View Article

Abstract

Background: In this study, we used molecular docking to explore the binding affinity, ADME, and toxicity of flavone derivatives on several receptors associated with cardioprotective action. The binding affinity of several flavone derivatives to various receptors involved in cardioprotective action was determined. Auto Dock Vina, PyMol, Discovery Studio, AutoDock Tools, ChemSketch, Swiss ADME, and PROTOX 3.0. Methods: Molecular docking. Results: The binding results of the selected plant compounds and target proteins, namely 1o86, 7Q29, 5JMY, 4DLI, 2YCW, and 1CX2, showed that the good binding affinity and good receptor binding mode selected target. However, among all protein ? 1 adrenergic receptor (ID:- 2YCW) showed lowest binding affinity with compound D10 (2-(4-tert-butylphenyl)-4H-1-benzopyran-4-one) (binding energy – 11.0 Kcal/mol), D44 (binding energy – 10.6 Kcal/mol). D39 (binding energy – 10.4 Kcal/mol), D32, D35 & D42 (binding energy – 10.2 Kcal/mol). Conclusions: The current study attempted to computationally find chemicals that can bind to the numerous targets of cardiovascular disease. The docking scores and interaction analysis indicate that most drugs have the ability to bind to many targets involved in cardiovascular illness. However, the ? 1 adrenergic receptor has a high binding affinity. Absorption, distribution, metabolism, excretion, and toxicity, as well as toxicity prediction, revealed several chemicals that could be employed as possible candidates against cardiovascular disease.

Keywords

ADME, Binding energy, Cardioprotective agents, Docking, Toxicity, Flavones.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally.1 Approximately 10 million fatalities occur annually, and the figure will climb to 23.6 million by 2030.2 The leading cause of these deaths is ischemic heart disease (IHD), which claimed over 9 million lives in 2016. IHD remains the leading cause of death in countries of all income levels. Rates vary per country and are declining in the majority of them, indicating a lot of potential for growth. Future progress may be hampered by rising hypertension in some developing countries, as well as global obesity rates.3 IHD has a greater death rate than other CVDs, such as stroke, hypertension, and other cardiovascular illnesses. People who follow a high saturated fatty acid, high dietary energy density, and high sodium diet are substantially more likely to develop coronary heart disease than those who do not. Cardiovascular disorders (CVDs), which include coronary heart disease (CHD), cerebrovascular disease or accident (CVA), peripheral arterial disease, and rheumatic disease, are recognized as the leading cause of death worldwide. Rising trends in CVD prevalence and deaths, particularly CHD, have focused global attention on disease prevention and control.4 Low-middle-income countries, such as Pakistan, India, Bangladesh, Nepal, and Sri Lanka, have a higher risk of coronary heart disease (CHD) than other countries.5 Obesity, physical inactivity, smoking, and hereditary predisposition all contribute to the development of cardiovascular problems.6 Flavone derivatives (2-phenylchromone) are naturally occurring heterocyclic compounds belonging to the flavonoid category7. They are abundant in many naturally occurring products and represent a significant group of oxygen heterocycles, which are widely distributed in the plant kingdom as secondary metabolites8. Flavonoids are a broad category of around 4000 polyphenolic chemicals found in plant-derived foods. The fundamental basis for systematic classification of these compounds is the saturation level and aperture of the major pyran ring, which results in the synthesis of flavones, flavanols, flavonols, isoflavones, and flavanonols9.  Molecular docking is an important approach for understanding flavone derivatives' cardioprotective effect since it offers insight on their binding interactions with specific biological targets10. This computational method enables researchers to predict the affinity and orientation of flavonoids when they interact with proteins crucial in cardiovascular health, allowing the identification of novel therapeutic agents. This knowledge contributes in the development of treatment methods for cardiovascular disorders by improving flavone derivatives' cardioprotective properties.11 These interactions frequently entail the creation of hydrogen bonds and hydrophobic contacts, which are critical for the stability of the enzyme-ligand complex and improve the cardioprotective properties of these molecules12. We used molecular docking methods to investigate the interaction between flavones and cardiovascular targets. As a result, we conducted an in silico, ADME, toxicity analysis docking investigation of cardiovascular disease targets using flavones derivatives.

2. MATERIALS AND METHODS

2.1 Platform for molecular docking

The docking study of all the flavone derivatives selected as ligand and with target proteins was perform using AutoDock Vina software13.

2.2 Ligand preparation       

UCSF chimera software retrieves the 3D structure of all compounds from the PubChem database10 (https://pubchem.ncbi.nlm.nih.gov/). The Gasteiger charges and rotatable bonds were then allocated to the PDB ligands by Auto Dock Tool 1.5.611. The compound structures were evaluated for docking studies after minimizing their energy. (Table 1).

2.3 Protein preparation

Based on a review of the literature, a total of six proteins linked to various cardiovascular conditions were chosen (Table 2). The RCSB protein data bank (http://www.pdb.org) provided the 3D structures of a few chosen target proteins. Co-crystallized ligands (X-ray ligands) were present in the binding site of every protein. Each protein structure's ligands were extracted from the binding site and stored in a different file. Using the docking program AutoDock Vina, automated molecular docking was carried out to determine molecular interaction and optimum geometry14.

