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Osteomyelitis, an inflammatory bone infection, poses significant challenges in diagnosis 

and treatment due to compromised vasculature and bacterial resistance. This review 

explores the potential of calcium carbonate nanoparticles (CaCO3 NPs) in addressing 

these challenges. CaCO3 NPs exhibit excellent biocompatibility, pH sensitivity, and 

ease of modification, making them promising candidates for biomedical applications. 

Recent advancements include enhancing antimicrobial properties, utilizing CaCO3 NPs 

as drug carriers, and leveraging their immunomodulatory effects. Future trends suggest 

potential applications in oral osteoporosis treatment, localized antibiotic delivery, and 

solid cancer therapy. Additionally, CaCO3 NPs hold promise for bone tissue 

regeneration and scaffold development. Despite progress, further research is needed to 

optimize CaCO3 NP formulations and explore their full potential in osteomyelitis 

management. Overall, CaCO3 NPs offer a versatile platform for improving diagnosis, 

treatment, and therapeutic outcomes in osteomyelitis and other bone-related disorders. 
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INTRODUCTION 

Naturally, bone is a highly vascularized 

connective tissue that exhibits a unique angiogenic 

pattern and frequently develops in tandem with the 

mineralization of bone (1). However, the 

vasculature of bone can become compromised due 

to ageing, trauma, or infection, creating a nearly 

perfect environment for opportunistic bacteria to 

adhere to and grow. This damaged vasculature not 

only creates an environment that is ideal for 

bacterial growth (lower oxygen, a more alkaline 

pH, etc.), but it also prevents antibiotics from 

being delivered. This confluence of ailments 

results in bone infections, including diabetic foot 

https://www.ijpsjournal.com/
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osteomyelitis, septic arthritis, spinal infections, 

and osteomyelitis, which can cause severe trauma 

and result in lifelong disabilities. A novel strategy 

for quick diagnosis and treatment may be needed 

for the clinical management of such infections. 

OSTEOMYELITIS 

The definition of osteomyelitis is "inflammation of 

the bone," usually brought on by an infection of 

the bone marrow and surrounding osseous 

structures, which may also affect the surrounding 

soft tissue (2). Up to 75% of these infections are 

caused by staphylococci overall, with S. aureus 

being the primary pathogen in 30% to 60% of 

cases (3). 

CAUSES  

The kinds of infections are as follows: (1) Blood-

borne infection: This type of infection, also known 

as bloodborne osteomyelitis, occurs when 

pathogenic bacteria are carried from distant 

infection foci to the bone tissue through the blood 

circulation; (2) Post-traumatic infection, also 

called post-traumatic osteomyelitis, involves 

direct contamination of open fractures or bone 

infection following fracture surgery, particularly 

following internal fixation or prosthesis 

implantation; and (3) Adjacent infection, which 

includes pressure ulcers, foreign body infections, 

and other infections that spread to the bone tissue, 

including ulcers brought on by diabetes and 

arteriosclerosis, and osteomyelitis brought on by 

tissue necrosis. The metaphysis of the long bones 

(proximal tibia and distal femur) or penetrating 

bone injury because of trauma is the most common 

site in children (4-7). 

TYPES  

Osteomyelitis is classified into (1Acute 

hematogenous osteomyelitis, which is primarily 

observed in children under the age of seventeen; 

(2) contiguous osteomyelitis, which arises from 

adjacent infection sites (like those resulting from 

trauma or surgery) or an orthopaedic implant (8) 

or (3) secondary osteomyelitis, which is caused by 

vascular insufficiency or neuropathy, as observed 

in diabetic foot ulcers(9,10). 

Figure 1: Osteomyelitis arises in one of three primary ways. Regardless of the underlying cause, vascular 

disruption due to the formation of sequestra can occur, making treatment very difficult (10). Waldvogel’s 

classification of osteomyelitis (3) describes characteristics of each of these ways. Figure created with 

BioRender.com.

