

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

A Review of Organophosphate Poisoning and the Role of Pharmacological Antidotes

Nihal Tamboli*¹, Suyash Suryavanshi², Shrutika Patil³, Abhay Potghan⁴, Om Wangade⁵, Diksha Auti⁶

ARTICLE INFO

Published: 4 Nov 2025

Keywords:

DOI:

Organophosphate poisoning; Acetylcholinesterase inhibition; Atropine; Oximes; Pralidoxime; Obidoxime; HI-6; Benzodiazepines; Bioscavengers; Enzyme reactivation; Cholinergic crisis; Neuroprotection; Antidotal therapy

10.5281/zenodo.17519373

ABSTRACT

Organophosphate (OP) compounds are widely utilized in agriculture, industry, and chemical warfare, making OP poisoning a major global health concern, particularly in developing regions. These compounds exert their toxic effects by irreversibly inhibiting acetylcholinesterase (AChE), resulting in excessive accumulation of acetylcholine at synapses and overstimulation of muscarinic, nicotinic, and central nervous system (CNS) receptors. The ensuing cholinergic crisis can lead to respiratory failure, convulsions, and death if not managed promptly. Diagnosis is primarily clinical, supported by biochemical assays of plasma and red blood cell cholinesterase activity. Management requires an integrated approach involving rapid decontamination, supportive care, and timely pharmacological intervention. The cornerstone of therapy includes atropine, which counters muscarinic hyperactivity; oximes such as pralidoxime and obidoxime, which reactivate inhibited AChE; and benzodiazepines for seizure control and neuroprotection. However, conventional antidotes face limitations such as poor blood-brain barrier penetration and reduced efficacy after enzyme "aging." Recent advances have introduced bioscavenger enzymes, centrally acting oximes, and neuroprotective adjuncts like galantamine and magnesium sulfate, offering promising avenues for more effective management. This review comprehensively discusses the chemistry, toxicodynamics, clinical features, diagnostic approaches, and therapeutic strategies of OP poisoning, with an emphasis on the pharmacological mechanisms, comparative efficacy, and recent innovations in antidotal therapy. The evolving landscape of enzyme-based and combination treatments underscores the need for continued research to overcome existing therapeutic challenges and improve patient

Address: Shri Ganpati Institute of pharmaceutical science & research centre Tembhurni.

Email : nihalt138@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

¹Shri Ganpati Institute of pharmaceutical science & research Centre Tembhurni.

^{2,4,5,6}Bharati Vidyapeeth's, College of Pharmacy, Sector-8, C.B.D. Belapur, Navi Mumbai-400 614.

³Shri Vithal Education & Research Institute's, College of Pharmacy, (Poly.), Gopalpur -Ranjani Road, Gopalpur Rd, Pandharpur, Maharashtra-413304.

^{*}Corresponding Author: Nihal Tamboli

survival outcomes.

INTRODUCTION

Organophosphates (OPs) are a broad class of organic compounds derived from phosphoric acid, characterized by the presence of phosphorus atoms bonded to oxygen or sulfur atoms and organic substituents. Chemically, they contain a central phosphorus atom attached to alkoxy, aryloxy, or thio groups, forming esters, amides, or thiol derivatives of phosphoric acid. These compounds primarily as potent inhibitors of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing the neurotransmitter acetylcholine at synaptic junctions. By inhibiting cause AChE, OPs an accumulation acetylcholine at cholinergic receptors, leading to overstimulation of muscarinic, nicotinic, and central nervous pathways. system This biochemical mechanism underlies their high toxicity in both insects and mammals. Although they are widely used for their pesticidal properties, the same mechanism of enzyme inhibition that kills pests also makes them hazardous to humans and animals when exposure occurs.

Historical Background of OP Use (Agriculture, Warfare, Insecticides)

The discovery application of and organophosphates date back to the early 20th century. Initially synthesized in the 1930s by chemist Gerhard Schrader, German organophosphates were first developed potential insecticides due to their strong cholinesterase-inhibiting properties. However, during World War II, some derivatives such as tabun, sarin, and soman were weaponized as highly toxic nerve agents, marking one of the earliest examples of chemical warfare. Post-war, agricultural attention shifted their toward organophosphate potential, and several

compounds, including parathion, malathion, and chlorpyrifos, were commercialized as pesticides. They became preferred over organochlorines due to their relatively faster biodegradation, reducing long-term environmental persistence. Nevertheless, their acute toxicity to humans, especially among agricultural workers and rural populations in developing countries, soon emerged as a major public health issue. The dual history of organophosphates—as both beneficial pesticides and deadly nerve agents—reflects their complex legacy in science, agriculture, and warfare. 10-12

Epidemiology: Global and Regional Prevalence of **OP Poisoning**

Organophosphate poisoning represents significant global health burden, particularly in developing countries where pesticide regulation, storage, and safe handling practices are often inadequate. According to the World Health Organization (WHO), pesticide poisoning accounts for nearly 3 million cases annually, with approximately 200,000 deaths, most of which are attributed to organophosphate exposure. The majority of these incidents occur in agricultural regions of Asia, Africa, and Latin America, where organophosphates are widely used for crop protection and pest control. India, Sri Lanka, and China report particularly high incidences, largely due to occupational exposure and intentional selfpoisoning. In contrast, in developed countries, accidental or occupational exposures predominate, often due to industrial spills or contaminated food sources. Seasonal peaks in poisoning cases often coincide with agricultural spraying periods. The widespread availability of organophosphates and inadequate access to medical care contribute to the continued prevalence of morbidity and mortality associated with these compounds. Hence, organophosphate poisoning remains a critical

public health issue requiring coordinated preventive, clinical, and regulatory interventions.

Relevance and Need for Reviewing Antidotal Therapy

Despite decades of research, the management of organophosphate poisoning continues to pose major therapeutic challenges. Current antidotal regimens—primarily based on atropine, oximes (such as pralidoxime), and benzodiazepines—are only partially effective and often fail to reverse severe central nervous system toxicity. Variability in response, limited efficacy of oximes in reactivating "aged" enzyme complexes, and poor penetration of antidotes across the blood-brain barrier highlight significant gaps in treatment. Furthermore, new organophosphate compounds with varying chemical structures continue to emerge, some of which display resistance to conventional therapies. Reviewing the pharmacological basis, clinical performance, and limitations of existing antidotes is essential for optimizing treatment protocols and guiding future research. Understanding the mechanisms of antidote action can also aid in the rational design of next-generation agents capable of providing broader and more effective protection against OP toxicity.