2.4 ADMET and toxicity prediction

The absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening of ligands contributes in determining their absorption properties, toxicity, and drug-like nature. Ligand compounds were saved in smiles format and specific drugs were submitted to SWISSADME. SWISSADME is a web-based tool for predicting ADME and pharmacokinetic features of molecules. The anticipated outcome includes lipophilicity, water solubility, physicochemical characteristics, pharmacokinetics, drug-likeness, medicinal chemistry, and brain or intestinal estimated15. Toxicity classes include Category I (compounds with LD50 values ≤50 mg/kg), Category II (compounds with LD50 values >50 mg/kg), and Category III (somewhat toxic) (compounds with LD50 values 500-5000 mg/kg), which are included in Category IV16,17. PROTOX is a rodent oral toxicity server that predicts the LD50 value and toxicity class of the query substance18.

2.5 Drug likeness calculations

Drug scans were conducted to establish whether the compounds fitted the drug-likeness criteria. Lipinski's filters were used with Molinspiration (http://www.molinspiration.com) to examine drug likeness attributes such as the number of hydrogen acceptors (no more than 10), the number of hydrogen donors (no more than 5), the molecular weight (more than 500 daltons), and the partition coefficient log P (no less than 5). The smiles format for each compounds was uploaded for examination.

Table 1: Major flavone derivatives for docking studies.

Sr no.

IUPAC NAME

Molecular Formula

PubChem ID

D1

2-(3-nitrophenyl)-4H-1-benzopyran-4-one

C15H9NO4

252248

D2

2-(3-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O3

229015

D3

2-(4-methylphenyl)-4H-1-benzopyran-4-one

C16H12O2

688829

D4

2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C16H12O3

77793

D5

2-(4-bromophenyl)-4H-1-benzopyran-4-one

C15H9BrO2

1686

D6

2-(4-aminophenyl)-4H-1-benzopyran-4-one

C15H11NO2

177048

D7

2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O3

229016

D8

2-(2-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O3

161860

D9

2-(3-aminophenyl)-4H-1-benzopyran-4-one

C15H11NO2

69569538

D10

2-(4-tert-butylphenyl)-4H-1-benzopyran-4-one

C19H18O2

776409

D11

2-(3-bromophenyl)-4H-1-benzopyran-4-one

C15H9BrO2

493373

D12

4-(4-oxo-4H-1-benzopyran-2-yl) benzoic acid

C16H10O4

5272796

D13

2-[3,6-(di-propan-2-yl)4-hydroxy-phenyl]-4H-1-benzopyran-4-one

C23H26Os

 

D14

2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-4-one

C18H16O5

332208

D15

6-tert-butyl-2-phenyl-4H-1-benzopyran-4-one

C19H18O2

91872361

D16

2-(4-chlorophenyl)-4H-1-benzopyran-4-one

C15H9ClO2

151515

D17

2-(3,4-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O4

688674

D18

2-(4-fluorophenyl)-4H-1-benzopyran-4-one

C15H9FO2

261391

D19

6-fluoro-2-phenyl-4H-1-benzopyran-4-one

C15H9FO2

261395

D20

6-chloro-2-phenyl-4H-1-benzopyran-4-one

C15H9ClO2

248021

D21

6-methyl-2-phenyl-4H-1-benzopyran-4-one

C16H12O2

689013

D22

5-hydroxy-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-4-one

C18H16O6

13302209

D23

2-(3,4-dimethoxyphenyl)-5-hydroxy-4H-1-benzopyran-4-one

C17H14O5

21721891

D24

2-(4-chlorophenyl)-5-hydroxy-4H-1-benzopyran-4-one

C15H9ClO3

15308132

D25

2-(4-iodophenyl)-4H-1-benzopyran-4-one

C15H9IO2

466287

D26

2-(2-fluorophenyl)-4H-1-benzopyran-4-one

C15H9FO2

261400

D27

2-(4-nitrophenyl)-4H-1-benzopyran-4-one

C15H9NO4

622510

D28

2-(2-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O3

161860

D29

2-(2-methylphenyl)-4H-1-benzopyran-4-one

C16H12O2

776385

D30

2-(2-nitrophenyl)-4H-1-benzopyran-4-one

C15H9NO4

775978

D31

2-(2-ethylphenyl)-4H-1-benzopyran-4-one

C17H14O2

66553950

D32

2-[3-(propan-2-yl) phenyl]-4H-1-benzopyran-4-one

C18H16O2

 

D33

2-(2-aminophenyl)-4H-1-benzopyran-4-one

C15H11NO2

12481696

D34

5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O4

165521

D35

5-hydroxy-2-(2-methylphenyl)-4H-1-benzopyran-4-one

C16H12O3

16060407

D36

5-hydroxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C16H12O4

 

276147

D37

5-hydroxy-2-(4-nitrophenyl)-4H-1-benzopyran-4-one

C15H9NO5

11098040

D38

5-hydroxy-2-(3,4,5-trimethoxyphenyl)-4H-1-benzopyran-4-one

C18H16O6

13302209

D39

2-(2-ethylphenyl)-5-hydroxy-4H-1-benzopyran-4-one

C17H14O3

 