PATHOPHYSIOLOGY OF 

OSTEOMYELITIS 

The location of the bone, its structural variation 

according to the patient's age, and the underlying 

source of the infection all affect the 

pathophysiology of osteomyelitis. According to 

recent research, ageing may cause changes in both 

the vascular and mineral structures of bone, with 

the impaired endothelial Notch signalling 

appearing to be the primary cause of these changes 

(11, 12). This change in blood flow may impair 

osteogenesis and bone healing, making it more 
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susceptible to infection, especially following 

trauma, surgery, or injury (13).  It is evident how 

both contiguous spread and disruption of the blood 

supply result in osteomyelitis given the vital role 

that the vasculature plays in bone regeneration; 

however, osteomyelitis resulting from acute 

hematogenous spread of infection in pediatric 

patients does not initially appear to fit that pattern. 

Upon closer inspection, however, acute 

hematogenous osteomyelitis is frequently linked 

to the venous architecture in pediatric patients, 

which is linked to more turbulent blood flow at the 

metaphyseal vessel loop, which is found in the 

vicinity of the pediatric patient's growth pates and 

lumbar spine (9). This turbulent flow, in 

conjunction with a transient bacteremia frequently 

brought on by trauma, results in venous pooling of 

blood close to the metaphysis of bone, which 

permits bacterial deposition close to the growth 

plate and starts the osteomyelitic progression 

(Figure 2) (2). Osteomyelitis can be particularly 

difficult to diagnose, regardless of its 

pathophysiology. 

 

Figure 2: Progression of either (A) acute or (B) chronic osteomyelitis (C) Cortical penetration and 

periosteal elevation (D) Formation of thick involucrum (E) Further expansion of methaphyseal focus and 

extensive involucrum. Two significant differences between acute and chronic osteomyelitis should be 

noted: the formation of a biofilm and the infiltration of the bacteria into host cells, both of which happen 

in chronic osteomyelitis (2). 

EPIDEMIOLOGY OF OSTEOMYELITIS 

The use of prosthetic implants in orthopedic 

surgery, the advancement of diagnostic 

technology, and the rise in diabetes have all 

contributed to an increase in the incidence of 

osteomyelitis. For instance, a statistical analysis of 

osteomyelitis patients by German researchers 

revealed that the overall incidence of the disease 

increased by 10.44%, from 15.5/100000 

people/year to 16.7/100000 people/year, 

compared with a decade ago; this increase was 

more pronounced in developing countries than in 

undeveloped ones(4,14,15).The total yearly 

incidence of osteomyelitis from January 1969 to 

December 2009 was determined to be 21.8/100000 

persons/year(16). However, women had a lower 

annual incidence of osteomyelitis than men did, 

and the infection rate rose with age. From 

11.4/100000 person-years in 1969–1979 to 

24.4/100000 person-years in 2000–2009, there 

was a notable increase in the incidence. The rates 

were consistent in young adults and children, but 

nearly three times higher in those over 60. This 

could be linked to a significant rise in diabetes-

related osteomyelitis cases(17), of which 44% 

included S. aureus infections. The incidence of 
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diabetic foot ulcers was found to be 25%, and the 

incidence of diabetic foot infections was found to 

be 36.5 per 1000 people/year in diabetic foot-

related osteomyelitis. Osteomyelitis may be linked 

to between 20% and 68% of diabetic foot ulcers 

(18). Following osteomyelitis in diabetic foot 

infections, 66% of cases result in amputation. 

Diabetes was linked in one study to a 1.6% 

hospital death rate from osteomyelitis (19). 

NANOMATERIALS FOR DIAGNOSIS AND 

TREATMENT OF OSTEOMYELITIS  

NANOTECHNOLOGY: 

Material scientists have spent the last fifty years 

researching various applications for nanoparticles 

and nanostructured materials in the biomedical and 

healthcare industries (20). Numerous fields have 

adopted the term "nanotechnology," which is 

quickly developing because of the creation of 

nanoproducts with unique size-related 

physicochemical characteristics that set them apart 

from larger matter. Processing, separating, 

combining, and forming materials with a single 

atom or molecule is the main objective of 

nanotechnology (21). A few industries where 

nanotechnology is gaining traction are medicine, 

food, cosmetics, natural health, biomedical 

sciences, mechanics, optoelectronics, substance 

enterprises, energy science, nonlinear optical 

devices, single electron transistors, catalysis, space 

industries, chemical industries, gadgets, light 

producers, and photoelectrochemical applications 

(22). Larger particles (up to 500 nm in diameter) 

can be referred to by different names, but the term 

"Nano Particle" typically refers to very small 

particles of matter (1 to 100 nm in diameter). As 

an illustration, nanorods, nanowires, and 

nanofibers are nanoparticles having one dimension 

outside of the nanoscale range and a diameter 

between one and one hundred nm (23, 24). 