This review aims to provide a comprehensive analysis of organophosphate poisoning with a particular focus on the pharmacological antidotes currently available and under investigation. The objectives are to elucidate the chemistry and mechanism of toxicity of organophosphates, summarize their global impact on human health, and critically evaluate existing therapeutic approaches. The review also explores recent advancements in antidotal therapy, including novel oxime derivatives, enzyme-based bioscavengers, and neuroprotective agents, as well as emerging strategies for improved management.

By integrating findings from experimental, clinical, and epidemiological studies, this review seeks to identify current gaps in treatment efficacy and highlight potential directions for future drug development and public health policy. Ultimately, the goal is to enhance clinical outcomes and reduce mortality associated with organophosphate poisoning through a deeper understanding of pharmacological interventions.

Chemistry and Classification of Organophosphates¹³⁻¹⁵

Chemical Structure and Classification (Based on Functional Groups)

Organophosphates (OPs) are organic esters, amides, or thiol derivatives of phosphoric acid. Their general molecular formula is represented as (RO)₃P=O or (RO)₂P(S)-OR', where *R* and *R'* denote alkyl, aryl, or alkoxy groups, and *O* or *S* represents oxygen or sulfur atoms. The phosphorus atom serves as the central reactive site, capable of forming multiple bonds with oxygen or sulfur and single bonds with organic substituents. This structural variability gives rise to a wide range of organophosphate compounds with differing degrees of lipophilicity, volatility, and stability.

From a chemical standpoint, organophosphates can be classified according to their functional groups and substitution patterns:

- **1. Phosphates (P=O):** Contain a phosphoryl oxygen; e.g., *paraoxon*.
- **2. Phosphorothioates (P=S):** Have a sulfur atom double-bonded to phosphorus; e.g., *parathion, chlorpyrifos*.
- 3. Phosphorodithioates (P=S with two thio groups): e.g., malathion.

- **4. Phosphoramidates (P–NH₂):** Contain amide linkages; e.g., *tabun (GA)*.
- **5. Phosphonates (P–C bond):** More stable and resistant to hydrolysis; found in nerve agents like *sarin (GB)* and *VX*.

The P-O-C and P-S-C bonds determine the activation and metabolic conversion of these compounds. Notably, phosphorothioates and dithioates are often pro-toxicants, requiring oxidative desulfuration by hepatic cytochrome P450 enzymes to convert into active oxon forms

(e.g., parathion \rightarrow paraoxon), which are potent acetylcholinesterase inhibitors.

Common Organophosphate Compounds

Organophosphates encompass a diverse array of compounds used in agriculture, veterinary medicine, and warfare. Agricultural OPs are used mainly as insecticides, whereas certain highly toxic variants have been weaponized as nerve agents. The table below summarizes some of the most important and representative OPs, their chemical groups, applications, and toxicity characteristics:¹⁶⁻¹⁷

Compound	Chemical Class / Type	Common	Mechanism of	Relative Toxicity
		Use	Activation	
Malathion	Phosphorodithioate	Agricultural	Requires oxidative	Low to moderate
		insecticide,	desulfuration to	(safer for
		public health	malaoxon	mammals)
		use		
Parathion	Phosphorothioate	Agricultural	Converted to	High
		insecticide	paraoxon in vivo	
		(restricted)		
Chlorpyrifos	Phosphorothioate	Crop	Oxidized to	High
		protection	chlorpyrifos-oxon	
		(now banned		
		in many		
		regions)		
Diazinon	Phosphorothioate	Household	Metabolized to	Moderate
		and crop	diazoxon	
		insecticide		
Dichlorvos (DDVP)	Phosphate	Fumigant	Active form, no	High
		insecticide	metabolic activation	
			required	
Sarin (GB)	Phosphonate	Chemical	Direct AChE	Extremely high
		warfare	inhibition	(lethal at minute
		nerve agent		doses)
Soman (GD)	Phosphonate	Warfare	Very rapid "aging"	Extremely high
		agent	of enzyme complex	
VX	Phosphonothioate	Nerve agent	Direct AChE	Extremely high,
			inhibition	persistent
Tabun (GA)	Phosphoramidate	Warfare	Direct inhibition	Very high
		agent		

This diversity illustrates that organophosphates share a common pharmacodynamic mechanism (AChE inhibition) but differ widely in potency, metabolism, and environmental persistence, primarily due to variations in their chemical structure.

3.3 Physicochemical Properties Influencing Toxicity and Absorption¹⁸⁻²²

The toxicokinetics and toxicodynamics of organophosphates are profoundly influenced by their physicochemical characteristics. Key parameters include lipophilicity, volatility, solubility, molecular weight, and stability.

1. Lipophilicity (Fat Solubility):

Lipophilic OPs (e.g., chlorpyrifos, parathion) are readily absorbed through the skin and accumulate in adipose tissue, leading to prolonged toxicity and delayed symptoms. Their fat solubility also enhances penetration across the blood-brain barrier, resulting in central neurotoxicity.

2. Volatility:

Volatile compounds like *sarin* and *dichlorvos* easily vaporize, posing a risk of inhalational exposure. In contrast, non-volatile agents like *VX* are more persistent on surfaces and pose contact hazards.

3. Solubility:

Water-soluble OPs can be rapidly absorbed through mucous membranes or gastrointestinal tract. However, higher lipophilicity generally correlates with greater dermal absorption and delayed elimination.

- 4. Molecular Stability and Activation: The P=S bond in phosphorothioates is relatively stable, requiring metabolic activation (oxidative desulfuration) to generate the toxic P=O (oxon) form. Thus, environmental persistence may be longer, but acute toxicity may depend on metabolic rate. Conversely, P=O compounds are intrinsically active and more acutely toxic.
- **5. pKa and Hydrolysis Rate:** The degree of ionization and hydrolytic stability under

- physiological pH influence bioavailability. OPs are generally stable under neutral conditions but hydrolyze under alkaline conditions, which forms the basis for certain decontamination methods.
- 6. Partition Coefficient (log P): OPs with higher log P values (e.g., chlorpyrifos, log P \approx 4.7) show higher tissue distribution and persistence, while low log P compounds (e.g., dichlorvos, log P \approx 1.3) act quickly but are eliminated rapidly.