D40

6-chloro-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C16H11ClO3

678256

D41

6-chloro-2-(4-nitrophenyl)-4H-1-benzopyran-4-one

C15H8ClNO4

5011227

D42

5-hydroxy-2-(4-methylphenyl)-4H-1-benzopyran-4-one

C16H12O3

11779973

D43

5-hydroxy-2-(2-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O4

688660

D44

5-hydroxy-2-[3-(propan-2-yl) phenyl]-4H-1-benzopyran-4-one

C18H16O3

 

D45

2-(4-aminophenyl)-5-hydroxy-4H-1-benzopyran-4-one

C15H11NO3

46873260

D46

2-(4-aminophenyl)-6-chloro-4H-1-benzopyran-4-one

C15H10ClNO2

82046480

D47

6-chloro-2-[3-(propan-2-yl) phenyl]-4H-1-benzopyran-4-one

C18H15ClO2

 

D48

2-(2-bromophenyl)-6-chloro-4H-1-benzopyran-4-one

C15H8BrClO2

688748

D49

6-chloro-2-(2-methoxyphenyl)-4H-1-benzopyran-4-one

C16H11ClO3

930715

D50

6-chloro-2-(2-chlorophenyl)-4H-1-benzopyran-4-one

C15H8Cl2O2

688872

Table 2: Targeted receptor proteins associated with cardiovascular disease Results

 

Sr no.

Target Proteins

Disease

PDB ID

1

Angiotensin-converting enzyme

Atherosclerosis/coronary artery diseases

1o86

2

ACE/NEP inhibitor

Atherosclerosis/coronary artery diseases

7Q29

3

MAPK

Myocardial infarction

4DLI

4

Neprilysin

Coronary artery disease

5JMY

5

β?1?adrenergic receptor

Chronic heart failure

2YCW

6

Cox-2

Myocardial infarction, pain

1CX2

Docking results

The binding results of the selected compounds and target proteins, namely 1o86, 7Q29, 5JMY, 4DLI, 2YCW, and 1CX2, revealed that the good binding affinity and receptor binding mode selected target. However, among all derivatives, D10 (2-(4-tert-butylphenyl)-4H-1-benzopyran-4-one) has the lowest binding energy with β?1?adrenergic receptor (binding energy – 11.0 Kcal/mol), D47 with ACE and neutral endopeptidase inhibitors (binding energy – 9.4 Kcal/mol), D47 with ACE has lowest binding energy (binding energy – 9.2 Kcal/mol), for cox-2 the lowest binding energy with D47 derivative (binding energy – 10.5 Kcal/mol), D32 has lowest binding energy with receptor MAPK (binding energy – 10.4 Kcal/mol), D11 has lowest binding energy with protein neprilysin (binding energy – 9.4 Kcal/mol). All binding affinities of flavone derivatives are shown in Table 3.

Table 3: Binding energy of flavone derivatives against targeted protein receptors

 

Derivative code

Cox-2

(1CX2)

 

ACE/NEP, ID – 7Q29

 

ACE

(1o86)

 

β?1?adrenergic receptor

ID:- 2YCW

MAPK

ID:- 4DLI

 