Materials that are composed of one or more 

materials and have one dimension within the 

nanoscale range (less than 100 nm) are referred to 

as nanostructured materials. As a result, 

nanostructured materials are made up of linked 

nanoscale components. "NMs can exhibit unique 

properties dissimilar than the equivalent chemical 

compound in a larger dimension," according to the 

Environmental Protection Agency (EPA) (25). 

Simple materials (such as metal, carbon, or 

polymer) (26), composite materials (such as 

polymer-metal, silica-metal, or graphene-metal), 

or core-shell materials (27,28) can all be used to 

create nanoparticles and nanostructured materials.  

• Nanoscale: Approximately 1 to 1000 nm size 

range. 

• Nanoscience: The science and study of matter 

at the nanoscale that deals with understanding 

their size and structure-dependent properties 

and compares the emergence of individual 

atoms or molecules or bulk material related 

differences. 

• Nanotechnology: Manipulation and control of 

matter on the nanoscale dimension by using 

scientific knowledge of various industrial and 

biomedical applications. 

• Nanomaterial: Material with any internal or 

external structures on the nanoscale 

dimension. 

• Nano-object: Material that possesses one or 

more peripheral nanoscale dimensions. 

• Nanoparticle: Nano-object with three external 

nanoscales dimensions. The terms nanorod or 

nanoplate are employed, instead of 

nanoparticle (NP) when the longest and the 

shortest axes lengths of a nano-object are 

different. 

• Nanofiber: When two similar exterior 

nanoscale dimensions and a third larger 

dimension are present in a nanomaterial, it is 

referred to as nanofiber. 

• Nanocomposite: Multiphase structure with at 

least one phase on the nanoscale dimension. 
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• Nanostructure: Composition of 

interconnected constituent parts in the 

nanoscale region. 

• Nanostructured materials: Materials 

containing internal or surface nanostructure 

(25). 

Figure 3.: Applications of Nanotechnology 

NANOPARTICLES 

The basic building block of nanotechnology is 

nanoparticles (NPs). Particulate matter with at 

least one dimension smaller than 100 nm is 

referred to as a nanoparticle. They may consist of 

organic materials, metal, metal oxides, or carbon 

(29). 

STRUCTURE OF NANOPARTICLES: 

The structures of nanoparticles (NPs) are intricate. 

There are two or three layers to them:(i) a surface 

layer that has been functionalized by metal ions, 

surfactants, polymers, or a range of small 

molecules (ii) The core material, which is the 

central component of NPs; (iii) The shell layer, 

which is chemically distinct from the core and can 

be added on purpose. The core material is usually 

responsible for the distinctive characteristics of 

NPs. As a result, NPs are frequently only referred 

to by their core material (30). 

CLASSIFICATION OF NANOPARTICLES: 

Based on dimensions NPs can be classified into 

(31,32): 

 

1. Zero dimensional (0D) with length, breadth 

& height Corresponding Author fixed at a 

single point. E.g. Nano dots 

2. One dimensional (1D) which possess only 

one parameter. E.g. Graphene 

3. Two dimensional (2D) which possess only 

two parameters i.e., length & breadth. E.g. 

Carbon nanotubes 

4. Three dimensional (3D) possessing all three 

parameters viz. length, breadth & height. 

E.g. Gold nanoparticles. 

 
Figure 4: Classification of nanoparticles based on 

dimension. 

The main criteria used to classify nanoparticles 

(NPs) are their size, shape, and physical and 
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chemical characteristics. They are primarily 

divided into carbon-based, inorganic, and organic 

NPs. 

