/w} (iLOGP) Consensus Log P _{o/w} Water S Solubility Pharmac GI absorption Log K _p (skin permeation)	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics High -5.38 cm/s	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High -5.23 cm/s	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/1 High -5.77 cm/s	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High -7.99cm/s	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/1 High -7.75cm/s	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High -8.06 cm/s
Log P _{0/w} (iLOGP) Consensus Log P _{0/w} Water S Solubility Pharmac GI absorption Log K _p (skin permeation) Drugli	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics High -5.38 cm/s keness	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High -5.23 cm/s	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/1 High -5.77 cm/s	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High -7.99cm/s	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/1 High -7.75cm/s	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High -8.06 cm/s
Log Pow (ILOGP) Consensus Log Pow Water S Solubility Pharmac GI absorption Log K _p (skin permeation) Drugli Lipinski	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/l okinetics High -5.38 cm/s keness Yes; 0 violation	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High -5.23 cm/s Yes; 0 violation	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/1 High -5.77 cm/s Yes; 0 violation	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High -7.99cm/s Yes; 0 violation	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/1 High -7.75cm/s Yes; 0 violation	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High -8.06 cm/s Yes; 0 violation
Log P _{olw} (ILOGP) Consensus Log P _{olw} Water S Solubility Pharmac GI absorption Log K _p (skin permeation) Drugli Lipinski Bioavailability Score	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics High -5.38 cm/s keness Yes; 0 violation 0.56	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High -5.23 cm/s Yes; 0 violation 0.55	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/1 High -5.77 cm/s Yes; 0 violation 0.56	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High -7.99cm/s Yes; 0 violation 0.55	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/1 High -7.75cm/s Yes; 0 violation 0.55	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High -8.06 cm/s Yes; 0 violation 0.55
Log P _{olw} (ILOGP) Consensus Log P _{olw} Water S Solubility Pharmac GI absorption Log K _p (skin permeation) Drugli Lipinski Bioavailability Score Medicinal	3.74 4.40 olubility 3.60e-05 mg/ml; 7.96e-08 mol/1 okinetics High -5.38 cm/s keness Yes; 0 violation 0.56 Chemistry	4.75 4.84 7.62e-06 mg/ml; 1.63e-08 mol/1 High -5.23 cm/s Yes; 0 violation 0.55	3.88 4.09 2.83e-03 mg/ml; 6.03e-06 mol/l High -5.77 cm/s Yes; 0 violation 0.56	0.64 -0.92 9.05e+01 mg/ml; 7.00e-01 mol/1 High -7.99cm/s Yes; 0 violation 0.55	1.28 -0.34 8.29e+01 mg/ml; 5.27e-01 mol/1 High -7.75cm/s Yes; 0 violation 0.55	0.50 -1.01 2.48e+02 mg/ml; 1.71e+00 mol/1 High -8.06 cm/s Yes; 0 violation 0.55

ADMET PREDICTION RESULTS:

Physicochemical Properties Pioglitazone	Pioglitazone d- I	Pioglitazone d- II	Acarbose	Acarbose d-I	Acarbose d- II
Formula	C19H20N2O3S	C19H20N2O4S	C18H18N2O3S	C25H43NO18	C25H43NO19
Molecular weight	356.44 g/mol	372.44 g/mol	342.41 g/mol	645.60 g/mol	661.60 g/mol
Molar Refractivity	102.17	103.25	97.36	136.69	137.77
TPSA	93.59 Ų	102.82 Ų	93.59 Ų	321.17 Ų	330.40 Å ²
Lipophilicity					
Log P _{o/w} (iLOGP)	2.61	2.45	2.47	0.63	0.50
Consensus Log P _{o/w}	3.09	2.46	2.08	-6.22	-6.56
		Water Solu	ıbility		

Somashekhar M Metri, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 10, 987-998 |Research

Solubility	1.76e-02 mg/ml ; 4.95e-05 mol/l	1.14e-04 mg/ml ; 3.07e-07 mol/l	3.21e-02 mg/ml ; 9.36e-05 mol/l	8.61e+04 mg/ml; 1.33e+02 mol/l	4.15e+05 mg/ml; 6.28e+02 mol/l			
		Pharmacok	inetics					
GI absorption	High	High	High	Low	Low			
Log K _p (skin permeation)	-5.81 cm/s	-6.72 cm/s	- 6.03 cm/s	-16.29 cm/s	-16.69cm/s			
Drug likeness								
Lipinski	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation	No; 3 violations: MW>500, N or O>10, NH or OH>5	No; 3 violations: MW>500, N or O>10, NH or OH>5			
Bioavailability Score	0.56	0.55	0.56	0.17	0.17			
		Medicinal Ch	emistry					
Synthetic accessibility	3.46	3.49	3.31	7.34	7.3			