Overview and Toxicological Implications

The chemical versatility of organophosphates accounts for their widespread use and their variable toxicological profiles. The substitution pattern around the phosphorus atom dictates not only biotransformation pathways but also the efficacy of antidotal therapy. For instance, oxime reactivators show differing effectiveness depending on whether the inhibited AChE complex involves a phosphate or phosphonate linkage. Therefore, a detailed understanding of OP chemistry is fundamental to developing effective detoxification strategies, designing new antidotes, and establishing safer alternatives in agriculture and defense.

Mechanism of Toxicity²³⁻²⁸

Pathophysiology: Inhibition of Acetylcholinesterase (AChE)

The primary mechanism underlying organophosphate (OP) toxicity is the irreversible inhibition of the enzyme acetylcholinesterase (AChE), which is responsible for hydrolyzing the neurotransmitter acetylcholine (ACh) into acetate and choline at cholinergic synapses. Under normal physiological conditions, AChE ensures the rapid termination of nerve impulses. However, exposure

to organophosphates leads to phosphorylation of the serine hydroxyl group at the active site of AChE, forming a stable phosphorylated enzyme complex. This inactivation prevents the breakdown of ACh, causing its excessive accumulation at synaptic junctions throughout the central and peripheral nervous systems. The inhibition is initially reversible, but with time, the phosphorylated enzyme undergoes conformational changes known as "aging", making the inhibition irreversible and preventing reactivation by antidotes like oximes. This results in sustained cholinergic overstimulation, producing the characteristic toxic manifestations of organophosphate poisoning.

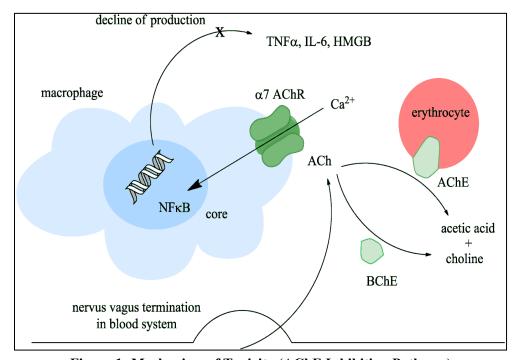


Figure 1: Mechanism of Toxicity (AChE Inhibition Pathway)

Accumulation of Acetylcholine and Overstimulation of Cholinergic Receptors

The excessive accumulation of acetylcholine at neuronal junctions leads to continuous stimulation of cholinergic receptors in the autonomic nervous system, neuromuscular junctions, and central nervous system (CNS).

1. At Muscarinic Receptors (Parasympathetic sites): Overactivation causes increased glandular secretion (salivation, lacrimation, bronchorrhea), smooth muscle contraction (bronchospasm, diarrhea, urination), and bradycardia due to parasympathetic stimulation.

- 2. At Nicotinic Receptors (Somatic and Autonomic ganglia): Results in muscle fasciculations, weakness, paralysis (due to depolarizing blockade), and hypertension or tachycardia (sympathetic ganglia stimulation).
- **3.** At CNS Receptors: Leads to anxiety, headache, convulsions, respiratory depression, and coma. These effects are due to overstimulation of cholinergic pathways in the brain and brainstem.

The magnitude and duration of receptor overstimulation determine the severity and outcome of poisoning, ranging from mild

muscarinic symptoms to life-threatening respiratory failure.

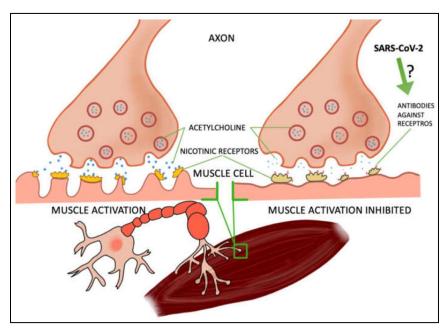


Figure 2: Cholinergic Receptor Sites (Muscarinic Nicotinic CNS)

Effects on Muscarinic, Nicotinic, and CNS Receptors

The toxic manifestations can be better understood by categorizing them based on receptor sites:

Receptor Type	Anatomical Location	Major Effects of Overstimulation	
Muscarinic	Smooth muscles, glands, heart	Miosis, blurred vision, lacrimation, salivation, bronchospasm, bronchorrhea, bradycardia, hypotension, vomiting, diarrhea, urination	
Nicotinic	Skeletal muscles, autonomic ganglia	Muscle twitching, fasciculations, weakness, paralysis, hypertension, tachycardia	
CNS (Central cholinergic receptors)	Brain, medulla, and spinal cord	Anxiety, confusion, convulsions, respiratory depression, coma	

The simultaneous activation of all these receptor systems leads to the characteristic "cholinergic crisis", which, if untreated, can result in respiratory failure and death due to paralysis of the diaphragm and central respiratory centers.

Acute and Chronic Neurotoxic Effects

Organophosphate poisoning produces both acute and delayed (chronic) neurological consequences.

- Acute Effects: Occur immediately or within hours after exposure. Symptoms arise due to the accumulation of ACh, leading to the cholinergic crisis. The most serious effects are respiratory distress, seizures, and cardiac arrhythmias, which can be fatal without prompt treatment.
- Chronic Effects: Result from prolonged or repeated low-level exposure, especially in

agricultural or industrial workers. Chronic OP toxicity manifests as neurobehavioral deficits, including memory impairment, anxiety, mood disorders, irritability, and impaired motor coordination. Repeated exposure may also lead to organophosphate-induced delayed neuropathy (OPIDN), characterized by distal axonal degeneration.

The "Aging" Process of the Phosphorylated Enzyme Complex

Once the organophosphate binds to AChE, the phosphorylated enzyme complex can undergo a spontaneous chemical change known as "aging." During this process, one of the alkyl or alkoxy side chains is cleaved from the phosphorylated enzyme, producing a negatively charged oxygen atom, which stabilizes the phosphorus-enzyme bond and makes it resistant to nucleophilic attack by antidotes (such as oximes).