Organic-based nanomaterials:  

These are nanomaterials primarily derived from 

organic matter; they do not include inorganic or 

carbon-based nanomaterials. Noncovalent (weak) 

interactions are used in molecular design and self-

assembly to help convert organic nanoparticles 

(NMs) into desired structures like polymer NPs, 

dendrimers, micelles, and liposomes. 

Inorganic-based nanomaterials (NMs):  

These comprise NSMs and NPs made of metal and 

metal oxide. Metals like Au or Ag NPs, metal 

oxides like TiO2 and ZnO NPs, and 

semiconductors like silicon and ceramics can all 

be created using these NMs. 

Carbon-based nanomaterials:  

These NMs typically consist of carbon and can 

take the form of hollow tubes, ellipsoids, or 

spheres. The category of carbon-based NMs 

includes fullerenes (C60), carbon nanotubes 

(CNTs), carbon nanofibers, carbon black, 

graphene (Gr), and carbon onions. The main 

production techniques for these carbon-based 

materials (apart from carbon black) are chemical 

vapour deposition (CVD), arc discharge, and laser 

ablation (33). 

 
Figure 5: Classification of nanoparticles based on their morphology, size, physical & chemical properties. 

NANOPARTICLES SYNTHESIS 

A crucial component of both nanotechnology and 

nanoscience is the synthesis of nanomaterials. 

Several factors are involved in the nucleation and 

subsequent production of stabilised nanoparticles 

during the synthesis of nanomaterials. 

Temperature, reactant concentrations, reaction 

time, and pH are some of these variables. Studies 

have shown that changing the pH of the reaction 

medium often results in differences in the size and 

shape of the synthesised nanoparticles. Larger 

particles are likely to be produced by lower acidic 

pH values and smaller particles by higher pH 

values (34,35). In less than two minutes, 

nanoparticles emerged from the quickly reduced 

reaction medium. Temperature: temperature has a 

major impact on the creation of nanoparticles. 

There are many different forms that nanoparticles 

can take, such as hexagonal, circular, triangle, and 

chain-like structures (36,37). Historically, there 

have been two approaches to producing 

nanoparticles that can be categorised according to 

how they are assembled, namely the Top-down 

and Bottom-up approaches (38) that are 

schematically depicted in Figure 6. 
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Figure 6: Schematic representation of ‘top-down approach’ and ‘bottom-up approach’ for synthesis of 

nanoparticles. 

DIFFERENT METHODS FOR SYNTHESIS 

OF NANOPARTICLES  

Various chemical, physical, biological 

techniques are presently accessible to create 

various varieties of nanoparticles (39-42) as 

depicted in Fig. 7. 

 
Figure 7: Methods of synthesis of Nanoparticles (A) Chemical synthesis by the means of    

reduction/precipitation reactions (B) Physical synthesis of nanoparticles, and (C) Biological synthesis 

utilizing microorganisms or plant extracts as reducing agents. 

Although the synthesis of nanoparticles is more 

frequently accomplished by chemical and physical 

methods, their applicability is constrained using 

hazardous compounds and yields (43, 44). 

Because of their unique physical, chemical, and 

biological characteristics, nanoparticles are perfect 

for a wide range of uses in the biomedical and 

industrial sectors (45). As seen in Fig. 8, a variety 

of methods are used in the synthesis of 

nanoparticles. 
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Figure 8: Various techniques for synthesis of Nanoparticles 

CALCIUM CARBONATE 

NANOPARTICLES 

Calcium carbonate (CaCO3) nanoparticles (NPs) 

have drawn a lot of interest among various 

inorganic materials because of their superior 

biocompatibility and biodegradability, as well as 

their ease of preparation and pH sensitivity (46). 

Three anhydrous crystalline polymorphs (calcite, 

aragonite, and vaterite) and two hydrated 

metastable phases (calcium carbonate hexahydrate 

and monohydrocalcite) are the known forms of 

CaCO3 (47). The most soluble of them all is the 

ACC phase, which also happens to be the 

progenitor of anhydrous crystalline polymorphs 

that crystallise readily in solutions to create 

polymorphs (48). 