Physicochemical Properties Dapagliflozin		Dapagliflozin d-II	Physicochemical						
			Properties						
			Dapagliflozin						
Formula	C21H25ClO6	C21H25ClO5	C20H23ClO6						
Molecular weight	408.87 g/mol	392.87 g/mol	394.85 g/mol						
Molar Refractivity	104.82	103.30	100.02						
	Lipoph	vilicity							
$Log P_{o/w}$ (iLOGP)	3.17	2.76	2.47						
Consensus Log P _{o/w}	2.18	2.42	1.76						
	Water Solubility								
Solubility	6.84e-02 mg/ml ;	3.54e-02 mg/ml;	1.15e-01 mg/ml;						
	1.67e-04 mol/l	9.02e-05 mol/l	2.92e-04 mol/l						
	Pharmaco	okinetics							
GI absorption	High	High	High						
$Log K_p$ (skin	-7.13 cm/s	-6.70 cm/s	- 7.30 cm/s						
permeation)									
	Drug li	keness							
Lipinski	Yes; 0 violation	Yes; 0 violation	Yes; 0 violation						
Bioavailability Score	0.55	0.55	0.55						
	Medicinal (Chemistry							
Synthetic accessibility	4.52	4.09	4.41						

PREDICTION RESULTS:

PASS PREDICTION:

Activity	Chlorpropamide		Chlorpro	pamide d-I	Chlorpropamide d-II	
Activity	Pa	Pi	Pa	Pi	Pa	Pi
Polyporopepsin inhibitor	0.856	0.0011	0.824	0.016	0.743	0.030
Omptin inhibitor	0.823	0.005	0.763	0.012	0.725	0.017
Cl-transporting ATPase inhibitor	0.766	0.009	0.805	0.005	0.740	0.011
Polyporopepsin inhibitor	0.856	0.0011	0.824	0.016	0.743	0.030

Activity	Glipizide		Acti	ivity	Glipizide	
	Pa	Pi	Pa	Pi	Pa	Pi
Sulfonylureas	0.674	0.001	0.421	0.002	0.673	0.001
Channel-	0.520	0.010	0.518	0.010	0.510	0.011
conductance-						
controlling						

ATPase						
inhibitor						
Potassium	0.437	0.010	0.295	0.022	0.377	0.014
channel						
blocker						
Prostaglandin	0.370	0.010	0.374	0.010	0.351	0.012
E1 antagonist						
Loop diuretics	0.357	0.042	0.351	0.044	0.336	0.053
-						
Activity	Repaglinide		Repagli	nide d-I	Repagli	nide d-II
Activity	Repaglinide Pa	Pi	Repagli Pa	nide d-I Pi	Repaglin Pa	nide d-II Pi
Activity Insulin	Repaglinide Pa 0.656	Pi 0.009	Repagli Pa 0.962	nide d-I Pi 0.002	Repaglin Pa 0.877	nide d-II Pi 0.003
Activity Insulin promoter	Repaglinide Pa 0.656	Pi 0.009	Repagli Pa 0.962	nide d-I Pi 0.002	Repaglin Pa 0.877	nide d-II Pi 0.003
Activity Insulin promoter Antineurogenic	Repaglinide Pa 0.656 0.593	Pi 0.009 0.005	Repagli Pa 0.962 0.564	nide d-I Pi 0.002 0.005	Repaglin Pa 0.877 0.350	nide d-II Pi 0.003 0.034
Activity Insulin promoter Antineurogenic pain	Repaglinide Pa 0.656 0.593	Pi 0.009 0.005	Repagli Pa 0.962 0.564	nide d-I Pi 0.002 0.005	Repaglin Pa 0.877 0.350	nide d-II Pi 0.003 0.034
Activity Insulin promoter Antineurogenic pain CYP3A4	Repaglinide Pa 0.656 0.593 0.443	Pi 0.009 0.005 0.008	Repagli Pa 0.962 0.564 0.461	nide d-I Pi 0.002 0.005 0.007	Repaglin Pa 0.877 0.350 0.417	nide d-II Pi 0.003 0.034 0.010