- Before Aging: The enzyme can still be reactivated by oximes like pralidoxime.
- After Aging: The enzyme is permanently inhibited and new enzyme synthesis is required for recovery, which may take days to weeks.

The rate of aging varies among OP compounds—rapid for nerve agents like *soman* (*within minutes*) and slower for insecticides like *parathion* (*hours*). This variability influences the therapeutic window for effective oxime treatment.

Compound	Type	Approximate Aging Time
Soman	Nerve	2–6 minutes
(GD)	agent	
Sarin (GB)	Nerve	3–5 hours
	agent	
Parathion	Insecticide	12-20 hours
Malathion	Insecticide	>24 hours
VX	Nerve	24-48 hours
	agent	

Understanding the aging process is essential for timely administration of reactivators and successful management of organophosphate poisoning.

Clinical Manifestations of Organophosphate Poisoning²⁹⁻³²

Acute Symptoms

The acute cholinergic crisis presents within minutes to hours after exposure, depending on the route and dose. Symptoms can be remembered using the mnemonic "DUMBELS" (Defection, Urination, Miosis, Bronchorrhea/Bronchospasm, Emesis, Lacrimation, Salivation).

Common clinical features include:

- Ocular: Miosis (pinpoint pupils), blurred vision.
- Respiratory: Bronchorrhea, bronchospasm, cough, respiratory distress.
- Gastrointestinal: Nausea, vomiting, diarrhea, abdominal cramps.
- Cardiovascular: Bradycardia, hypotension (muscarinic) or tachycardia (nicotinic).
- Neuromuscular: Fasciculations, muscle weakness, paralysis.
- CNS: Headache, anxiety, seizures, coma, respiratory arrest.

If untreated, death occurs due to respiratory failure, either from central depression, muscle paralysis, or excessive secretions blocking airways

Chronic Exposure Effects

Chronic or repeated low-dose exposure to OPs, common among farmers and pesticide handlers,

leads to subclinical or progressive neurological impairment. Manifestations include:

- Peripheral neuropathy: Distal limb weakness, paresthesia.
- Cognitive dysfunction: Impaired memory, attention, and concentration.
- Mood alterations: Depression, anxiety, irritability.

 Endocrine disturbances: Potential alterations in reproductive hormones and thyroid function.

These effects are thought to be due not only to AChE inhibition but also to secondary oxidative stress, mitochondrial dysfunction, and inflammation in neural tissue.

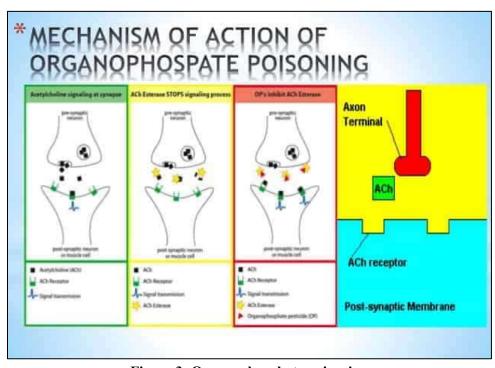


Figure 3: Organophosphate poisoning

Intermediate Syndrome (IMS) and Organophosphate-Induced Delayed Neuropathy (OPIDN)³³⁻³⁵

• Intermediate Syndrome (IMS): Appears 24– 96 hours after acute exposure following apparent recovery from the initial cholinergic crisis. It is characterized by proximal muscle weakness, especially involving neck flexors, respiratory muscles, and cranial nerve—innervated muscles. IMS is believed to result from prolonged receptor overstimulation and impaired neurotransmission at the neuromuscular junction. Without ventilatory support, respiratory paralysis can occur.

• Organophosphate-Induced Delayed Neuropathy (OPIDN): Occurs 1–3 weeks after exposure to certain OPs (e.g., triorthocresyl phosphate, chlorpyrifos). It is a distal axonopathy, resulting from inhibition of neuropathy target esterase (NTE) rather than AChE. Clinically, OPIDN manifests as paresthesia, muscle weakness, ataxia, and spastic paraparesis. Recovery is slow and often incomplete.

Severity Grading of OP Poisoning

The Peradeniya Organophosphorus Poisoning (POP) Scale is widely used to assess the severity

of poisoning at admission, based on clinical signs such as pupil size, respiratory rate, heart rate, fasciculations, consciousness level, and seizure activity.

Clinical Parameter	Score 0	Score 1	Score 2
Pupil size	>2 mm (normal)	Pinpoint	-
Respiratory rate	<20/min	20–30/min	>30/min
Heart rate	>60 bpm	41–60 bpm	≤40 bpm
Fasciculations	None	Present, localized	Generalized
Level of consciousness	Conscious	Impaired	Unconscious
Seizures	Absent	Present	-

• Mild: Total score ≤ 4

• **Moderate:** Score 5–7

• Severe: Score ≥ 8

This scale helps clinicians predict outcomes and determine the intensity of treatment required.

Organophosphate poisoning involves a cascade of neurotoxic events-from enzyme inhibition and acetylcholine accumulation to receptor overstimulation and progressive neuronal damage. The clinical spectrum ranges from acute cholinergic crises to delayed neuropathic syndromes, emphasizing the need for early recognition, prompt antidote administration, and supportive therapy. Understanding the mechanistic basis of these effects aids in developing more targeted pharmacological interventions and improving patient survival.

Diagnosis³⁶⁻⁴⁰

The diagnosis of organophosphate (OP) poisoning is primarily clinical, supported by biochemical and toxicological confirmation. Rapid and accurate identification is critical for early initiation of antidotal therapy, which can significantly improve outcomes.

The clinical diagnosis of OP poisoning is usually based on recognizing the classic cholinergic syndrome—a constellation of signs resulting from excessive acetylcholine at muscarinic, nicotinic, and central receptors. Common clinical indicators include miosis (pinpoint pupils), profuse salivation, bronchorrhea, bradycardia, muscle fasciculations, and respiratory distress. The mnemonic DUMBELS (Defecation, Urination, Miosis, Bronchorrhea/Bronchospasm, Emesis, Lacrimation, Salivation) or SLUDGE (Salivation, Lacrimation. Urination. Defecation. Gastrointestinal distress, Emesis) often aids clinicians in quick recognition. Neuromuscular weakness and central effects such as anxiety, confusion, or seizures further support the diagnosis. Clinical severity can be assessed using the Peradeniya Organophosphorus Poisoning (POP) Scale, which quantifies signs like pupil size, heart rate, fasciculations, and level consciousness to categorize cases as mild, moderate, or severe, thereby guiding treatment intensity.