Neprilysin

ID:- 5JMY

D1

-9.4

-9.1

-8.4

-9.8

-8.5

-8.3

D2

-8.9

-8.8

-8.3

-9.6

-9.9

-9.0

D3

-10

-9.0

-8.3

-10.0

-8.6

-7.9

D4

-8.9

-8.5

-8.2

-9.4

-9.2

-8.0

D5

-9.1

-8.9

-8.1

-9.7

-8.7

-7.8

D6

-9.3

-8.5

-8.1

-9.6

-9.1

-7.7

D7

-9.6

-8.5

-8.0

-9.7

-9.2

-8.1

D8

-8.9

-8.5

-8.2

-9.3

-9.7

-8.9

D9

-9.0

-8.8

-8.3

-9.6

-9.6

-9.0

D10

-9.8

-8.9

-8.5

-11.0

-8.7

-8.3

D11

-9.4

-8.7

-8.1

-9.6

-9.6

-9.4

D12

-9.2

-8.5

-8.8

-9.9

-9.1

-8.5

D13

-9.3

-9.0

-8.5

-8.8

-9.2

-8.2

D14

-8.8

-8.5

-7.9

-9.0

-8.1

-7.5

D15

-9.4

-9.0

-8.2

-10

-9.1

-8.1

D16

9.0

-8.8

-8.1

-9.7

-9.1

-7.8

D17

-8.9

-8.6

-8.0

-9.3

-9.0

-8.3

D18

-9.0

-8.7

-8.0

-9.6

-9.6

-8.8

D19

-8.2

-8.4

-8.0

-9.3

-9.3

-8.0

D20

-8.7

-8.3

-7.8

-9.4

-8.2

-8.0

D21

-10.3

-8.4

-8.0

-9.7

-8.2

-8.8

D22

-9.2

-8.3

-8.1

-8.8

-7.6

-8.6

D23

-9.1

-8.2

-8.4

-9.7

-7.7

-7.8

D24

-8.9

-8.5

-8.2

-10.0

-9.6

-7.7

D25

-8.9

-8.9

-7.8

-9.7

-8.5

-7.8

D26

-9.1

-8.8

-7.7

-9.6

-9.6

-8.3

D27

-9.1

-8.9

-8.7

-9.8

-8.2

-8.3

D28

-8.9

-8.5

-8.2

-9.3

-9.7

-8.9

D29

-8.5

-8.9

-8.4

-9.8

-9.8

-7.5

D30

-8.7

-7.9

-8.1

-9.8

-9.6

-7.5

D31

-8.3

-8.9

-7.7

-10.1

-10.0

-7.5

D32

-9.0

-9.3

-9.0

-10.3

-10.4

-8.1

D33

-9.4

-8.6

-8.0

-9.3

-9.2

-8.6

D34

-8.7

-8.2

-8.1

-9.7

-9.6

-8.3

D35

-9.2

-8.6

-8.1

-10.3

-10.1

-7.4

D36

-9.0

-8.1

-8.3

-9.8

-9.7

-7.9

D37

-9.4

-8.8

-8.6

-10.2

-9.3

-8.0

D38

-9.1

-8.3

-8.1

-8.8

-9.3

-8.6

D39

-9.1

-8.6

-8.3

-10.4

-8.0

-9.1

D40

-8.6

-8.2

-7.9

-9.0

-8.4

-7.2

D41

-9.2

-9.0

-8.5

-8.6

-7.6

-7.9

D42

-9.0

-8.6

-8.3

-10.3

-9.6

-8.1

D43

-8.9

-8.2

-8.1

-9.6

-10.1

-8.8

D44

-9.8

-9.2

-8.7

-10.6

-10.3

-8.4

D45

-8.8

-8.2

-8.0

-9.7

-9.5

-7.9

D46

-9.0

-8.2

-8.0

-8.6

-8.3

-7.4

D47

-10.5

-9.4

-9.2

-10.0

-8.5

-8.5

D48

-8.0

-8.4

-7.7

-9.0

-7.9

-8.0

D49

-9.3

-8.3

-7.9

-8.8

-7.3

-7.7

D50

-8.8

-8.2

-8.2

-8.8

-8.9

-8.0

Rofecoxib

-8.1

 

 

 

 

 

Omapatrilat

 

-9.6

 

 

 

 

Lisinopril

 

 

-7.6

 

 

 

Carazolol

 

 

 

-9.6

 

 

losmapimod

 

 

 

 

-8.7

 

Figure1: COX?2 receptor docked with D47

Figure 3: ACE receptor docked with D47

Figure 4: β?1?adrenergic receptor docked with D10

Figure 5: MAPK receptor docked with D37

Figure 6: Neprilysin receptor docked with D11

Toxicity and ADMET prediction

The toxicity of compounds was evaluated using the Protox 3.0 software. The server admet generates pharmacokinetic characteristics of substances using various criteria: Absorption, distribution, metabolism, and excretion19. The results of admet analysis and toxicity prediction have been shown in table 4. Except for D1 (600 mg/kg), all examined compounds had greater LD50 values, indicating that they are non-toxic. Except for D6, D9, D27, D30, D33, D45, and D46, all of the chemicals chosen have no hepatotoxic properties. Except for D2, D3, D7, D21, D24, D32, D42, and D44, all of the derivatives have no cardiotoxic activity. As a result, based on ADMET and toxicity analysis, some derivatives meet all of the mentioned requirements, and we may indicate that they are prospective candidates for the development of a better cardiovascular disease treatment.

Drug-likeness prediction

The Drug-likeness filters help in the early preclinical development by avoiding costly late step preclinical and clinical failure. The drug-likeness properties of molecules were analyzed based on Lipinski rule of 5(Table 5). All the selected compounds satisfied Lipinski’s rule of five.

Table 4: ADMET prediction of selected derivatives used through swiss ADME and Protox-3.0 software

 

Compounds

LD50, (mg/kg)

Hepatotoxicity

Cardiotoxicity

Cytotoxicity

Carcinogens

D1

600 (class 4)

inactive

inactive

inactive

inactive

D2

4000 (class 5)

inactive

active

active

active

D3

2500 (class 5)

inactive

active

active

active

D4

4000 (class 5)

inactive

inactive

active

active

D5

2500 (class 5)

inactive

inactive

active

active

D6

2500 (class 5)

active

inactive

inactive

active

D7

2500 (class 5)

inactive

active

active

active

D8

4000 (class 5)

inactive

inactive

inactive

active

D9

2500 (class 5)

active

inactive

inactive

active

D10

2500 (class 5)

inactive

inactive

inactive

active

D11

2500 (class 5)

inactive

inactive

inactive

active

D12

2500 (class 5)

inactive

inactive

inactive

active

D13

2500 (class 5)

inactive

inactive

inactive

inactive

D14

4000 (class 5)

inactive

inactive

inactive

inactive

D15

2500 (class 5)

inactive

inactive

inactive

active

D16

2500 (class 5)

inactive

inactive

active

active

D17

4000 (class 5)

inactive

inactive

inactive

inactive

D18

2500 (class 5)

inactive

inactive

active

inactive

D19

2500 (class 5)