Activity	Metformin		Metfor	min d-I	Metformin d-II	
	Pa	Pi	Pa	Pi	Pa	Pi
CDP-glycerol	0.887	0.012	0.898	0.010	0.848	0.020
glycerophosphotransferase						
inhibitor						
Omptin inhibitor	0.820	0.006	0.837	0.005	0.735	0.015
Pro-opiomelanocortin	0.824	0.011	0.844	0.009	0.785	0.016
converting enzyme						
inhibitor						
Limulus clotting factor B	0.808	0.004	0.827	0.004	0.713	0.011
inhibitor						
Phobic disorders treatment	0.799	0.034	0.823	0.026	0.784	0.039

Activity	Pioglitazone		Pioglitazone d-I		Pioglitazone d-II	
	Pa	Pi	Pa	Pi	Pa	Pi
Antidiabetic	0.976	0.003	0.969	0.003	0.979	0.003
Peroxisome proliferator-	0.942	0.002	0.920	0.002	0.944	0.002
activated receptor gamma						
agonist						
CYP2C12 substrate	0.923	0.007	0.904	0.011	0.945	0.004
Peroxisome proliferator-	0.882	0.002	0.833	0.003	0.883	0.002
activated receptor agonist						
Hypolipemic	0.847	0.005	0.873	0.005	0.804	0.007
CYP2C8 substrate	0.820	0.005	0.877	0.004	0.882	0.004

Activity	Acarbose		Acarbose d-I		Acarbose d-II	
	Pa	Pi	Pa	Pi	Pa	Pi

Cyclomaltodextrinase	0.980	0.000	0.933	0.001	0.969	0.000
inhibitor						
Sucrease alpha aliaasidaaa	0.072	0.000	0.014	0.000	0.046	0.000
Sucrose alpha-glicosidase	0.972	0.000	0.914	0.000	0.940	0.000
inhibitor						
Maltose transporting	0.968	0.000	0.916	0.000	0.928	0.000
ΔTP ase inhibitor						
	0.062	0.000	0.040	0.000	0.005	0.000
4-Alpha	0.962	0.000	0.942	0.000	0.905	0.000
glucanotransferase						
inhibitor						
Alpha glucosidasa	0.056	0.000	0.022	0.000	0.010	0.000
Alpha glucosidase	0.950	0.000	0.933	0.000	0.910	0.000
inhibitor						
CDP-glycerol	0.949	0.004	0.940	0.004	0.938	0.005
glycerophosphotransferase						
inhibitor						
	0.040	0.000	0.0.10	0.001	0.000	0.000
Alpha amylase inhibitor	0.943	0.000	0.868	0.001	0.902	0.000
Glucan 1,3-alpha-	0.909	0.000	0.871	0.001	0.902	0.001
glucosidase inhibitor						
Bracessianse minerter	1	1	1	1		1

Activity	Dapagliflozin		Dapagliflozin d-I		Dapagliflozin d-II	
	Pa	Pi	Pa	Pi	Pa	Pi
Membrane integrity agonist	0.922	0.006	0.909	0.009	0.916	0.007
Antidiabetic	0.866	0.004	0.869	0.004	0.851	0.004
Alkenylglycerylphosphocholine	0.832	0.013	0.716	0.029	0.705	0.031
hydrolase inhibitor						
CDP-glycerol	0.802	0.029	0.821	0.025	0.826	0.24
glycerophosphotransferase						
inhibitor						
Sugar phosphate inhibitor	0.787	0.018	0.817	0.014	0.732	0.027
Cholesterol antagonist	0.754	0.005	0.672	0.011	0.670	0.011
Benzoate-CoA ligase inhibitor	0.749	0.024	0.765	0.022	0.721	0.028

CHLORPROPAMIDE GRID BOX WITH LIGAND RECEPTOR

Aromatic

HYDROGEN BONDS

Hydrophobic

CHLORPROPAMIDE II

Docking score of anti-tubercular protein polypeptide synthase pks13 (pdb id: 8q0t) and glycogen phosphorylase (pdb id: 1h5u)