Biochemical confirmation is achieved by measuring cholinesterase activity in blood, primarily plasma (butyrylcholinesterase) and red blood cell (RBC) acetylcholinesterase levels. Plasma cholinesterase reflects recent exposure and is a sensitive but non-specific marker, while RBC

AChE better represents synaptic enzyme inhibition and correlates closely with the clinical severity of poisoning. In general, plasma cholinesterase activity falls to less than 50% of

normal in mild poisoning and below 10% in severe cases. Serial monitoring of enzyme activity is also useful in evaluating recovery and the effectiveness of therapy.

Enzyme Type	Site of	Function/Significance	Interpretation in OP
	Measurement		Poisoning
Plasma	Serum or plasma	Detoxification of OP	Rapidly depressed after
(Butyrylcholinesterase,		compounds	exposure; useful for
BChE)			screening
Erythrocyte (True AChE)	RBC membrane	Reflects synaptic AChE	Strongly correlates with
		activity	clinical severity and
			prognosis

Toxicological analysis can further confirm exposure by identifying the parent OP compound or its metabolites in biological fluids such as blood, urine, or gastric contents using gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), enzyme-linked immunoassays. or Metabolites such as dialkyl phosphates (DAPs) or specific oxon derivatives serve as biomarkers of OP exposure. While such analyses are vital for research and forensic investigations, clinical management typically relies on rapid bedside evaluation and cholinesterase assays due to time constraints in emergencies.

Management of Organophosphate Poisoning⁴¹⁻

Effective management of OP poisoning requires a multifaceted approach, combining immediate decontamination, supportive measures, and targeted pharmacological therapy. The primary goal is to prevent further absorption, maintain vital functions, and counteract the effects of acetylcholine excess.

Decontamination is the first and most essential step in preventing ongoing exposure. Contaminated clothing should be promptly removed, and the skin thoroughly washed with

soap and copious water. Eye contamination requires irrigation with saline or clean water. Gastric lavage may be considered if ingestion occurred within one hour and the airway is protected, though it is contraindicated in comatose or convulsing patients without intubation. Activated charcoal can adsorb residual poison in the gastrointestinal tract, though its use should be cautious due to potential aspiration risk. Decontamination must be carried out by trained personnel using protective gear to avoid secondary contamination.

Supportive care remains the cornerstone of Airway protection, treatment. oxygen supplementation, and mechanical ventilation are crucial in cases of respiratory compromise caused by bronchorrhea, bronchospasm, or diaphragmatic paralysis. Continuous monitoring of cardiac rhythm, pulse oximetry, and vital signs is essential. Intravenous fluids should be administered judiciously to maintain perfusion without exacerbating pulmonary edema. Seizures, if present, must be controlled promptly using benzodiazepines such as diazepam, which also offer neuroprotective benefits. Correction of electrolyte imbalance and acid-base disturbances forms part of supportive management.

Pharmacological antidotal therapy is the most specific and lifesaving intervention in OP poisoning. The standard regimen includes atropine, oximes, and benzodiazepines, often used in combination.

Atropine is a competitive antagonist muscarinic acetylcholine receptors and remains the mainstay of therapy. It effectively reverses the life-threatening muscarinic effects such bronchorrhea, bronchospasm, bradycardia, and hypotension. Treatment begins with 1-2 mg intravenously in adults, repeated every 5-10 minutes until full atropinization is achieved, indicated by clear lung fields (drying of secretions), heart rate above 80 beats per minute, and dilated pupils. The total dose required varies widely, often reaching hundreds of milligrams in severe cases. Continuous infusion may be necessary to maintain effect, as atropine does not influence nicotinic symptoms such as muscle weakness.

pralidoxime (2-PAM), Oximes. such obidoxime, and HI-6, act by reactivating acetylcholinesterase before the enzyme undergoes irreversible "aging." These compounds cleave the phosphate-enzyme bond, restoring AChE activity. The efficacy of oximes depends on the specific OP compound and the timing of administration; early use, preferably within a few hours of exposure, yields better results. Pralidoxime is typically given as an intravenous bolus of 30 mg/kg followed by infusion at 8-10 mg/kg/hour. Obidoxime, more potent in certain OPs, is used at 250 mg bolus followed by 750 mg/day infusion. The newer reactivator HI-6 demonstrates superior CNS penetration and effectiveness against nerve agents, though its availability is limited. Oximes are less effective once enzyme aging has occurred, emphasizing the importance of rapid diagnosis and intervention.

Benzodiazepines such as diazepam or midazolam serve dual roles in controlling seizures and providing neuroprotection by counteracting the excitotoxic neuronal injury induced by excessive cholinergic stimulation. Diazepam (5–10 mg IV) is administered as required to control convulsions and reduce the risk of delayed neurological sequelae. In animal and clinical studies, early benzodiazepine administration has shown to improve survival and prevent neuronal damage.

In addition to these standard antidotes, several novel or experimental agents are being explored. Human butyrylcholinesterase (BChE) acts as a bioscavenger, binding OPs before they inhibit endogenous AChE, thus offering a preventive or pre-exposure therapeutic strategy. Galantamine, a reversible AChE inhibitor with central activity, has shown potential neuroprotective effects by modulating nicotinic receptors and reducing excitotoxicity. RS194B, a new-generation oxime with enhanced BBB permeability, is under investigation for its superior CNS reactivation capacity. These advances represent promising directions toward more effective management of OP poisoning.

Several adjunctive therapies can complement standard antidotal treatment. Magnesium sulfate helps stabilize neuronal membranes, reducing ACh release and mitigating excitotoxicity. Nacetylcysteine (NAC), an antioxidant glutathione precursor, may attenuate oxidative stress and tissue injury caused by OPs. suppress inflammatory Corticosteroids can responses and edema associated with CNS toxicity, although their clinical utility remains under debate. Together, these adjuncts may enhance recovery and minimize complications when integrated with conventional therapy.