inactive

inactive

active

active

D20

2500 (class 5)

inactive

inactive

active

active

D21

2500 (class 5)

inactive

active

active

active

D22

4000 (class 5)

inactive

inactive

inactive

inactive

D23

4000 (class 5)

inactive

inactive

inactive

inactive

D24

4000 (class 5)

inactive

active

active

active

D25

2500 (class 5)

inactive

inactive

active

active

D26

2500 (class 5)

inactive

inactive

inactive

active

D27

2500 (class 5)

active

inactive

inactive

active

D28

4000 (class 5)

inactive

inactive

inactive

active

D29

2500 (class 5)

inactive

inactive

active

active

D30

2500 (class 5)

active

inactive

active

active

D31

2500 (class 5)

inactive

inactive

inactive

active

D32

2500 (class 5)

inactive

inactive

inactive

active

D33

2500 (class 5)

active

inactive

inactive

active

D34

2500 (class 5)

inactive

inactive

inactive

inactive

D35

4000 (class 5)

inactive

inactive

inactive

inactive

D36

4000 (class 5)

inactive

inactive

inactive

active

D37

4000 (class 5)

active

inactive

inactive

active

D38

4000 (class 5)

inactive

inactive

inactive

inactive

D39

4000 (class 5)

inactive

inactive

inactive

inactive

D40

4000 (class 5)

inactive

inactive

active

active

D41

2500 (class 5)

inactive

inactive

inactive

active

D42

4000 (class 5)

inactive

active

inactive

active

D43

2500 (class 5)

inactive

inactive

inactive

inactive

D44

4000 (class 5)

inactive

active

active

inactive

D45

4000 (class 5)

active

inactive

inactive

active

D46

2500 (class 5)

active

inactive

inactive

active

D47

2500 (class 5)

inactive

inactive

inactive

active

D48

2500 (class 5)

inactive

inactive

inactive

active

D49

4000 (class 5)

inactive

inactive

inactive

active

D50

2500 (class 5)

inactive

inactive

inactive

active

Table 5: Drug-likeness prediction of selected compounds.

 

 