Sr. No	Derivative Name	ANTI- TUBERCULAR PROTEIN POLYKETIDE SYNTHASE PKS13 (PDB ID: 8Q0T)Score	ANTI-DIABETIC PROTEIN GLYCOGEN PHOSPHORYLASE (PDB ID: 1H5U) Score
1	Chlorpropamide	-7.1	-10.9
2	Chlorpropamide I	-7.5	-7.2
3	Chlorpropamide II	-6.6	-8.1
4	Glipizide	-9.6	-4.6
5	Glipizide I	-9.5	-9.3
6	Glipizide II	-10.2	-8.8
7	Repaglinide	-9.8	-11.5
8	Repaglinide I	-9.6	-15.4
9	Repaglinide II	-9.0	-11.4
10	Metformin	-11.2	-9.4
11	Metformin I	-10.5	-4.8
12	Metformin II	-10.8	-4.3
13	Pioglitazone	-7.5	-12.3
14	Pioglitazone I	-7.7	-8.0
15	Pioglitazone II	-7.4	-8.1
16	Acarbose	-8.8	-7.2
17	Acarbose I	-8.5	-11.5
18	Acarbose II	-8.4	-13.1
19	Dapagliflozin	-10.2	-11.3
20	Dapagliflozin I	-10.3	-10.3
21	Dapagliflozin II	-10.0	-9.1

CONCLUSION:

Successfully demonstrated the potential of novel derivatives of standard antidiabetic drugs,

exhibiting reduced toxicity and enhanced efficacy through in-silico ADME/T studies and molecular docking. The significant interactions with

antidiabetic and antitubercular properties, confirmed by docking with protein PDB IDs 8Q0T and 1H5U, and predictive Pa and Pi values (0-1), underscore the promise of these derivatives as next-generation antidiabetic compounds. This study provides valuable leads for future research, paving the way for the development of more effective and safer antidiabetic therapies, and highlighting the potential of computational drug design in accelerating the drug discovery process.

ACKNOWLEDGEMENT

My greatest thanks goes out to the principal and professors of the SSM College of Pharmacy and study Center at BLDEA's in Vijayapura for their steadfast encouragement and moral support during my research work.

CONFLICT OF INTEREST:

No

REFERENCES:

- 1. Arif R, Ahmad S, Mustafa G, Mahrosh HS, Ali M, Tahir ul Qamar M, Dar HR. Molecular Docking and Simulation Studies of Antidiabetic Agents Devised from Hypoglycemic Polypeptide-P of Momordica charantia. BioMed research is international. 2021;2021(1):5561129.
- Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021 Jan 1;36(1):109-21.
- Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, Srinivas KV, Alam S, Jonnala KK, Khan F, Tiwari A. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. European journal of

medicinal Hussain N, Kakoti BB, Rudrapal M, Sarwa KK, Celik I, Attah EI,

- 4. Addanki HR, Vallabhaneni MR, Chennamsetty S, Pullagura P, Sagurthi SR, Pasupuleti VR. An in silico ADMET, molecular docking study and microwaveassisted synthesis of new phosphorylated derivatives of thiazolidinedione as potential anti-diabetic agents. Synthetic Communications. 2022 Jan 17;52(2):300-15.
- 5. Maji D, Samanta S, Patil VM. In silico ADMET and docking studies of thiazolidinedione-acetic-acid hybrids as antidiabetics with cardioprotection. Letters in Drug Design & Discovery. 2020 Dec 1;17(12):1475-84.
- Salgueiro AC, Folmer V, Bassante FE, Cardoso MH, da Rosa HS, Puntel GO. Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complementary Therapies in Medicine. 2018 Dec 1; 41:1-9.
- Dash L, Sharma N, Vyas M, Kumar R, Kumar R, Mahajan S, Khurana N. Prediction of anticancer activity of potential anticancer compounds using pass online software. Plant Arch. 2020;20(2):2808-13.
- 8. Akash S. Computational screening of novel therapeutic and potent molecules from bioactive trehalose and it's eight derivatives by different insilico studies for the treatment of diabetes mellitus. Organic Commun. 2022 Jul 1; 15:288-96.

HOW TO CITE: Anushree Suga , Ashwini Paschapur , Somashekhar M. Metri , Trupti A. Hunnura , Hanamant B. Sannakki , An Approach Of Computer Aided Drug Design (CADD) Tools For In-silico Evaluation Of Various Derivatives Of Antidiabetic Standard Drugs, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 10, 987-998. https://doi.org/10.5281/zenodo.13955358