Therapeutic Agent	Mechanism of Action	Typical Dose (Adult)	Remarks/Advantages
Atropine	Blocks muscarinic receptors	1–2 mg IV every 5– 10 min until secretions dry; continuous infusion as needed	Main lifesaving drug; relieves bronchorrhea, bradycardia
Pralidoxime (2- PAM)	Reactivates AChE before aging	30 mg/kg IV bolus, then 8–10 mg/kg/hr infusion	Effective if given early; limited CNS action
Obidoxime	AChE reactivation	250 mg IV bolus, then 750 mg/day	Broader spectrum than pralidoxime
Diazepam	GABA-A agonist; controls seizures	5–10 mg IV as needed	Provides neuroprotection
Magnesium sulfate	Stabilizes neuronal membranes, reduces ACh release	1 g IV every 6 hours	Adjunctive benefit; reduces mortality
N-acetylcysteine	Antioxidant, replenishes glutathione	150 mg/kg loading, then infusion	Reduces oxidative tissue injury
Butyrylcholineste rase (BChE)	Bioscavenger, binds OPs	Under investigation	Preventive/prophylactic use

Role of Pharmacological Antidotes⁴⁶⁻⁵²

The treatment of organophosphate poisoning relies heavily on pharmacological antidotes, which aim to counteract the excessive accumulation of acetylcholine resulting from acetylcholinesterase (AChE) inhibition. The three main therapeutic agents—atropine, oximes, and benzodiazepines are often used in combination to reverse muscarinic overstimulation. reactivate inhibited enzyme, and control central nervous system (CNS) excitation. Although these antidotes have saved countless lives, limitations such as poor central penetration and reduced efficacy after "aging" of the enzyme necessitate development of improved or adjunctive therapies, including bioscavengers and engineered enzymebased antidotes.

The mechanism of each antidote is distinct yet complementary, targeting different aspects of OP toxicity. Atropine, a tertiary amine and competitive antagonist at muscarinic acetylcholine receptors, remains the cornerstone of therapy. It

blocks the peripheral effects of acetylcholine accumulation, including bronchial secretions, bronchospasm, bradycardia, and gastrointestinal hypermotility. Its lipophilic nature allows partial penetration into the CNS, where it alleviates central respiratory depression and delirium. However, atropine has no effect on nicotinic manifestations such as muscle weakness or fasciculations, highlighting the need for adjunctive agents.

Oximes (e.g., pralidoxime, obidoxime, HI-6) play a pivotal role by directly addressing the root cause—reversible reactivation of phosphorylated AChE. These nucleophilic agents bind to the phosphorylated enzyme and remove the phosphate group, restoring normal enzymatic function and acetylcholine breakdown. The efficacy of oximes depends largely on the type of OP compound and the timing of administration. Once "aging" occurs—an irreversible chemical modification that stabilizes the enzyme—phosphate bond—oximes become ineffective. Pralidoxime (2-PAM), the most widely used oxime, is effective

against many agricultural OPs but has limited penetration into the brain. Obidoxime offers broader reactivation potential and higher efficacy against dimethyl OPs. HI-6, a newer oxime, shows enhanced CNS permeability and greater activity against nerve agents such as sarin and VX,

although it remains expensive and less accessible. Comparative evaluation of oximes reveals variability in reactivation kinetics and spectrum of activity, necessitating compound-specific treatment protocols.

Oxime	Chemical Type	Spectrum of Activity	CNS	Remarks
			Penetration	
Pralidoxime (2-	Pyridinium	Effective against	Low	Widely available; limited
PAM)	aldoxime	diethyl OPs		CNS effect
Obidoxime	Bis-pyridinium	Broader activity	Moderate	More potent but higher
	oxime	(dimethyl & diethyl		toxicity risk
		OPs)		
HI-6	Imidazolyl	Effective against nerve	Good	Superior efficacy; limited
	oxime	agents (sarin, VX)		clinical use
Trimedoxime	Bis-pyridinium	Moderate spectrum	Poor	Mainly experimental
	oxime			
RS194B	Novel oxime	Broad OP coverage	High	Experimental; enhanced
	derivative			BBB permeability

The use of combination therapy—typically atropine + oxime + benzodiazepine—represents a synergistic approach targeting the full spectrum of OP-induced pathophysiology. Atropine relieves muscarinic effects, oximes restore enzymatic activity, and benzodiazepines mitigate CNS hyperexcitability and prevent seizures. Diazepam and midazolam, both GABAergic agonists, reduce neuronal excitotoxicity by enhancing inhibitory neurotransmission. Clinical and experimental data demonstrate that combining oximes with atropine significantly reduces mortality compared to atropine monotherapy, while the addition of benzodiazepines further prevents long-term neurological sequelae such as OP-induced delayed neuropathy (OPIDN). This multimodal therapy not only improves survival but also limits irreversible neural damage and respiratory complications, emphasizing the necessity of early and aggressive intervention.

Despite their widespread use, current antidotes possess significant limitations. The most prominent challenge is poor blood-brain barrier

(BBB) penetration, particularly for quaternary oximes like pralidoxime ammonium obidoxime, which restricts their ability to reverse central AChE inhibition. Consequently, CNS symptoms—such as seizures, confusion, and respiratory depression-may persist even after peripheral recovery. Furthermore, the aging process of phosphorylated AChE drastically reduces the therapeutic window for oxime reactivation, especially with certain dimethyl OPs where aging can occur within minutes. Variability in the structure and lipophilicity of different OP compounds also influences oxime responsiveness, rendering some cases refractory to conventional therapy. Moreover, prolonged use of high-dose atropine may lead to complications such as hyperthermia, tachyarrhythmias, and delirium, necessitating careful titration and monitoring.

