

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

A Comprehensive Review on Abutilon indicum (Linn.): Pharmacological and Phytochemical Insights

Mahalakshmi N.*1, Sakthi Abirami M.2, Jeevitha C.3, Keerthana V.4

^{1,2,3}Department of Pharmacology, College of Pharmacy, Madras Medical College, Chennai, Tamil Nadu 600003.

⁴Department of Pharmacology, C. L. Baid Metha College of Pharmacy, Thoraipakkam, Tamil Nadu 600097.

ARTICLE INFO

Published: 24 Sept. 2025

Keywords:

Abutilon Indicum, Plant, Phytoconstituents, Pharmacology, Topical Uses DOI:

10.5281/zenodo.17189636

ABSTRACT

Abutilon indicum (Linn.) Sweet, commonly known as Indian mallow, is a medicinal shrub belonging to the Malvaceae family. It is widely utilized in traditional medicinal systems such as Ayurveda, Siddha, and Unani. Various parts of the plant, including the leaves, roots, seeds, and flowers, are employed in the treatment of diverse ailments like inflammation, diabetes, respiratory disorders, wounds, piles, and liver-related conditions. It is also used as a demulcent, diuretic, and expectorant. Modern pharmacological research has validated several of these ethnomedicinal claims, reporting antidiabetic, anti-inflammatory, hepatoprotective, antimicrobial, analgesic, and antioxidant properties. Phytochemical investigations have revealed the presence of bioactive compounds such as flavonoids, alkaloids, saponins, tannins, and glycosides, which contribute to its therapeutic potential. Studies on its pharmacological actions have demonstrated promising results both in vitro and in vivo, supporting its role as a candidate for drug development. Despite its wide traditional usage, further clinical studies and toxicological evaluations are essential to confirm its safety and efficacy in humans. This review compiles comprehensive data on the plant's taxonomy, morphology, ethnomedicinal applications, phytochemical constituents, pharmacological properties, and toxicity profile, and highlights future prospects for its development as a natural therapeutic agent.

INTRODUCTION

The research on plant-based medicine has been a foundation of human healthcare systems for

centuries. ^[1] With increasing global interest in natural and holistic treatment options, medicinal plants are being re-evaluated for their pharmacological potential and therapeutic value.

Address: Department of Pharmacology, College of Pharmacy, Madras Medical College, Chennai, Tamil Nadu 600003.

Email □: mahalakshmibala0701@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

^{*}Corresponding Author: Mahalakshmi N.

[2] The World Health Organization (WHO) estimates that approximately 80% of the world's population still relies on traditional herbal remedies as part of their primary healthcare. [3] This growing reliance is not only rooted in cultural heritage but also in the increasing recognition of the biological efficacy and fewer side effects associated with herbal medicines compared to synthetic pharmaceuticals. [4] Abutilon indicum (Linn.) Sweet, a medicinal plant commonly known in Ayurvedic scriptures as Indian mallow or "Atibala" belonging to the Malvaceae family. It is widely distributed throughout the tropical and subtropical regions of Asia, Africa, and the Indian subcontinent. [5] The plant grows abundantly in dry waste lands, roadsides, and open scrub forests and is frequently found as a weed in agricultural fields. Despite its common occurrence, A. indicum holds a revered status in ethnomedicine due to its versatile therapeutic applications. [6] In Indian traditional systems of medicine such as Ayurveda, Siddha, and Unani, Abutilon indicum is used extensively for the treatment of a wide range of ailments. Ancient Ayurvedic texts describe the plant under the name "Atibala," indicating its use in rejuvenation therapies, wound healing, and for conditions such as respiratory disorders, inflammation, and joint pain. In folk medicine, different parts of the plant—roots, leaves, flowers, and seeds—are used in various preparations like decoctions, pastes, and powders to manage common ailments such as fever, cough, urinary tract infections, and skin diseases. [7] Recent scientific studies have supported many of these traditional claims, attributing the medicinal value of A. indicum to its rich phytochemical composition. Compounds such as flavonoids, alkaloids, sterols, saponins, and phenolic acids have been identified, which confer antioxidant, anti-inflammatory. antimicrobial. hepatoprotective, and antidiabetic properties. [8] These findings make A. indicum a promising

candidate for drug discovery and pharmaceutical development.