The Advantages of CaCO3 NPs 

Excellent Biocompatibility/Biodegradability 

and pH-Sensitive Property 

Calcium phosphate and carbonate are essential 

building blocks of teeth, shells, and bones in 

biological systems (49). Because CaCO3 and 

tissues have similar chemical compositions, it is 

thought that CaCO3-based drug delivery systems 

have excellent biocompatibility. Moreover, it has 

been shown that several common NPs, including 

Au, Ag, Se, Cr, TiO2, and ZnO, increase the 

frequency of mutations and the production of 

reactive oxygen species, which causes cell 

apoptosis (50, 51). On the other hand, because 

only two of their byproducts, Ca2+ and CO32−, 

are already present in blood, CaCO3 NPs are 

among the safest biomaterials. Furthermore, 

CaCO3 NPs degrade rapidly in an acidic tumour 

microenvironment but remain stable at normal 

blood pH (7.4), allowing for tumor-targeted 

delivery (52). 

Ease of Preparation and Surface Modification 

CaCO3 NPs are inexpensive because they can be 

prepared using common salts alone, typically 

without the need for organic solvents (53). 

Additionally, CaCO3 NPs can have their surface 

modified with a targeted moiety, which facilitates 

their arrival at the target sites (54). 

The Preparation Methods and Controlled 

Release of CaCO3 NPs 

As of right now, the precipitation method (55), gas 

diffusion (56), flame synthesis (57), breakdown of 

cockle shells (58), biomineralization, and so forth 

are the frequently employed techniques for 

preparing CaCO3 NPs (59,60). For CaCO3 NP-

based drug delivery systems, solution 

precipitation, microemulsion, and gas diffusion 

methods have been extensively utilised. 

Solution Precipitation Method  
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The most well-known method for preparing 

CaCO3 NP is the solution precipitation method, 

which makes use of the reaction between the Ca2+ 

and CO32− aqueous solution. The cost of 

production could be decreased by using this 

method to produce large amounts of CaCO3 NPs 

without the need for a surfactant. Numerous 

bioactive species, such as genes, proteins, and 

small molecule drugs, could load into CaCO3 NPs 

during the precipitation process due to the mild 

preparation conditions (46). Notably, the size, 

shape, and phase of CaCO3 NPs are frequently 

controlled by the synthesis parameters, which 

include pH, temperature, ion concentration, 

stirring speed, solvent species, and additives (55). 

Microemulsion Method 

For the preparation of CaCO3 NP and gene 

encapsulation, the microemulsion methods are a 

popular extension of the precipitation method (61, 

62). The reversed microemulsion (water in oil, or 

W/O) method and the double emulsion method are 

examples of microemulsion techniques. The W/O 

microemulsion droplets were employed as nano-

reactors in the reversed microemulsion technique 

(61). Initially, the "calcium microemulsion" and 

"carbonate microemulsion" were created by 

mixing an organic phase with the Ca2+ or CO32- 

aqueous phase, respectively. Then, to create 

CaCO3 NPs, "calcium microemulsion" and 

"carbonate microemulsion" were combined. 

Ultimately, the CaCO3 NPs were separated using 

a centrifuge. For the treatment of lung cancer, 

CaCO3 NP loading with the therapeutic peptide 

was developed using the reversed microemulsion 

method (63). The reversed microemulsion method 

and the double emulsion method are similar (62). 

First, the preparation of W/O "calcium 

microemulsion" was identical to that of the 

reversed microemulsion technique. Subsequently, 

a substantial amount of CO32−-containing 

aqueous phase was combined with “calcium 

microemulsion” to create the W/O/W double 

emulsion. In the W/O/W double emulsion, the 

Ca2+ and CO32− reaction produced CaCO3 NPs. 

The surfactants, temperature, pH, and ion 

concentration could all be optimised through the 

microemulsion method to control the structure, 

size, and crystallinity of CaCO3 NPs (64). 

Gas Diffusion Method 

Preparing ACC loading with small molecule drugs 

is the primary application of the gas diffusion 

method(56). CaCl2 was dissolved in ethanol and 

put into a glass bottle, as seen in Figure 9. After 

that, the bottle and another bottle of ammonia 

bicarbonate were placed in a desiccator. 

Ammonium bicarbonate was used to create CO2 

and NH3, which were subsequently dissolved in 

the ethanol solution to produce CO32− and NH4+. 