To overcome these challenges, advances in antidote research have focused on developing novel compounds with improved pharmacokinetic and pharmacodynamic properties. Bioscavenger therapy, involving the administration of

exogenous enzymes that bind and neutralize OPs before they reach endogenous targets, is among the most promising innovations. Human butyrylcholinesterase (HuBChE) and engineered recombinant AChE variants act as catalytic scavengers, hydrolyzing OPs into non-toxic metabolites. Such enzyme-based antidotes can serve as both prophylactic and therapeutic agents, particularly in military and occupational exposure contexts. PEGylated and mutant AChE constructs are being investigated to extend plasma half-life and enhance resistance to inhibition. 53-55

Another important advance is the exploration of centrally active oximes such as RS194B and K027, which exhibit improved lipophilicity and CNS bioavailability, thus reactivating AChE within the brain. Galantamine, a reversible AChE inhibitor and nicotinic receptor modulator, has shown neuroprotective potential by attenuating excitotoxicity and oxidative stress when coadministered with standard therapy. Research into non-oxime reactivators, such as hydroxylaminebased compounds and catalytic antibodies (socalled "bioscavenger antibodies"), is ongoing, offering future alternatives with broader spectrum and faster onset.

Emerging Antidote	Example	Mechanism of	Advantages	Development
Туре		Action		Stage
Bioscavengers	Human	Binds and	Preventive use;	Preclinical/Phase
(enzyme-based)	butyrylcholinesterase	hydrolyzes OPs	minimal toxicity	I
		before AChE		
		inhibition		
Centrally active	RS194B, K027	Reactivates CNS	Superior CNS	Experimental
oximes		AChE; BBB-	protection	
		permeable		
Recombinant	PEG-AChE, mutant	Catalytic	Long half-life;	Preclinical
AChE variants	HuAChE	degradation of OPs	high catalytic rate	
Adjunct	Galantamine,	Modulate	Reduce oxidative	Clinical trials
neuroprotectors	memantine	cholinergic and	damage and	
		NMDA systems	seizures	

In conclusion, pharmacological antidotes form the backbone of OP poisoning management, with atropine, oximes, and benzodiazepines providing the best established therapeutic combination. their limitations—particularly However, inadequate CNS protection and dependence on timing—underscore the urgent need for nextgeneration antidotes. Ongoing advancements in bioscavenger enzyme therapy, BBB-penetrating oximes, and multifunctional neuroprotective agents represent a paradigm shift in the treatment of OP toxicity. Future strategies integrating these innovations hold the potential not only to improve survival but also to minimize long-term neurological damage, marking a significant leap toward comprehensive and effective antidotal therapy.⁵⁶⁻⁵⁸

CONCLUSION:

Organophosphate poisoning remains a critical medical emergency and a significant cause of morbidity and mortality worldwide, particularly in agricultural and low-resource settings. The core pathophysiology lies in the irreversible inhibition of acetylcholinesterase, leading to a potentially fatal cholinergic overload. Timely diagnosis, aggressive decontamination, and early

administration of pharmacological antidotes are pivotal in reducing mortality.

Among available therapies, atropine, oximes, and benzodiazepines form the foundation of treatment, each addressing different facets of the toxic cascade. Despite their effectiveness, challenges persist—especially the limited central nervous system penetration of oximes, rapid "aging" of phosphorylated enzymes, and variability in OP compound responsiveness. These limitations have driven significant research toward the of next-generation development antidotes, including bioscavenger enzymes like human butyrylcholinesterase, BBB-permeable oximes, and multifunctional neuroprotective agents.

Future advancements in pharmacological and enzyme-based therapies hold the promise of more comprehensive protection, not only by reversing peripheral toxicity but also by preventing central neurodegeneration. An integrated therapeutic approach—combining early medical intervention, improved antidotes, and supportive care—remains essential to achieving better clinical outcomes and reducing the global burden of organophosphate poisoning.

REFERENCES

- 1. Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371(9612):597–607.
- 2. Karalliedde L, Senanayake N. Organophosphorus insecticide poisoning. Br J Anaesth. 1989;63(6):736–750.
- 3. Peter JV, Moran JL, Graham PL. Oxime therapy and outcomes in human organophosphate poisoning: an evaluation using meta-analytic techniques. Crit Care Med. 2006;34(2):502–510.

- Lotti M. Clinical toxicology of anticholinesterase agents in humans. In: Krieger RI, editor. Hayes' Handbook of Pesticide Toxicology. 3rd ed. San Diego: Academic Press; 2010. p. 1543–1589.
- 5. Namba T, Nolte CT, Jackrel J, Grob D. Poisoning due to organophosphate insecticides: acute and chronic manifestations. Am J Med. 1971;50(4):475–492.
- 6. World Health Organization (WHO). Organophosphorus Pesticides: A General Introduction. Geneva: WHO; 1986.
- 7. Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev. 2003;22(3):165–190.
- 8. Taylor P. Anticholinesterase agents. In: Brunton LL, Hilal-Dandan R, Knollmann BC, editors. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 14th ed. New York: McGraw-Hill; 2023. p. 149–168.
- 9. John S, Kale M, Rathore N, Bhatnagar D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J Nutr Biochem. 2001;12(9):500–504.
- 10. Eddleston M, Street JM, Self I, et al. A role for monitoring acetylcholinesterase inhibition in patients with organophosphorus insecticide poisoning. Toxicol Rev. 2010;29(2):83–93.
- 11. Jokanović M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol Lett. 2009;190(2):107–115.
- 12. Newmark J. Therapy for nerve agent poisoning. Arch Neurol. 2004;61(5):649–652.
- 13. Shih TM, Duniho SM, McDonough JH Jr. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol. 2003;188(2):69–80.
- 14. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus

- nerve agents. J Toxicol Clin Toxicol. 2002;40(6):803-816.
- 15. Marrs TC. Organophosphate poisoning. Pharmacol Ther. 1993;58(1):51–66.
- 16. Vale JA, Lotti M, Scott GW. Organophosphorus and carbamate insecticides. In: Dart RC, editor. Medical Toxicology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 1465–1483.
- 17. Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38:151–216.
- 18. Masson P, Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys. 2010;494(2):107–120.
- 19. Doctor BP, Saxena A. Bioscavengers for the protection of humans against organophosphate toxicity. Chem Biol Interact. 2005;157–158:167–171.
- 20. Maxwell DM, Koplovitz I, Worek F, Sweeney RE. The in vivo efficacy of combinations of oximes against organophosphorus compound poisoning in guinea pigs. Toxicol Appl Pharmacol. 2008;230(3):319–328.
- 21. Singh AK, Jaiswal DK, Tiwari R, Prakash O. Organophosphorus poisoning and management strategies: A review. J Pharm Sci Res. 2018;10(2):282–289.
- 22. Liu J, Liu C, Liu M, Zhang W, Qiao Y. Advances in bioscavenger therapy for organophosphate poisoning. Front Pharmacol. 2020;11:573601.
- 23. Bhattacharyya K, Phaujdar S, Sarkar R, Mullick OS. Serum creatine phosphokinase: a probable marker of severity in organophosphorus poisoning. Toxicol Int. 2011;18(2):117–123.
- 24. Eddleston M, Dawson A, Karalliedde L. Early management after self-poisoning with an