Plant profile:

Table 1: Plant Profile

Common name	Country mallow, Indian mallow
Synonym	Sida indica L.,
Botanical name	Abutilon indicum (L) Sweet
Family	Malvaceae

Vernacular names:

Table 2: Vernacular names of *Abutilon indicum* in selected Indian languages

Tamil	Tutti, Tuththi, Peruntutti
English	Country mallow
Hindi	Kangahi, Kanghi, Kanghani
Kannada	Ucchale gida
Malayalam	Dabi,Uram
Sanskrit	Kotibala, Kankatika
Telugu	Tutiri-chettu,Thuteribenda
Gujarati	Khapat,Kansi

Taxonomical classification [9]:

Table 3: Taxonomical classification of *Abutilon* indicum

Kingdom	Plantae
(Unranked)	Angiosperms
(Unranked)	Eudicots
(Unranked)	Rosids
Order	Malvales
Family	Malvaceae
Genus	Abutilon
Species	indicum

Figure 12. Whole plant

Figure 13- Leaves

Figure 14 - Flower

Figure 12,13,14: Whole plant, leaves and flower of Abutilon indicum

Botanical description:

This plant *Abutilon indicum* is an erect, perennial shrub reaching to a height of approximately 1.5 to 2 meters.

Morphological Features:

- Leaves: Broad, heart-shaped with serrated margins, covered in fine hairs.
- **Flowers**: Solitary, yellow to orange, bell-shaped with five petals.
- **Fruit**: Schizocarp with 10–15 mericarps; each mericarp contains kidney-shaped seeds.
- **Seeds**: Black, pubescent, reniform.

The plant grows well in dry, sandy soils and warm climates. [9]

Habit and habitat:

The species were originally found in number of tropical and subtropical regions. The plant is mostly originated from India, topical regions of Malaysia, Sri Lanka and America. It is found as a weed in sub regions of Himalaya tracta, and grow on the hills altitude up to 1200m and in hotter regions of India. It is also found within the parts of the 'Great barrier Reef' islands of the 'Coral sea'.

Traditional and ethnomedicinal uses:

Table 4: Traditional and Ethnomedicinal uses of different parts of Abutilon indicum

Plant Part	Traditional Use
Leaves	Wound healing, ulcers, inflammation, boils
Roots	Diuretic, anthelmintic, pulmonary sedative,
	febrifuge, used for urinary infections
Seeds	Demulcent, antitussive, used for urinary disorders,
	dysentery.
Whole Plant	Used in asthma, piles and tuberculosis

Almost all the parts of this plant are documented to be useful in ethnobotanical surveys conducted by ethnobotanists. It has been recorded in the scriptures of India, Malaya, Philippine Islands and Indochina use for its parts for the medicinal purposes such antiemetic, anti-inflammatory, analgesic, antianthelmintic, in urinary or uterine discharge, piles and lumbago.

- The leaves and seeds are crushed and grinded to form a paste which is applied to penis to cure syphilis.
- ❖ The leaves are crushed and used as mouth wash, eye wash in cataract.
- Leaves are used to cure piles and to treat leg pain.
- This plants leaf paste is mixed with wheat flour to make bread and taken daily during night for one month for the cure of uterus displacement.
- ❖ The leaf juice when mixed with jaggery is used for the treatment of snakebite as antidote.
- The fruit concoction is used to treat cold, cough, piles and gonorrhoea.
- ❖ The fruit extract is mixed with ammonium chloride and water is given orally to treat hemorrhagic septicemia.
- ❖ Seeds are grinded and used orally as aphrodisiac and laxative.
- ❖ The roots are used to treat gonorrhoea and leprosy.
- ❖ Root infusion is used to cure dry cough, bronchitis and fever. [10]

Topical uses of Abutilon indicum:

Abutilon indicum is widely known for its topical applications in traditional medicine, particularly in Ayurveda and Siddha systems. One of its most notable uses is in wound healing. The fresh leaves or their paste are applied directly to wounds, ulcers, boils, and cuts to accelerate healing. This property is largely attributed to the presence of flavonoids (such as quercetin and luteolin), tannins, and saponins which possess antioxidant, anti-inflammatory, and antimicrobial properties.

These constituents promote collagen synthesis, epithelialization, and tissue regeneration, making the plant effective in treating chronic and infected wounds. [11] Studies such as those by Roshan et al. (2008) have confirmed its wound-healing potential in experimental models. [12] Additionally, Abutilon indicum is traditionally used to treat skin inflammations, abscesses, and boils. Warm poultices made from its leaves or flowers are applied topically to reduce swelling and pain. The mucilaginous nature of the plant provides a soothing, emollient effect that calms inflamed tissues. This demulcent action also makes it beneficial in treating piles and hemorrhoids when used as an external application, helping to relieve burning and irritation. [13] The plant is also employed for its analgesic effects. Leaf or root pastes are applied to painful joints, muscles, or injury sites to reduce localized pain and inflammation. [14] The flavonoids and β-sitosterol in the plant interfere with pain pathways and prostaglandin synthesis, which explains its traditional use as a pain-relieving agent. Its leaves are further used in treating skin conditions such as itching, eczema, heat rashes, and insect bites due to their anti-inflammatory and cooling properties. Traditional healers often use the aqueous extract of the leaves for cleansing and soothing irritated skin. [15] In oral care, decoctions of the leaves are used as mouth rinses for treating ulcers, gum infections, and sores. Its antimicrobial and healing properties help in maintaining oral hygiene and promoting mucosal repair. Furthermore, the plant has demonstrated antifungal activity, and the leaf extracts have been used traditionally to manage superficial fungal infections of the skin. [16] In folk cosmetics, Abutilon indicum is used as a herbal face wash or pack to soothe sunburn, acne, and blemishes, thanks to its antioxidant and skinprotective phytochemicals. The mucilage hydrates and softens the skin, while phenolic compounds like caffeic acid and ferulic acid combat oxidative

stress. ^[17] Overall, the topical benefits of *Abutilon indicum* are well-aligned with its chemical profile. It serves as a potent natural remedy for skin healing, inflammation, infections, and cosmetic care.