NH4+ produced an alkaline environment in which 

CO32− and Ca2+ reacted to form ACC. By 

adjusting the additives, temperature, and Ca2+ 

concentration, it was possible to control the size, 

shape, and polymorph of the prepared ACC using 

this method (65). 

 
Figure 9: Illustration of the gas diffusion method. CO2 and NH3 were generated from ammonium 

bicarbonate, which then dissolved in the ethanol solution and reacted with Ca2+ to form CaCO3 NPs. 
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Controlled Release of CaCO3 NPs 

Through a controlled release, CaCO3 NPs may 

enhance the pharmacokinetics of drug loading, 

thereby mitigating side effects and improving 

therapeutic effect. Three methods are used by 

CaCO3 NPs to release the drugs: diffusion, carrier 

dissolution, and recrystallization (66). The most 

important factor in the controlled release of 

CaCO3 NPs is pH. Free protons react with CO32− 

in an acidic environment to form HCO3-, which 

dissolves CaCO3 NPs and speeds up the release of 

loading drugs (67). 

The Biomedical Applications of CaCO3 NPs 

CaCO3 NPs for Treatment 

CaCO3 NPs have been widely used as carriers for 

a variety of treatments, including chemical therapy 

(68), gene therapy (63), PTT/PDT (69), and 

combination therapy (70), due to their excellent 

biocompatibility / biodegradability, pH-sensitive 

property, ease of preparation, and surface 

modification. Additionally, CaCO3 NPs 

themselves may be employed as Ca2+ generators 

to trigger autophagy and immunogenic cell death 

(ICD) to initiate immunotherapy (54). 

CaCO3 NPs as an Antimicrobial Agent 

The well-known, extremely strong antibacterial 

effect of inorganic NPs, such as metal and metal 

oxides, has led to their effective use as 

antimicrobial agents. The mechanism of ion (s) 

release and reactive oxygen species (ROS) 

generation represents the bactericidal properties of 

most metal oxide nanoparticles (NPs). Antibiotic-

containing CaCO3-NPs may be directly 

phagocytosed by intracellular microbes, which 

would allow the release of the antibiotic to 

continue against the intracellular microbes until 

the microbe’s developed resistance. 

Agrobacterium tumefaciens and Staphylococcus 

aureus are two examples of gram-positive and 

gram-negative bacteria that CaCO3-NPs 

effectively combat. These results have 

demonstrated a promising use of CaCO3-NPs as 

antimicrobial agents, which may offer remedies 

for illnesses associated with microbial infections 

(71). Osteomyelitis is one of the infectious 

diseases of the bones that is thought to be difficult 

to treat with traditional medicine. In addition to 

antimicrobial treatment with high serum 

concentration, debridement of the surrounding 

tissue and amputation of the infected bone may be 

linked to high resistance levels and patient 

discomfort. 

CaCO3 NPs as Drug Nanocarriers 

Long after administration, CaCO3 has also been 

studied in controlled drug release systems (72). 

Because CaCO3 nanoparticles are pH-sensitive, 

scientists can adjust the rate of degradation based 

on the intended use (73,74). Some key 

characteristics, like the slow degradation of 

CaCO3-NPs and their potential to work with 

targeting agents to specifically target cancer cells, 

enable a sustainable level of drug delivery. 

Creating functionalized CaCO3 nanostructures 

offers up fresh possibilities for cancer cell delivery 

methods. This combination reduces the toxicity of 

anticancer drugs on healthy cells and tissues while 

producing a targeted and effective drug carrier for 

cancer diagnosis and therapy (60). 

RECENT ADVANCES  

Utilizing calcium carbonate (CaCO3) 

nanoparticles to treat osteomyelitis has advanced 

over time, addressing the problems related to this 

serious bone infection. These are a few noteworthy 

advancements. 

1. Antibacterial Activity:  

Researchers have investigated ways to make 

CaCO3 nanoparticles more effective against the 

bacteria that cause osteomyelitis in terms of their 

antimicrobial properties. To increase the ability of 

nanoparticles to kill bacteria and eradicate strains 

that form biofilms, methods such as adding 

substances to their surface or altering it with 

peptides have been researched. 