Molecular Formula

Molecular weight

Log p

TPSA

H-bond donar

H-bond accepter

Lipinski rule

D1

C15H9NO4

267.24 g/mol

2.56

76.03 Ų

0

4

Yes

D2

C15H10O3

238.24 g/mol

2.75

50.44 Ų

1

3

Yes

D3

C16H12O2

236.27 g/mol

3.50

30.21 Ų

0

2

Yes

D4

C16H12O3

252.26 g/mo

3.15

39.44 Ų

0

3

Yes

D5

C15H9BrO2

301.13 g/mol

3.80

30.21 Ų

0

1

Yes

D6

C15H11NO2

237.25 g/mol

2.61

56.23 Ų

1

2

Yes

D7

C15H10O3

238.24 g/mol

2.75

50.44 Ų

1

3

Yes

D8

C15H10O3

238.24 g/mol

2.78

50.44 Ų

1

3

Yes

D9

C15H11NO2

237.25 g/mol

2.61

56.23 Ų

1

2

Yes

D10

C19H18O2

278.35 g/mol

4.38

30.21 Ų

0

2

Yes

D11

C15H9BrO2

301.13 g/mol

3.80

30.21 Ų

0

2

Yes

D12

C16H10O4

266.25 g/mol

2.64

67.51 Ų

1

4

Yes

D13

C23H26Os

350.45 g/mol

4.19

50.44 Ų

1

3

Yes

D14

C18H16O5

312.32 g/mol

3.12

57.90 Ų

0

5

Yes

D15

C19H18O2

278.35 g/mol

4.38

30.21 Ų

0

2

Yes

D16

C15H9ClO2

256.68 g/mol

3.71

30.21 Ų

0

2

Yes

D17

C17H14O4

282.29 g/mol

3.13

48.67 Ų

0

4

Yes

D18

C15H9FO2

240.23 g/mol

3.48

30.21 Ų

0

3

Yes

D19

C15H9FO2

240.23 g/mol

3.56

30.21 Ų

0

3

Yes

D20

C15H9ClO2

256.68 g/mol

3.78

30.21 Ų

0

2

Yes

D21

C16H12O2

236.27 g/mol

3.51

30.21 Ų

0

2

Yes

D22

C18H16O6

328.32 g/mol

3.00

78.13 Ų

1

6

Yes

D23

C17H14O5

298.29 g/mol

2.95

68.90 Ų

1

5

Yes

D24

C15H9ClO3

272.68 g/mol

3.59

50.44 Ų

1

3

Yes

D25

C15H9IO2

348.14 g/mol

3.84

30.21 Ų

0

2

Yes

D26

C15H9FO2

240.23 g/mol

3.49

30.21 Ų

0

3

Yes

D27

C15H9NO4

267.24 g/mol

2.55

76.03 Ų

0

4

Yes

D28

C15H10O3

238.24 g/mol

2.78

50.44 Ų

1

3

Yes

D29

C16H12O2

236.27 g/mol

3.51

30.21 Ų

0

2

Yes

D30

C15H9NO4

267.24 g/mol

2.54

76.03 Ų

0

4

Yes

D31

C17H14O2

250.29 g/mol

3.79

30.21 Ų

0

2

Yes

D32

C18H16O2

264.32 g/mol

4.11

30.21 Ų

0

2

Yes

D33

C15H11NO2

237.25 g/mol

2.63

56.23 Ų

1

2

Yes

D34

C15H10O4

254.24 g/mol

2.64

70.67 Ų

2

4

Yes

D35

C16H12O3

252.26 g/mol

3.36

50.44 Ų

1

3

Yes

D36

C16H12O4

268.26 g/mol

3.04

59.67 Ų

1

4

Yes

D37

C15H9NO5

283.24 g/mol

2.44

96.26 Ų

1

5

Yes

D38

C18H16O6

328.32 g/mol

3.00

78.13 Ų

1

6

Yes

D39

C17H14O3

266.29 g/mol

3.66

50.44 Ų

1

3

Yes

D40

C16H11ClO3

286.71 g/mol

3.68

39.44 Ų

0

3

Yes

D41

C15H8ClNO4

301.68 g/mol

3.07

76.03 Ų

0

4

Yes

D42

C16H12O3

252.26 g/mol

3.38

50.44 Ų

1

3

Yes

D43

C15H10O4

254.24 g/mol

2.67

70.67 Ų

2

4

Yes

D44

C18H16O3

280.32 g/mol

3.99

50.44 Ų

1

3

Yes

D45

C15H11NO3

253.25 g/mol

2.50

76.46 Ų

2

3

Yes

D46

C15H10ClNO2

271.70 g/mol

3.14

56.23 Ų

1

2

Yes

D47

C18H15ClO2

298.76 g/mol

4.72

30.21 Ų

0

2

Yes

D48

C15H8BrClO2

335.58 g/mol

4.39

30.21 Ų

0

2

Yes

D49

C16H11ClO3

286.71 g/mol

3.76

39.44 Ų

0

3

Yes

D50

C15H8Cl2O2

291.13 g/mol

4.31

30.21 Ų

0

2

Yes

DISCUSSION

In pharmaceutical research, computational strategies are of tremendous significance since they help in the identification and development of novel promising molecules, notably using molecular docking approaches20, 21The angiotensin-converting enzyme (ACE) plays an important role in blood pressure regulation, and inhibiting ACE using inhibitory peptides is thought to be a main target for hypertension prevention. Several research employed the docking technique to block the expression of the ACE protein with drugs22. Among all derivatives, D10 (2-(4-tert-butylphenyl)-4H-1-benzopyran-4-one) has the lowest binding energy with β 1 adrenergic receptor (binding energy – 11.0 Kcal/mol), D47 with ACE and neutral endopeptidase inhibitors (binding energy – 9.4 Kcal/mol), D47 with ACE has lowest binding energy (binding energy – 9.2 Kcal/mol), for cox-2 the lowest binding energy with D47 derivative (binding energy – 10.5 Kcal/mol), D32 has lowest binding energy with receptor MAPK (binding energy – 10.4 Kcal/mol), D11 has lowest binding energy with protein neprilysin (binding energy – 9.4 Kcal/mol). In the present study, we have selected 50 flavone derivatives which are synthesize from benzaldehyde and acetophenone derivatives against protein targets of various cardiovascular disease. It was found that among all selected above derivatives satisfy all parameters of ADMET and toxicity, also showed good affinity with selected protein targets, therefore, they could be used as potential broad -spectrum candidate for treatment of different heart problems.

CONCLUSIONS

The current study attempted to computationally find chemicals that can bind to the numerous targets of cardiovascular disease. The docking scores and interactions of the compounds indicate that the majority of the compounds can bind to several targets involved in cardiovascular disease. ADMET and toxicity prediction revealed that derivatives D10, D11, D32, and D47 could be employed as possible cardiovascular disease treatments.

ACKNOWLEDGEMENT

Authors would like to acknowledge Priyadarshini JL College of Pharmacy, Nagpur, for providing research facilities