Phytochemical constituents of Different parts of *Abutilon indicum*:

Numerous bioactive compounds have been identified in its roots, leaves, flowers, seeds, stems, fruits, aerial parts, and whole plant extracts. These include alkaloids, flavonoids, steroids, phenolic acids, tannins, glycosides, amino acids, and essential oils. The following is a detailed compilation based on the study by Suryawanshi V.S. & Umate S.R. (2020) [18]:

A) Root:

- Rich in non-drying oil containing fatty acids such as linoleic, oleic, stearic, palmitic, lauric, myristic, caprylic, and capric acids.
- Unusual C17 carbon skeleton fatty acids.
- Presence of β -sitosterol and amyrin.

B) Flowers:

- Flavonoids identified include:
- O Quercetin-3-O-β-D-glucopyranoside,
- Luteolin-7-O-β-glucopyranoside,
- O Quercetin-3-O-α-rhamnopyranosyl- $(1\rightarrow 6)$ -β-glucopyranoside,
- Gossypetin-7 and 8-O-β-glucosides,
- Chrysoeriol, Apigenin-7-O-βglucopyranoside, and Cyanidin-3-Orutinoside.

C) Leaves:

- Steroids: β-sitosterol, cholesterol, stigmasterol.
- Flavonoids: Luteolin, Chrysoeriol, Quercetin.
- Phenolic acids: Eudesmic acid, Ferulic acid, Caffeic acid.
- Triterpenoids: β-amyrin-3-palmitate, squalene.

D) Fruit:

Identified compounds: c-sitosterol, α-sitosterol, Lupeol, Lup-20(29)-en-3-ol acetate,
 9,19-Cyclo-9a-lanostane-3a,25-diol,
 Pentanone, and various xylene derivatives.

E) Seeds:

- Fatty acids: vernolic acid, sterculic acid, malvalic acid, stearic acid, palmitic acid.
- Amino acids: threonine, glycine, serine, glutamine, lysine, methionine, isoleucine, proline, alanine, cysteine, tyrosine, phenylalanine, leucine, asparagine, histidine, valine, arginine.
- Other compounds: alkaloids, steroids, terpenoids, saponins, phenols, cardiac glycosides, carbohydrates, proteins, reducing sugars.

F) Stem:

Compound extracted: 20,23-Dimethylcholesta-6,22-dien- 3β -ol.

G) Aerial Parts:

 Phenolic acids: p-hydroxybenzoic acid, glucovanilloyl glucose, gallic acid.

- Sterols: β-sitosterol.
- Flavonols: dimethoxy kaempferol, methoxy flavone-glucosides.
- Triterpenes: β-amyrin, lupeol.
- Alkaloids: vasicine.
- Others: methyl triacontanoate, caffeic acid, fumaric acid, p-coumaric acid.

H) Whole Plant:

- Broad spectrum of compounds such as:
- β-sitosterol and its glucoside.
- Phenolic acids: benzoic acid, hydroxybenzoic acid, caffeic acid, vanillin, syringaldehyde.
- O Quinones: 2,6-dimethoxy-1,4-benzoquinone.
- O Coumarins: scoparone, scopoletin, 3,7-dihydroxychromen-2-one.
- Alkaloids and amides: aurantiamide acetate,
 N-feruloyl tyrosine, β-carbolines.
- Ionones: 3-hydroxy-β-damascone, 3-hydroxyβ-ionol.
- Lactones: alantolactone, isoalantolactone.
- Vitamins: riboflavin.
- Nitrogenous bases: adenosine, adenine, thymine.

This extensive phytochemical composition justifies the wide range of traditional and therapeutic applications of Abutilon indicum and underlines the need for further research to isolate, characterize, and utilize these bioactive compounds for novel drug development.