2. Drug Delivery Systems:  
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To deliver agents, like antibiotics or antimicrobial 

peptides, to the infected bone tissue, CaCO3 

nanoparticles have been used as carriers. 

Formulations with controlled-release CaCO3 

nanoparticles allow for the localized delivery of 

substances, increasing their effectiveness and 

lowering systemic side effects. 

3. Immunomodulatory Properties: 

 Research has shown that CaCO3 nanoparticles 

have characteristics that can affect how the body 

reacts to infections and promote tissue growth and 

repair. These nanoparticles can control cytokine 

production, improve cell phagocytosis, and 

encourage mesenchymal stem cells to differentiate 

into bone-forming cells, which helps osteomyelitis 

patients heal their bones. 

4. Biocompatibility and Safety:  

Advances in nanotechnology have produced 

biodegradable, biocompatible CaCO3 

nanoparticles with varying degrees of cytotoxicity 

and immunogenicity. Benefits from using CaCO3 

nanoparticles in formulations include their low 

toxicity, easy manufacturing processes, and 

compatibility with the body, which makes them 

perfect for treating osteomyelitis. 

FUTURE TRENDS 

Because nanosized calcium carbonate has a higher 

bioavailability than micro sized calcium 

carbonate, it can be administered orally to 

osteoporotic patients with less side effects and 

greater levels of convenience(75). CaCO3-NPs 

can be used to treat infections where the necessary 

antibiotic needs to be delivered to tissues with 

specific penetration at higher serum level 

concentrations. At the same time, because of its 

controlled release property, which is characterized 

by CaCO3-NP adsorption on bacterial cell walls, 

it can replace local antibiotic delivery systems like 

implantable antibiotic pumps and cements. It also 

requires no replacement or refills and offers 

patients a higher level of convenience (76). The 

pH-sensitive CaCO3 NPs offer a window into 

potential future solid cancer treatment options 

because of their acidic microenvironment, which 

draws the CaCO3 NPs and allows them to 

specifically release their antitumor drug in a 

controlled-release manner due to the slow 

biodegradability of nanoparticles (60). It is 

anticipated that improvements in the management 

of bone infections will result from the possible 

application of calcium carbonate (CaCO3) 

nanoparticles in the treatment of osteomyelitis. 

Treatment strategies that combine 

immunomodulators, bone regenerative drugs, or 

biofilm disrupting agents with therapy appear 

promising in improving osteomyelitis outcomes. 

CaCO3 nanoparticles may serve as delivery 

vehicles for medicinal agents, either 

simultaneously or sequentially, enabling 

synergistic effects and individualized treatment 

plans catered to the needs of each patient. Future 

developments could include creating CaCO3 

nanoparticles with stimuli characteristics like 

enzymatic activation or pH sensitivity. This might 

make it possible to release drugs under control in 

response to signals or medical conditions. These 

clever nanoparticles may increase the 

effectiveness of medication delivery. Release 

antimicrobial agents precisely when and where 

they are most needed to minimize toxicity and 

maximize outcomes. Moreover, the development 

of implants, scaffolds, or bone substitutes using 

CaCO3 nanoparticles shows promise for the 

regeneration and repair of bone tissue damaged by 

osteomyelitis. In the future, it may be possible to 

integrate CaCO3 nanoparticles into composite 

materials or 3D printed structures to improve their 

biocompatibility, integration, and ability to 

promote bone healing while delivering agents 

directly to the infection site. 

CONCLUSION 

In conclusion, CaCO3 NPs' exceptional 

qualities—such as their pH sensitivity, surface 

modifications, biocompatibility and 
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biodegradability, and ease of preparation—make 

them highly promising for use in biomedical 

applications. Even though a lot has been done, 

more work is still required to address the 

problems. More effective CaCO3 NPs, in our 

opinion, will be created as secure carriers for 

illness diagnosis, treatment, and theranostics(77). 

They play a significant role in bone scaffolding, 

tissue engineering, gene, drug delivery, and could 

displace several antiquated practices and medical 

interventions for conditions like cancer and 

microbial infections. To advance knowledge in the 

field, more research is required (78). 
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