REFERENCES

        1. Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;Volume 8:1-11. doi:10.2147/IPRP.S133088
        2. Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study. Lancet Public Health. 2020;5(12):e672-e681. doi:10.1016/S2468-2667(20)30191-2
        3. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality From Ischemic Heart Disease: Analysis of Data From the World Health Organization and Coronary Artery Disease Risk Factors From NCD Risk Factor Collaboration. Circ Cardiovasc Qual Outcomes. 2019;12(6):e005375. doi:10.1161/CIRCOUTCOMES.118.005375
        4. Abu Bakar NAF, Ahmad A, Wan Musa WZ, et al. Association between a dietary pattern high in saturated fatty acids, dietary energy density, and sodium with coronary heart disease. Sci Rep. 2022;12(1):13049. doi:10.1038/s41598-022-17388-5
        5. Muzaffar R, Khan MA, Mushtaq MH, et al. Hyperhomocysteinemia as an Independent Risk Factor for Coronary Heart Disease. Comparison with Conventional Risk Factors. Braz J Biol. 2023;83:e249104. doi:10.1590/1519-6984.249104
        6. Giannitsi S, Maria B, Bechlioulis A, Naka K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis. 2019;8:2048004019843047. doi:10.1177/2048004019843047
        7. Venkatesan P, Maruthavanan T. Synthesis of substituted flavone derivatives as potent antimicrobial agents. Bull Chem Soc Ethiop. 2011;25(3). doi:10.4314/bcse.v25i3.68594
        8. Lahyani A, Trabelsi M. Ultrasonic-assisted synthesis of flavones by oxidative cyclization of 2′-hydroxychalcones using iodine monochloride. Ultrason Sonochem. 2016;31:626-630. doi:10.1016/j.ultsonch.2016.02.018
        9. Khan A, Jain A, Solank M. Synthesis and Biological Evaluation of Newly Synthesized Halogenated Flavones. Orient J Chem. 2024;40(2):562-568. doi:10.13005/ojc/400231
        10. Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol. 2008;18(2):178-184. doi:10.1016/j.sbi.2008.01.004
        11. Shadidizaji A, Cinisli KT, Warda M, et al. In Silico Elucidation of the Binding Mechanisms and Molecular Dynamics of Oroxylin A -2,3-Dioxygenase Interaction: An Insight into Therapeutic Potentiation of Quercetin’s Cardioprotection. Recent Trends Pharmacol. 2024;2(1):27-35. doi:10.62425/rtpharma.1455410
        12. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531-568. doi:10.1002/med.20067
        13. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. doi:10.1002/jcc.21256
        14. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5(6):597-607. doi:10.1517/17460441.2010.484460
        15. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi:10.1038/srep42717
        16. Cheng F, Li W, Zhou Y, et al. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inf Model. 2012;52(11):3099-3105. doi:10.1021/ci300367a
        17. Yang H, Lou C, Sun L, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Wren J, ed. Bioinformatics. 2019;35(6):1067-1069. doi:10.1093/bioinformatics/bty707
        18. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-W263. doi:10.1093/nar/gky318
        19. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. CURRENT PROGRESS IN STRUCTURE-BASED RATIONAL DRUG DESIGN MARKS A NEW MINDSET IN DRUG DISCOVERY. Comput Struct Biotechnol J. 2013;5(6):e201302011. doi:10.5936/csbj.201302011
        20. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. Journal of Molecular Recognition 26: 215-239 dio: 10.1002/jmr.2266
        21. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20: 13384-13421. doi: 10.3390/ molecules200713384
        22. Tahir RA, Bashir A, Yousaf MN, Ahmed A, Dali Y, Khan S, Sehgal SA (2020). In Silico identification of angiotensin-converting enzyme inhibitory peptides from MRJP1. PloS one 15:e0228265.     doi:10.1371/journal.pone.0228265

Reference

  1. Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;Volume 8:1-11. doi:10.2147/IPRP.S133088
  2. Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study. Lancet Public Health. 2020;5(12):e672-e681. doi:10.1016/S2468-2667(20)30191-2
  3. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality From Ischemic Heart Disease: Analysis of Data From the World Health Organization and Coronary Artery Disease Risk Factors From NCD Risk Factor Collaboration. Circ Cardiovasc Qual Outcomes. 2019;12(6):e005375. doi:10.1161/CIRCOUTCOMES.118.005375
  4. Abu Bakar NAF, Ahmad A, Wan Musa WZ, et al. Association between a dietary pattern high in saturated fatty acids, dietary energy density, and sodium with coronary heart disease. Sci Rep. 2022;12(1):13049. doi:10.1038/s41598-022-17388-5
  5. Muzaffar R, Khan MA, Mushtaq MH, et al. Hyperhomocysteinemia as an Independent Risk Factor for Coronary Heart Disease. Comparison with Conventional Risk Factors. Braz J Biol. 2023;83:e249104. doi:10.1590/1519-6984.249104
  6. Giannitsi S, Maria B, Bechlioulis A, Naka K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis. 2019;8:2048004019843047. doi:10.1177/2048004019843047
  7. Venkatesan P, Maruthavanan T. Synthesis of substituted flavone derivatives as potent antimicrobial agents. Bull Chem Soc Ethiop. 2011;25(3). doi:10.4314/bcse.v25i3.68594
  8. Lahyani A, Trabelsi M. Ultrasonic-assisted synthesis of flavones by oxidative cyclization of 2′-hydroxychalcones using iodine monochloride. Ultrason Sonochem. 2016;31:626-630. doi:10.1016/j.ultsonch.2016.02.018
  9. Khan A, Jain A, Solank M. Synthesis and Biological Evaluation of Newly Synthesized Halogenated Flavones. Orient J Chem. 2024;40(2):562-568. doi:10.13005/ojc/400231
  10. Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol. 2008;18(2):178-184. doi:10.1016/j.sbi.2008.01.004
  11. Shadidizaji A, Cinisli KT, Warda M, et al. In Silico Elucidation of the Binding Mechanisms and Molecular Dynamics of Oroxylin A -2,3-Dioxygenase Interaction: An Insight into Therapeutic Potentiation of Quercetin’s Cardioprotection. Recent Trends Pharmacol. 2024;2(1):27-35. doi:10.62425/rtpharma.1455410
  12. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531-568. doi:10.1002/med.20067
  13. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. doi:10.1002/jcc.21256
  14. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5(6):597-607. doi:10.1517/17460441.2010.484460
  15. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi:10.1038/srep42717
  16. Cheng F, Li W, Zhou Y, et al. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inf Model. 2012;52(11):3099-3105. doi:10.1021/ci300367a
  17. Yang H, Lou C, Sun L, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Wren J, ed. Bioinformatics. 2019;35(6):1067-1069. doi:10.1093/bioinformatics/bty707
  18. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-W263. doi:10.1093/nar/gky318
  19. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. CURRENT PROGRESS IN STRUCTURE-BASED RATIONAL DRUG DESIGN MARKS A NEW MINDSET IN DRUG DISCOVERY. Comput Struct Biotechnol J. 2013;5(6):e201302011. doi:10.5936/csbj.201302011
  20. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. Journal of Molecular Recognition 26: 215-239 dio: 10.1002/jmr.2266
  21. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20: 13384-13421. doi: 10.3390/ molecules200713384
  22. Tahir RA, Bashir A, Yousaf MN, Ahmed A, Dali Y, Khan S, Sehgal SA (2020). In Silico identification of angiotensin-converting enzyme inhibitory peptides from MRJP1. PloS one 15:e0228265.     doi:10.1371/journal.pone.0228265