Pharmacological Activities:

Mohite reviewed the et al. (2012)pharmacological properties of entire plant of Abutilon indicum of its diverse range of medicinal applications. Studies have demonstrated that this plant has anti-diabetic, anti-inflammatory, antioxidant, wound antimicrobial, healing, hepatoprotective, immunomodulatory, antiarthritic, analgesic, and anthelmintic activities. The plant extracts have been shown to reduce blood glucose levels, inflammation, and oxidative stress, while also protecting against liver damage and microbial infections. Abutilon indicum's phytochemical composition, including flavonoids, tannins, alkaloids, and phenolic compounds, contributes to its medicinal properties. Further research is necessary to fully explore the plant's potential and develop effective treatments. This review highlights the significance of Abutilon indicum as a valuable plant for treating various ailments, and its potential for future pharmaceutical applications. [19]

Kailasam KV et al. (2015) conducted a comprehensive review of Abutilon indicum L. (Malvaceae), highlighting its medicinal potential. The author discussed the plant's traditional uses, phytochemical composition, and pharmacological activities, including anti-inflammatory, antiproliferative, anti-arthritic, analgesic, sedative, antioxidant. antimicrobial, hepatoprotective, antidiabetic, anticancer, and immunomodulatory effects. Abutilon indicum contains various chemical constituents, such phenolics, as terpenoids, flavonoids, and pigments, that have been associated with protection from chronic diseases like heart disease, cancer, diabetes, and hypertension. The review provides a valuable overview of Abutilon indicum's medicinal properties and its potential as a source of new [20] drugs. Another study conducted

comprehensive review of the phytochemical constituents of Abutilon indicum, highlighting its importance as a medicinal plant in Ayurveda. The study revealed that Abutilon indicum contains a diverse range of bioactive compounds such as Alkaloid, Saponins, Amino acid, Flavonoids, Glycosides and steroids. Some important essential oil constituents like pinene, mucilage, tannins, caryophyllene, asparagines, caryophylleneoxide, endesmol, farnesol, borenol, geraniol, geranyl acetate, elemene and cineole have been reported. Phytoconstituents like Sitosterol, caffeic acid, fumaric acid. vanillin. coumaric acid. hydroxybenzoic acid, sesquiterpene including lactones and hexoses also been reported from different part of the plant. This study has provided a detailed review on the phytochemical properties of A. indicum, which may be helpful to provide an effective and useful plant product for further research. [21]

1. Anti-inflammatory and Anti-Proliferative Activity:

Kaladhar et al. (2014) evaluated the Antiinflammatory and Anti proliferative activity of leaf extract of Abutilon indicum. In this study the Antiinflammatory and Anti-proliferative activity of ethanolic leaf extract of Abutilon indicum for potential chemo preventive agent has been evaluated. The ethanolic leaf extract of Abutilon indicum exhibited strong anti-inflammatory activity by inhibiting the enzyme 5-lipoxygenase (5-LOX), with an IC₅₀ value of 8.89 µg/mL. 5-LOX plays an important role in the synthesis of leukotrienes which is a potent mediators of inflammation. The inhibition of this enzyme suggests that A. indicum can modulate the inflammatory cascade at the molecular level. Moreover, it showed anti-proliferative effects against A549 human lung carcinoma cells, with an IC₅₀ value of 85.2 µg/mL. Mechanistically, this

activity was linked to the upregulation of apoptotic genes such as CASP9, CASP3, TP53, CYCS, and downregulation of anti-apoptotic proteins like BCL2 and HSPA4. These findings suggest the potential utility of A. indicum in cancer chemoprevention by promoting apoptosis and inhibiting cellular proliferation. [22] Another study showed that the anti-inflammatory activity was confirmed in carrageenan-induced paw edema models, where ethanolic extracts of the leaves reduced inflammation significantly. Tail-flick latency tests also revealed significant analgesic activity comparable to standard drugs like diclofenac sodium. [23]

2. Antioxidant and Antimicrobial Activity:

Dhirender Kaushik et al. (2010) evaluated the antioxidant and antimicrobial activities chloroform fraction of alcoholic extract of whole plant of Abutilon indicum extract was screened for antioxidant and free radical scavenging effects at various concentrations. The antimicrobial activity was studied using the agar well diffusion assay. The study concluded that the extract was found to be most effective against Staphylococcus aureus followed by Bacillus sublitis whereas in case of Gram negative bacteria the extract was found to be more effective against E. coli showing maximum microbial growth inhibition followed Pseudomonas aeruginosa. The ethanolic extract also showed high microbial zone of inhibition against C. albicans than the standard drug amphotericin B. [24]

3. Anti-arthritic Activity:

Nitin S. Bhajipale et al. (2012) evaluated the various extracts of *Abutilon indicum* and investigated its anti-arthritic property using male *albino* rat model in *in-vitro* studies. Methanolic extracts of *A. indicum* demonstrated significant anti-arthritic activity in formaldehyde-induced

arthritis models in rats. At a dose of 400 mg/kg body weight, Treatment with *Abutilon indicum* 400 mg/kg had showed significant reduction (P<0.01) in paw volume on both 7th and 14th day. The extract markedly reduced paw volume and inflammation on the 7th and 14th day, indicating chronic anti-inflammatory potential. The underlying mechanism may involve inhibition of inflammatory cytokines (e.g., TNF- α , IL-1 β) and prostaglandin synthesis. In vitro, it inhibited protein denaturation and protease activity, both of which contribute to joint degradation in arthritis.