- organophosphorus or carbamate pesticide a treatment protocol for junior doctors. Crit Care. 2004;8(6):R391–R397.
- 25. Abdollahi M, Karami-Mohajeri S. A comprehensive review on experimental and clinical findings in intermediate syndrome following organophosphate poisoning. Toxicol Appl Pharmacol. 2012;258(3):309–314.
- 26. Roberts DM, Aaron CK. Managing acute organophosphorus pesticide poisoning. BMJ. 2007;334(7594):629–634.
- 27. Eyer F, Meischner V, Kiderlen D, Thiermann H, Worek F, Eyer P. Human poisoning with organophosphorus insecticides and nerve agents: mechanism of action and pharmacological management. Crit Rev Toxicol. 2008;38(10):759–789.
- 28. Singh S, Sharma N. Neurological syndromes following organophosphate poisoning. Neurol India. 2000;48(4):308–313.
- 29. Pawar KS, Bhoite RR, Pillay CP, Chavan SC, Malshikare DS, Garad SG. Continuous pralidoxime infusion versus repeated bolus injection to treat organophosphorus pesticide poisoning: a randomised controlled trial. Lancet. 2006;368(9553):2136–2141.
- 30. Thiermann H, Worek F, Kehe K. Limitations and challenges in treatment of acute chemical warfare agent poisoning. Toxicology. 2013;314(3):167–175.
- 31. Balali-Mood M, Balali-Mood B. Neurotoxic disorders of organophosphorus compounds and their managements. Arch Iran Med. 2008;11(1):65–89.
- 32. Jeyaratnam J. Acute pesticide poisoning: a major global health problem. World Health Stat Q. 1990;43(3):139–144.
- 33. Kousba AA, Poet TS, Timchalk C. Influence of chemical structure on the inhibition of acetylcholinesterase by organophosphorus compounds. Toxicol Sci. 2003;71(2):390–400.

- 34. Jokanović M, Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure—activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem. 2009;16(17):2177–2188.
- 35. Thompson CM, Richardson RJ. Anticholinesterase insecticides. In: Krieger R, editor. Handbook of Pesticide Toxicology. 3rd ed. San Diego: Academic Press; 2010. p. 1503–1525.
- 36. Worek F, Thiermann H, Wille T. Oxime treatment for nerve agent poisoning. Chem Biol Interact. 2016;259(Pt B):176–182.
- 37. Calesnick B, Christensen HD. Clinical toxicology of anticholinesterase agents. Clin Pharmacol Ther. 1977;22(4):488–495.
- 38. De Silva HJ, Wijewickrema R, Senanayake N. Does pralidoxime affect outcome of management in acute organophosphorus poisoning? Lancet. 1992;339(8794):1136–1138.
- 39. Bajgar J, Fusek J, Kassa J. Current strategies for the treatment of organophosphate poisoning. Clin Toxicol (Phila). 2008;46(6):489–511.
- 40. Gupta RC. Handbook of Toxicology of Chemical Warfare Agents. 3rd ed. London: Academic Press; 2020.
- 41. Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol. 2011;30(9):1119–1140.
- 42. Raveendran R, Devi K, Gopalan TR, Anandaraj R. Evaluation of N-acetylcysteine as an adjuvant therapy in organophosphorus poisoning. Indian J Crit Care Med. 2015;19(9):531–536.

- 43. Chambers JE, Levi PE. Organophosphates: chemistry, fate, and effects. Toxicol Ind Health. 1992;8(1–2):1–11.
- 44. Bajgar J, Bartosova L, Fusek J. Prophylaxis against nerve agent poisoning. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151(1):3–12.
- 45. Eddleston M, Gunnell D, Karunaratne A, de Silva D, Sheriff MH, Buckley NA. Epidemiology of intentional self-poisoning in rural Sri Lanka. Br J Psychiatry. 2005:187:583–584.
- 46. Jokanović M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol Lett. 2009;190(2):107–115.
- 47. Newmark J. Therapy for nerve agent poisoning. Arch Neurol. 2004;61(5):649–652.
- 48. Shih TM, Duniho SM, McDonough JH Jr. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol. 2003;188(2):69–80.
- 49. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol. 2002;40(6):803–816.
- 50. Marrs TC. Organophosphate poisoning. Pharmacol Ther. 1993;58(1):51–66.
- 51. Vale JA, Lotti M, Scott GW. Organophosphorus and carbamate insecticides. In: Dart RC, editor. Medical Toxicology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 1465–1483.
- 52. Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38:151–216.
- 53. Masson P, Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys. 2010;494(2):107–120.

- 54. Doctor BP, Saxena A. Bioscavengers for the protection of humans against organophosphate toxicity. Chem Biol Interact. 2005;157–158:167–171.
- 55. Maxwell DM, Koplovitz I, Worek F, Sweeney RE. The in vivo efficacy of combinations of oximes against organophosphorus compound poisoning in guinea pigs. Toxicol Appl Pharmacol. 2008;230(3):319–328.
- 56. Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol. 2011;30(9):1119–1140.
- 57. Raveendran R, Devi K, Gopalan TR, Anandaraj R. Evaluation of N-acetylcysteine as an adjuvant therapy in organophosphorus poisoning. Indian J Crit Care Med. 2015;19(9):531–536.
- 58. Chambers JE, Levi PE. Organophosphates: chemistry, fate, and effects. Toxicol Ind Health. 1992;8(1–2):1–11.

HOW TO CITE: Nihal Tamboli*, Suyash Suryavanshi, Shrutika Patil, Abhay Potghan, Om Wangade, Diksha Auti, A Review of Organophosphate Poisoning and the Role of Pharmacological Antidotes, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 382-400 https://doi.org/10.5281/zenodo.17519373