Photo
Sneha Nandeshwar
Corresponding author

Department of Pharmaceutical Chemistry, Priyadarshini JL College of Pharmacy, Nagpur, 440016

Photo
Sapan Shah
Co-author

Department of Pharmaceutical Chemistry, Priyadarshini JL College of Pharmacy, Nagpur, 440016

Photo
Rida Saiyad
Co-author

Department of Pharmaceutical Chemistry, Priyadarshini JL College of Pharmacy, Nagpur, 440016

Photo
Nikita Gaikwad
Co-author

Department of Pharmaceutical Chemistry, Priyadarshini JL College of Pharmacy, Nagpur, 440016

Photo
Pooja Wankhade
Co-author

Department of Pharmaceutical Chemistry, Priyadarshini JL College of Pharmacy, Nagpur, 440016

Sneha Nandeshwar*, Sapan Shah, Rida Saiyad, Nikita Gaikwad, Pooja Wankhade, In-Silico Evaluation of Flavone Derivatives for Cardioprotective Effects: A Comparative Molecular Docking Approach, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 3, 2543-2556 https://doi.org/10.5281/zenodo.15087478

More related articles
In Silico Design of Dpp-4 Inhibitory Quinazolines:...
Brijmohan Sahu, Tapas Kumar Panigrahi, ...
A Comprehensive Approach for Drug Safety Assessmen...
Sainath Marakwad, Tejeshwini Dhawle, Dr. Gajanan Sanap, ...
In-Silico Characterization, ADMET Prediction, and ...
Swapnil Tirmanwar, Pratik Dhokane, Shivani Wadichar, Saurabh Kola...
A Brief Review on Nanomedicine Used for Targeted Drug Delivery...
Dipanshu Suryawanshi , Saloni Chimankare, Rohit Kumbhar, ...
In Silico Design And ADME Study Of Novel Benzimidazole Containing Derivatives As...
Sandip S. Chaudhari , Megha R. Mahajan , Puja R. Khodape, Diksha N. Koli, Tarannum R. Sayyyad , Pras...
A Comprehensive Approach for Drug Safety Assessment...
Sainath Marakwad, Tejeshwini Dhawle, Dr. Gajanan Sanap, ...
Related Articles
Case Report on Acute Hexaconazole Poisoning in A Chronic Alcoholic Patient...
Vishwa Athithyan, Swanubhuti Jain, Abinav P., Anil Dhakal, Sekhar Sharma, Rajendra Dhakal, ...
Molecular Simulation and Computational Docking Based Synthesis and Screening of ...
Sathish N. K., Sharanagouda, Dhananjay Mathad, V. V. S. Rajendra prasad, Jaishree V. A., Bhagyashree...
A Brief Review on Nanomedicine Used for Targeted Drug Delivery...
Dipanshu Suryawanshi , Saloni Chimankare, Rohit Kumbhar, ...
Revealing the Molecular Interactions: Investigating the Docking Studies of (N-(4...
Mayur Bagane, Rutuparna Karkare, Rajesh Jorgewad, Saee Thakur, Medha Petkar, Amruta Patil, Sneha K...
More related articles
A Comprehensive Approach for Drug Safety Assessment...
Sainath Marakwad, Tejeshwini Dhawle, Dr. Gajanan Sanap, ...
In-Silico Characterization, ADMET Prediction, and Molecular Docking Studies of C...
Swapnil Tirmanwar, Pratik Dhokane, Shivani Wadichar, Saurabh Kolaskar, Gopal Pondhe, Kajal Prasad, ...
A Comprehensive Approach for Drug Safety Assessment...
Sainath Marakwad, Tejeshwini Dhawle, Dr. Gajanan Sanap, ...
In-Silico Characterization, ADMET Prediction, and Molecular Docking Studies of C...
Swapnil Tirmanwar, Pratik Dhokane, Shivani Wadichar, Saurabh Kolaskar, Gopal Pondhe, Kajal Prasad, ...