4. Analgesic and Sedative Properties:

Deepraj Paul et al. screened the hydro-alcoholic extract of Abutilon Indicum for its analgesic and sedative efficacy. Hydro alcoholic extracts from aerial parts were evaluated in various animal models, including the Eddy's hot plate and acetic acid-induced writhing tests. The extract showed effective analgesic activity suggesting for both central and peripheral pain inhibition. As the extract has shown very significant (P<0.01) result in Eddy's hot plate, acetic acid induced writhing test and hot water immersion test. The extract may show GABAergic effect which concludes both central and peripheral pain inhibition. Author reported that in future it will gain more popularity to be used as a substitute for narcotics to treat pain and also as a good sedative. [26]

5. Hepatoprotective Activity:

Rohit Gupta et al. evaluated the hepatoprotective activity of hydroalcoholic and ethyl acetate extract of leaf of *Abutilon indicum* (AI) in CCl4 induced toxicity in *Sprague dawley* rats. 200 mg/kg and 400 mg/kg of doses of hydroalcoholic extract and 200 mg/kg of ethyl acetate extract were administered to the rats to evaluate the hepatoprotective activity by using CCl4 to induce

hepatotoxicity and using silymarin as the standard. When tested in CCl₄-induced hepatotoxicity models in rats, both hydroalcoholic and ethyl acetate extracts significantly reduced liver damage. Key liver enzymes such as AST, ALT, ALP, and bilirubin were markedly improved in extract-treated groups compared to toxic controls. Histopathological examinations showed reduced liver necrosis and fibrosis in treated animals. The hepatoprotective action is possibly due to its antioxidant constituents neutralizing free radicals produced during CCl₄ metabolism. ^[27]

6. Anti-diabetic Activity:

Chutwadee Krisanapun et al. evaluated A. indicum L. improves insulin sensitivity. In diabetic rats, aqueous extracts of the whole plant decreased postprandial glucose levels. Molecular studies indicated that the extract activated GLUT1 promoter activity, facilitating increased glucose uptake into adipocytes. Furthermore, it acted as a PPARy agonist, a receptor involved in insulin sensitization. These findings suggest the extract enhances both insulin sensitivity and glucose utilization, offering promise in managing type 2 diabetes. [28] Several studies demonstrate that ethanolic and aqueous extracts of Abutilon indicum significantly reduce blood glucose levels in diabetic animal models. Parimaladevi et al. (2003) reported that a methanol extract showed marked hypoglycemic activity in streptozotocininduced diabetic rats, which may be due to increased insulin secretion or enhanced peripheral glucose uptake. [29]

7. Anticancer Activity:

Srikanth P et al. investigated different medicinal plants namely *Abutilon indicum* and *Blumea mollis*. These two plants were screened for its potential anti-oxidant properties and cytotoxic activity. The antioxidant potential, measured using

FRAP and DPPH assays, correlated well with the cytotoxic effects. The extract likely exerts anticancer action by inducing oxidative stress in cancer cells, inhibiting their proliferation, and triggering apoptosis. This dual antioxidant and cytotoxic behaviour supports its potential role in integrative cancer therapy. The extract was also screened to assess the antioxidant activity using Nitric Oxide radical inhibition estimated by the use of Griess Illosvoy reaction with slight modification. These extracts show anti-oxidant properties as well as inhibitory effect on cancer cells with the increased concentration and duration. [30]

8. Anti-diarrhoeal Activity

Chandrasekhar et al. evaluated anti-diarrhoeal activity of leaf extracts of Abutilon indicum by gastro intestinal motility, castor oil-induced diarrhoea and prostaglandin E2-induced enteropooling in albino rats. It was found that the methanolic extract and aqueous extract possess significant anti-diarrhoeal activity in castor oil induced diarrhoea and prostaglandin E2-induced diarrhoea and compared with the control. The extract decreased gastrointestinal motility and intestinal secretion (enteropooling), suggesting antispasmodic and antisecretory mechanisms. These effects could be mediated by inhibition of prostaglandin synthesis or direct action on intestinal smooth muscle tone. Abutilon indicum has showed significant anti-diarrhoeal activity similar to loperamide and can be recommended for further studies. [31]

9. Anti-convulsant activity:

Golwala et al. investigated the Anticonvulsant activity of *Abutilon indicum* leaf extract. The ethanolic extract increases the onset of clonic convulsions and decreases the onset of tonic convulsions and thus exhibiting a potential anti-

convulsant activity. The aqueous extracts showed significant protective effect by increasing the onset of clonic convulsion time and decreasing extensor time as compared to control group. This anticonvulsant effect was mainly due to the presence of linoleic acid or flavonoids. Hence *Abutilon indicum* may be an effective drug to treat convulsions. [32]

10. Larvicidal Activity

Abdul rahuman et al. (2008) investigated the larvicidal activity of various crude extracts of *Abutilon indicum* such as hexane, petroleum ether, acetone, ethyl acetate, and methanol. Various solvent extracts were tested against Culex quinquefasciatus larvae. All extracts showed moderate larvicidal effects whereas only petroleum ether extract showed highest larvicidal activity. Furthermore, 1 H NMR, 13C NMR and mass spectral data confirmed the identification of β-sitosterol as a potential new mosquito larvicidal compound with LC50 value of 26.67 ppm against C. Quinquefasciatus. This suggests potential application in eco-friendly mosquito control strategies. [33]

11. Wound Healing Activity

P Ganga suresh et al. (2011) evaluated the wound healing activity of Abutilon indicum Linn. In incision and excision wound models, petroleum ether extracts promoted faster wound contraction compared to ethanolic extracts. The treated groups exhibited increased epithelialization and collagen deposition, indicating enhanced regeneration. Flavonoids and triterpenoids may play a role by modulating inflammatory mediators and fibroblast activity. The progressive changes in the wound area were monitored by tracing the wound margin every day. There was a rapid increase in wound healing rate. From the result, it is concluded that the petroleum ether extract of

Abutilon indicum Linn had greater wound healing activity than the Ethanolic extract. [34]

12. Anti-asthmatic Activity

Paranjhape AN et al. (2006) studied the safety and efficacy of *Abutilon indicum* in patients having bronchial asthma. Dried parts of *A. indicum* were finely powdered and 1 gm of dose is given to 30 patients of either sex in the age range of 15 - 80 years those having mild to moderate bronchial asthma with or without any concurrent medication. The respiratory functions (FVC, FEV, FEF and MVV) were assessed using a spirometer prior to and after 4 weeks of treatment. After 4 weeks of treatment with the drug, has showed significant improvement of pulmonary functions in asthmatic patients. Also significant improvement was observed in clinical symptoms and severity of asthmatic attacks. [35]

13. Diuretic Activity:

Seed extracts at 200 and 400 mg/kg significantly increased urine output and sodium excretion in rats. However, no potassium-sparing effect was observed. This diuretic activity suggests mild natriuretic properties that can be useful in conditions like hypertension and edema. [36]

14. Anti-estrogenic Activity:

Methanolic extracts suppressed uterine weight gain and peroxidase activity in estrogen-treated ovariectomized rats. These findings point to estrogen receptor antagonism or suppression of estrogen-induced gene expression. This may be helpful in managing estrogen-dependent conditions such as endometriosis and certain cancers. [37]

Toxicity And Safety Profile:

Toxicological assessments have demonstrated that *Abutilon indicum* extracts are safe up to 2000 mg/kg in rats, with no significant changes in behaviour, haematological, or biochemical parameters. However, long-term safety and teratogenicity studies are limited. [38]

CONCLUSION AND FUTURE PERSPECTIVES:

Abutilon indicum is a versatile and underutilized medicinal plant with validated traditional uses and proven pharmacological activities. Its rich phytochemical composition contributes to its therapeutic effects, especially in managing diabetes, liver diseases, inflammation, microbial infections. Given the increasing interest in herbal medicines, A. indicum offers immense potential for pharmaceutical development. [39,40] This medicinal plant has substantial potential for the development of topical herbal formulations, since for its long-standing traditional use in treating skin ailments, wounds, inflammatory conditions, and infections supported by a variety of phytochemical and pharmacological evidence. [41] Various parts of the plant—especially the leaves, flowers, and seeds—contain bioactive compounds such as flavonoids (quercetin, luteolin), tannins, saponins, β-sitosterol, phenolic acids, and mucilage, which contribute to its antiinflammatory, antimicrobial. antioxidant. analgesic, and wound healing properties. [42] These properties make A. indicum a highly suitable candidate incorporation for into topical applications such as creams, gels, ointments, sprays. and herbal patches. The plant's mucilaginous and emollient nature offers additional benefits in providing skin hydration, soothing irritation, and promoting tissue regeneration - key requirements in effective topical therapeutics. Its antimicrobial potential is particularly useful in protecting wounds and

inflamed skin from secondary infections, while its antioxidant activity supports skin repair and combats oxidative stress. [43]. Considering its strong ethnopharmacological background and scientific validation, formulating a topical product with Abutilon indicum offers promising therapeutic and cosmetic applications. However, further research is essential to standardize extraction methods. determine optimal concentrations, evaluate stability, and assess skin permeation and bioavailability. Safety evaluations dermal toxicity, including irritation. and sensitization studies are also critical before clinical or commercial use. In conclusion, Abutilon indicum offers a powerful combination of traditional wisdom and pharmacological effectiveness. especially for dermatological conditions. Its inclusion in topical herbal formulations represents a natural, cost-effective, and sustainable approach for skin therapy. With appropriate formulation development and scientific rigor, this plant can serve as a key active ingredient in modern phytocosmetic and therapeutic skincare products.

However, current data are mostly derived from in vitro and animal studies. Future work should focus on:

- Isolation of specific active constituents
- Elucidation of molecular mechanisms of action
- Pharmacokinetic profiling
- Toxicity and safety evaluations in long-term studies
- Clinical trials in humans

Standardized herbal formulations and clinical validation could enable *Abutilon indicum* to

become a cost-effective and natural therapeutic option for various chronic diseases.

REFERENCE

- 1. Kirtikar KR, Basu BD. Indian Medicinal Plants, Edn 2, Vol. I, Dehradun 1994, 314-317.
- 2. Prajapati ND, Purohit SS, Sharma AK, Kumar TA. Handbook of Medicinal Plants, AGROBIOS, (India) Jodhpur, 2003, 3.
- 3. Nadkarni AK. Indian Materia Medica, Popular Prakashan (Pvt) Ltd, Bombay, 1995, 8-9.
- 4. Mohapatra SP, Sahoo HP. An Ethno-Medico-Botanical Study of Bolangir, Orissa, India: Native Plant Remedies against Gynaecological Diseases. Ethnobotanical Leaflets 2008; 12: 846-850.
- 5. Samy PR, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical Survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. Journal of Ethnopharmacology 2008; 115: 302-312.
- 6. Chakraborthy Guno S. studied Pharmacognostical and Phytochemical Evaluation of leaf of Abutilon indicum Linn. International Journal of Pharmaceutical Sciences and Drug Research, 2009; 1(3):188-190.
- 7. Kuo PC, Yang ML, Pei-Lin Wu, Shih HN, Thang TD, Dung NX, Wu TS. Chemical constituents from Abutilon indicum, Journal of Asian Natural Products Research 2008; 10: 689-693.
- 8. Gaind KN, Chopra KS. Phytochemical Investigation of Abutilon indicum. Planta medica 1976; 30: 174-185.
- 9. Phytochemical Reports, Phytochemistry, Pregamon press, Vol 11, 1491-1492.
- 10. Babu M, Husain S, Ahmad MU, Osman SM. Abutilon indicum seed oil -Characterisation of HBr-Reactive acids. Fette Seifen 1980; 82(2): 63-66.

- 11. Mehta BK, Neogi R, Bokadia MM, Macleod AJ, Patel H. The essential oil of Abutilon indicum. Indian Perfumer 1998; 42: 80-81.
- 12. Jain PK, Sharma TC, Bokadia MM. Chemical Investigation of Essential oil of Abutilon indicum. Acta Ciencia Indica 1982; 8c (3): 136-139.
- 13. Gupta BK, Saharia GS. Chemical examination of the fixed oil from the seeds of Abutilon indicum. Journal of University of Bombay 1950; 28: 29-33.
- 14. Gambhir IR, Joshi SS. Chemical Examination of the seeds of Abutilon indicum, G. Don, Journal of Indian Chemical Society. 1952; 29: 451-454.
- 15. Geda A, Gupta AK. Chemical Investigation of Essential oil of Abutilon indicum. Perfumer and Flavorist 1983; 8: 39.
- 16. Lakshmayya, RNN, Kumar P, Agarwal NK, Shivaraj GT, Ramachandra SS. Phytohemical and pharmacological evaluation of leaves of Abutilon indicum. Indian Journal of Traditional Knowledge 2003; 2(1): 79-83.
- 17. Kanthale PR, Biradar S. Pharmacognostic study of Abutilon indicum (L.) Sweet. Int J Adv Res Innov Ideas Educ. 2017;3:338–42.
- 18. Suryawanshi VS, Umate SR. A Review on Phytochemical Constituents of Abutilon indicum (Linn.) Sweet-An Important Medicinal Plant in Ayurveda. Plantae Scientia. 2020 May 15;3(3):15-9.
- 19. Mohite MS, Shelar PA, Raje VN, Babar SJ, Sapkal RK. Review on Pharmacological Properties of Abutilon indicum. Asian journal of pharmaceutical research. 2012;2(4):156-60.
- 20. Kailasam KV. Abutilon indicum L (Malvaceae)-medicinal potential review. Pharmacognosy Journal. 2015;7(6).
- 21. Sharma PV, Ahmad ZA. Two sesquiterpene lactones from Abutilon indicum. Phytochemistry 2002; 28: 3525.

- 22. DSVGK K, Saranya KS, Vadlapudi V, Yarla NS. Evaluation of Anti-inflammatory and Anti-Proliferative Activity of Abutilon indicum L. Plant ethanolic leaf extract on lung cancer cell line A549 for system network studies. J Cancer Sci Ther. 2014;6:195-201.
- 23. Sharma PV, Ahmed ZA, Sharma VV. Analgesic constituent from Abutilon indicum. Indian Drugs 1989; 26: 333.
- 24. Kaushik D, Khokra SL, Kaushik P, Sharma C, Aneja KR. Evaluation of antioxidant and antimicrobial activity of Abutilon indicum. Pharmacologyonline. 2010;1:102-8.
- 25. Bhajipale NS. Evaluation of anti-arthritic activity of methanolic extract of Abutilon indicum. 2012;598-603.
- 26. Paul, Deepraj & Paul, Karthika & S, Anuradha. (2013). Evaluation Of Hydroalcoholic Extract of Aerial Parts of Abutilon Indicum for Its Analgesic and Sedative Property. International Research Journal of Pharmacy. 4. 216-218. 10.7897/2230-8407.04545.
- 27. Gupta R, Patil S, Shetty D. Hepatoprotective Activity of Hydroalcoholic and Ethyl Acetate Extract of Abutilon Indicum Leaf on Rats. Int. J. Pharm. Sci. Rev. Res. 2015;31(1):68-71.
- 28. Krisanapun C, Lee SH, Peungvicha P, Temsiririrkkul R, Baek SJ. Antidiabetic activities of Abutilon indicum (L.) sweet are mediated by enhancement of adipocyte differentiation and activation of the GLUT1 promoter. Evidence Based Complementary and Alternative Medicine. 2011;2011(1):167684.
- 29. Seetharam YN, Chalageri G, Setty SR. Hypoglycemic activity of Abutilon indicum leaf extracts in rats. 2002; 73: 156-159.
- 30. Srikanth P, Karthik PS, Sirisha M, Sashikanth Chitti SC. Evaluation of antioxidant and anticancer properties of methanolic extracts of Abutilon indicum and Blumea mollis.

- 31. Chandrashekhar VM, Nagappa AN, Channesh TS, Habbu PV, Rao KP. Anti-diarrhoeal activity of Abutilon indicum Linn leaf extract. Journal of natural remedies. 2004 Jan 1:12-6.
- 32. Golwala DK, Patel LD, Vaidya SK, Bothara SB, Mani M, Patel P. International Journal of Pharmacy and pharmaceutical sciences.
- 33. Abdul Rahuman A, Gopalakrishnan G, Venkatesan P, Geetha K. Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitology research. 2008 Apr;102:981-8
- 34. Suresh PG, Dharmalingam RG, Baskar S. Senthil kumar P, Evaluation of Wound Healing Activity of "Abutilon Indicum" Linn In Wister Albino Rats. Int J Biol Med Res. 2011;2(4):908-11.
- 35. Paranjhape AN, Mehta AA. A study on clinical efficacy of Abutilon indicum in treatment of bronchial asthma. Advances in Traditional Medicine. 2006;6(4):330-5.
- 36. Singh D, Gupta SR. Modulatory influence of Abutolon indicum leaves on Hepatic Antioxidant status and Lipid Peroxidation against alcohol induced liver damage in Rats. Pharmacology online 2008; 1: 253-262.
- 37. Johri RK, Pahwa GS, Sharma SC, Zutshi U. Determination of estrogenic/antiesterogenic potential of antifertility substances using rat uterine peroxidase assay. Contraception 1991 44(5): 549-557.
- 38. Bagi MK, Kalyani GA, Dennis TJ, Kumar AK, Kakrani HKA. Preliminary Pharmacological

- Screening of Abutilon indicum-II. Analgesic activity. Fitoterapia 1985; VI (3):169-171.
- 39. Porchezhian E, Ansari SH. Hepatoprotective activity of Abution indicum on experimental liver damage in rats. Pharmacognosy 2005; 12: 62-64.
- 40. Dixit SP, Tiwari PV, Gupta RM. Experimental studies on the immunological aspects of Atibala (Abutilon indicum (Linn) Sw.), Mahabala (Sida rhombifolia Linn.), Bala (Sida cardifolia Linn.) and Bhumibala (Sida vernonicaefolia Lam.). Journal of research in Indian medicine yoga and homoeopathy 1978; 13(3): 50-60.
- 41. Matlawska I, Sikorska M. Flavanoid compounds in the flowers of Abutilon indicum (L.) Sweet (Malvaceae). Acta Pol Pharm. 2002; 59: 227-229.
- 42. Dhanalakshmi S, Lakshmanan KK, Subramanian MS. Pharmacognostical and phytochemical studies of Abutilon L. Journal of Research and Education in Indian Medicine 1990; 21 25.
- 43. Chatterjee A, Prakash C. The treatise on Indian Medicinal Plants, Publication & information directorate, New Delhi, 1991, 174-175.

HOW TO CITE: Mahalakshmi N.*, Sakthi Abirami M., Jeevitha C., Keerthana V., A Comprehensive Review on Abutilon indicum (Linn.): Pharmacological and Phytochemical Insights, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 9, 2755-2767 https://doi.org/10.5281/zenodo.17189636